Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(4): e202112097, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34779556

RESUMO

The indoor air quality is of prime importance for human daily life and health, for which the adsorbents like zeolites and silica-gels are widely used for air dehumidification and harmful gases capture. Herein, we develop a pore-nanospace post-engineering strategy to optimize the hydrophilicity, water-uptake capacity and air-purifying ability of metal-organic frameworks (MOFs) with long-term stability, offering an ideal candidate with autonomous multi-functionality of moisture control and pollutants sequestration. Through variant tuning of organic-linkers carrying hydrophobic and hydrophilic groups in the pore-nanospaces of prototypical UiO-67, a moderately hydrophilic MOF (UiO-67-4Me-NH2 -38 %) with high thermal, hydrolytic and acid-base stability is screened out, featuring S-shaped water sorption isotherms exactly located in the recommended comfortable and healthy ranges of relative humidity for indoor ventilation (45 %-65 % RH) and adverse health effects minimization (40-60 % RH). Its exceptional attributes of water-uptake working capacity/efficiency, contaminants removal, recyclability and regeneration promise a great potential in confined indoor environment application.


Assuntos
Estruturas Metalorgânicas/química , Nanopartículas/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Poluição do Ar em Ambientes Fechados , Umidade , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície , Água/química , Poluentes Químicos da Água/química
2.
Angew Chem Int Ed Engl ; 59(10): 3905-3909, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31833644

RESUMO

Metal-organic frameworks (MOFs) with long-term stability and reversible high water uptake properties can be ideal candidates for water harvesting and indoor humidity control. Now, a mesoporous and highly stable MOF, BIT-66 is presented that has indoor humidity control capability and a photocatalytic bacteriostatic effect. BIT-66 (V3 (O)3 (H2 O)(BTB)2 ), possesses prominent moisture tunability in the range of 45-60 % RH and a water uptake and working capacity of 71 and 55 wt %, respectively, showing good recyclability and excellent performance in water adsorption-desorption cycles. Importantly, this MOF demonstrates a unique photocatalytic bacteriostatic behavior under visible light, which can effectively ameliorate the bacteria and/or mold breeding problem in water adsorbing materials.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Estruturas Metalorgânicas/farmacologia , Vanádio/farmacologia , Antibacterianos/química , Catálise , Teoria da Densidade Funcional , Umidade , Hidrólise , Luz , Estruturas Metalorgânicas/química , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Processos Fotoquímicos , Porosidade , Propriedades de Superfície , Vanádio/química , Água/química
3.
Angew Chem Int Ed Engl ; 55(35): 10358-62, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27440749

RESUMO

Ionic metal-organic frameworks (MOFs) are a subclass of porous materials that have the ability to incorporate different charged species in confined nanospace by ion-exchange. To date, however, very few examples combining mesoporosity and water stability have been realized in ionic MOF chemistry. Herein, we report the rational design and synthesis of a water-stable anionic mesoporous MOF based on uranium and featuring tbo-type topology. The resulting tbo MOF exhibits exceptionally large open cavities (3.9 nm) exceeding those of all known anionic MOFs. By supercritical CO2 activation, a record-high Brunauer-Emmett-Teller (BET) surface area (2100 m(2) g(-1) ) for actinide-based MOFs has been obtained. Most importantly, however, this new uranium-based MOF is water-stable and able to absorb positively charged ions selectively over negatively charged ones, enabling the efficient separation of organic dyes and biomolecules.

4.
Chemosphere ; 313: 137607, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566790

RESUMO

Metal-organic frameworks (MOFs) are extensively recognized for their wide applications in a variety of fields such as water purification, adsorption, sensing, catalysis and drug delivery. The fundamental characteristics of the majority of MOFs, such as their structure and shape, are known to be sensitively impacted by water or moisture. As a result, a thorough evaluation of the stability of MOFs in respect to factors linked to these property changes is required. It is quite rare for MOFs in their early stages to have strong water-stability, which is necessary for the commercialization and development of wider applications of this interesting material. Also, numerous applications in presence of water have progressed considerably as a "proof of concept" stage in the past and a growing number of water-stable MOFs (WSMOFs) have been discovered in recent years. This review discusses the variables and processes that affect the aqueous stability of several MOFs, including imidazolate and carboxylate frameworks. Accordingly, this article will assist researchers in accurately evaluating how water affects the stability of MOFs so that effective techniques can be identified for the advancement of water-stable metal-organic frameworks (WSMOFs) and for their effective applications toward a variety of fields.


Assuntos
Estruturas Metalorgânicas , Purificação da Água , Estruturas Metalorgânicas/química , Porosidade , Água , Ácidos Carboxílicos , Purificação da Água/métodos
5.
Chemosphere ; 285: 131432, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34273693

RESUMO

Heavy metals pollution in water is a global environmental issue, which has threatened the human health and environment. Thus, it is important to remove them under practical water environment. In recent years, metal-organic frameworks (MOFs) with water-stable properties have attracted wide interest with regard to the capture of hazardous heavy metal ions in water. In this review, the synthesis strategy and postsynthesis modification preparation methods are first summarized for water-stable MOFs (WMOFs), and then the recent advances on the adsorption and photocatalytic reduction of heavy metal ions in water by WMOFs are reviewed. In contrast to the conventional adsorption materials, WMOFs not only have excellent adsorption properties, but also lead to photocatalytic reduction of heavy metal ions. WMOFs have coupling and synergistic effects on the adsorption and photocatalysis of heavy metal ions in water, which make it more effective in treating single pollutants or different pollutants. In addition, by introducing appropriate functional groups into MOFs or synthesizing MOF-based composites, the stability and ability to remove heavy metal ions of MOFs can be effectively enhanced. Although WMOFs and WMOF-based composites have made great progress in removing heavy metal ions from water, they still face many problems and challenges, and their application potential needs to be further improved in future research. Finally, this review aims at promoting the development and practical application of heavy metal ions removal in water by WMOFs.


Assuntos
Estruturas Metalorgânicas , Metais Pesados , Purificação da Água , Adsorção , Humanos , Água
6.
Environ Pollut ; 291: 118076, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34534824

RESUMO

Because the pollutants produced by human activities have destroyed the ecological balance of natural water environment, and caused severe impact on human life safety and environmental security. Hence the task of water environment restoration is imminent. Metal-organic frameworks (MOFs), structured from organic ligands and inorganic metal ions, are notable for their outstanding crystallinity, diverse structures, large surface areas, adsorption performance, and excellent component tunability. The water stability of MOFs is a key requisite for their possible actual applications in separation, catalysis, adsorption, and other water environment remediation areas because it is necessary to safeguard the integrity of the material structure during utilization. In this article, we comprehensively review state-of-the-art research progress on the promising potential of MOFs as excellent nanomaterials to remove contaminants from the water environment. Firstly, the fundamental characteristics and preparation methods of several typical water-stable MOFs include UiO, MIL, and ZIF are introduced. Then, the removal property and mechanism of heavy metal ions, radionuclide contaminants, drugs, and organic dyes by different MOFs were compared. Finally, the application prospect of MOFs in pollutant remediation prospected. In this review, the synthesis methods and application in water pollutant removal are explored, which provide ways toward the effective use of water-stable MOFs in materials design and environmental remediation.


Assuntos
Estruturas Metalorgânicas , Metais Pesados , Poluentes da Água , Adsorção , Humanos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA