Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069065

RESUMO

This study aimed to evaluate the response of Triticum aestivum to hydrogen water (HW) and trace elements treated with HW. A pot experiment was conducted to assess the growth indices, secondary metabolites, and antioxidant levels. The response surface methodology (RSM) approach was used to ascertain the concentrations and significant interaction between treatments. The outcomes demonstrated that the combined treatment of Se acid and Mo oxide exhibited a notable positive effect on the growth and secondary metabolites, when treated with HW as compared to distilled water (DW). Notably, the interaction between these two treatments is significant, and the higher response was observed at the optimal concentration of 0.000005% for Se acid and 0.06% for Mo oxide. Additionally, an in vitro experiment revealed that the mixture treatment inhibits the accumulation of lipids in HepG2 hepatocytes cells. Moreover, metabolic analysis revealed that upregulated metabolites are linked to the inhibition of lipid accumulation. In addition, the analysis emphasizes that the continued benefits of higher plants as a renewable supply for chemicals compounds, especially therapeutic agents, are being expanded and amplified by these state-of-the-art technologies.


Assuntos
Oligoelementos , Oligoelementos/farmacologia , Oligoelementos/metabolismo , Triticum/metabolismo , Água/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo
2.
Int J Mol Sci ; 24(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36982900

RESUMO

Chlorophyll drives plant photosynthesis. Under stress conditions, leaf chlorophyll content changes dramatically, which could provide insight into plant photosynthesis and drought resistance. Compared to traditional methods of evaluating chlorophyll content, hyperspectral imaging is more efficient and accurate and benefits from being a nondestructive technique. However, the relationships between chlorophyll content and hyperspectral characteristics of wheat leaves with wide genetic diversity and different treatments have rarely been reported. In this study, using 335 wheat varieties, we analyzed the hyperspectral characteristics of flag leaves and the relationships thereof with SPAD values at the grain-filling stage under control and drought stress. The hyperspectral information of wheat flag leaves significantly differed between control and drought stress conditions in the 550-700 nm region. Hyperspectral reflectance at 549 nm (r = -0.64) and the first derivative at 735 nm (r = 0.68) exhibited the strongest correlations with SPAD values. Hyperspectral reflectance at 536, 596, and 674 nm, and the first derivatives bands at 756 and 778 nm, were useful for estimating SPAD values. The combination of spectrum and image characteristics (L*, a*, and b*) can improve the estimation accuracy of SPAD values (optimal performance of RFR, relative error, 7.35%; root mean square error, 4.439; R2, 0.61). The models established in this study are efficient for evaluating chlorophyll content and provide insight into photosynthesis and drought resistance. This study can provide a reference for high-throughput phenotypic analysis and genetic breeding of wheat and other crops.


Assuntos
Clorofila , Imageamento Hiperespectral , Triticum/genética , Secas , Melhoramento Vegetal , Folhas de Planta
3.
Anal Bioanal Chem ; 414(8): 2757-2766, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35141764

RESUMO

Abscisic acid (ABA), as the most common plant hormone in the growth of wheat, can greatly affect the yield when its levels deviate from normal. Therefore, highly sensitive and selective detection of this hormone is greatly needed. In this work, we developed an aptamer sensor based on surface-enhanced Raman spectroscopy (SERS) and applied it for the high sensitivity detection of ABA. Biotin-modified ABA aptamer complement chains were modified on ferrosoferric oxide magnetic nanoparticles (Fe3O4MNPs) and acted as capture probes, and sulfhydryl aptamer (SH-Apt)-modified silver-coated gold nanospheres (Au@Ag NPs) were used as signal probes. Through the recognition of the ABA aptamer and its complementary chains, an aptamer sensor based on SERS was constructed. As SERS internal standard molecules of 4-mercaptobenzoic acid (4-MBA) were encapsulated between the gold core and silver shell of the signal probes; the constructed aptamer sensor generated a strong SERS signal of 4-MBA after magnetic separation. When there were ABA molecules in the detection system, with the preferential binding of ABA aptamer and ABA molecule, the signal probes were released from the capture probes, after magnetic separation, leading to a linear decrease in SERS intensity of 4-MBA. Thus, the detection response was linear over a logarithmic concentration range, with an ultra-low detection limit of 0.67 fM. In addition, the practical use of this assay method was demonstrated in ABA detection from fresh wheat leaves, with a relative error (RE) of 5.43-8.94% when compared with results from enzyme-linked immunosorbent assay (ELISA). The low RE value proves that the aptamer sensor will be a promising method for ABA detection.


Assuntos
Aptâmeros de Nucleotídeos , Nanopartículas Metálicas , Ácido Abscísico , Aptâmeros de Nucleotídeos/química , Ouro/química , Limite de Detecção , Nanopartículas Metálicas/química , Reguladores de Crescimento de Plantas , Análise Espectral Raman/métodos
4.
BMC Microbiol ; 20(1): 242, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758148

RESUMO

BACKGROUND: Yeasts, which are ubiquitous in agroecosystems, are known to degrade various xenobiotics. The aim of this study was to analyze the effect of fungicides on the abundance of natural yeast communities colonizing winter wheat leaves, to evaluate the sensitivity of yeast isolates to fungicides in vivo, and to select yeasts that degrade propiconazole. RESULTS: Fungicides applied during the growing season generally did not affect the counts of endophytic yeasts colonizing wheat leaves. Propiconazole and a commercial mixture of flusilazole and carbendazim decreased the counts of epiphytic yeasts, but the size of the yeast community was restored after 10 days. Epoxiconazole and a commercial mixture of fluoxastrobin and prothioconazole clearly stimulated epiphyte growth. The predominant species isolated from leaves were Aureobasidium pullulans and Rhodotorula glutinis. In the disk diffusion test, 14 out of 75 yeast isolates were not sensitive to any of the tested fungicides. After 48 h of incubation in an aqueous solution of propiconazole, the Rhodotorula glutinis Rg 55 isolate degraded the fungicide in 75%. Isolates Rh. glutinis Rg 92 and Rg 55 minimized the phytotoxic effects of propiconazole under greenhouse conditions. The first isolate contributed to an increase in the dry matter content of wheat seedlings, whereas the other reduced the severity of chlorosis. CONCLUSION: Not sensitivity of many yeast colonizing wheat leaves on the fungicides and the potential of isolate Rhodotorula glutinis Rg 55 to degrade of propiconazole was established. Yeast may partially eliminate the ecologically negative effect of fungicides.


Assuntos
Fungicidas Industriais/metabolismo , Triazóis/metabolismo , Triticum/microbiologia , Leveduras/metabolismo , Contagem de Colônia Microbiana , Fungicidas Industriais/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Folhas de Planta/microbiologia , Triazóis/farmacologia , Leveduras/classificação , Leveduras/efeitos dos fármacos , Leveduras/isolamento & purificação
5.
Plant Physiol Biochem ; 163: 327-337, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33906120

RESUMO

Glycosylation is an important protein post-translational modification in eukaryotic organisms. It is involved in many important life processes, such as cell recognition, differentiation, development, signal transduction and immune response. This study carried out the first N-linked glycosylation proteome analysis of wheat seedling leaves using HILIC glycosylation enrichment, chemical deglycosylation, HPLC separation and tandem mass spectrometric identification. In total, we detected 308 glycosylated peptides and 316 glycosylated sites corresponding to 248 unique glycoproteins. The identified glycoproteins were mainly concentrated in plasma membranes (25.6%), cell wall (16.8%) and extracellular area (16%). In terms of molecular function, 65% glycoproteins belonged to various enzymes with catalytic activity such as kinase, carboxypeptidase, peroxidase and phosphatase, and, particularly, 25% of glycoproteins were related to binding functions. These glycoproteins are involved in cell wall reconstruction, biomacromolecular metabolism, signal transduction, endoplasmic reticulum quality control and stress response. Analysis indicated that 57.66% of glycoproteins were highly conserved in other plant species while 42.34% of glycoproteins went unidentified among the conserved glycosylated homologous proteins in other plant species; these may be the new N-linked glycosylated proteins first identified in wheat. The glycosylation sites generally occurred on the random coil, which could play roles in maintaining the structural stability of proteins. PNGase F digestion and glycosylation site mutations further verified the glycosylation modification and glycosylation sites of LRR receptor-like serine/threonine-protein kinase (LRR-RLK) and Beta-D-glucan exohydrolase (ß-D-GEH). Our results indicated that N-linked glycosylated proteins could play important roles in the early seedling growth of wheat.


Assuntos
Proteoma , Plântula , Glicosilação , Proteômica , Triticum/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA