Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Inhal Toxicol ; 32(8): 342-353, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32838590

RESUMO

OBJECTIVE: Previous studies have shown that air pollution exposure primes the body to heightened responses to everyday stressors of the cardiovascular system. The purpose of this study was to examine the utility of postprandial responses to a high carbohydrate oral load, a cardiometabolic stressor long used to predict cardiovascular risk, in assessing the impacts of exposure to eucalyptus smoke (ES), a contributor to wildland fire air pollution in the Western coast of the United States. MATERIALS AND METHODS: Three-month-old male Sprague Dawley rats were exposed once (1 h) to filtered air (FA) or ES (700 µg/m3 fine particulate matter), generated by burning eucalyptus in a tube furnace. Rats were then fasted for six hours the following morning, and subsequently administered an oral gavage of either water or a HC suspension (70 kcal% from carbohydrate), mimicking a HC meal. Two hours post gavage, cardiovascular ultrasound, cardiac pressure-volume (PV), and baroreceptor sensitivity assessments were made, and pulmonary and systemic markers assessed. RESULTS: ES inhalation alone increased serum interleukin (IL)-4 and nasal airway levels of gamma glutamyl transferase. HC gavage alone increased blood glucose, blood pressure, and serum IL-6 and IL-13 compared to water vehicle. By contrast, only ES-exposed and HC-challenged animals had increased PV loop measures of cardiac output, ejection fraction %, dP/dtmax, dP/dtmin, and stroke work compared to ES exposure alone and/or HC challenge alone. DISCUSSION AND CONCLUSIONS: Exposure to a model wildfire air pollution source modifies cardiovascular responses to HC challenge, suggesting air pollution sensitizes the body to systemic triggers.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Carboidratos da Dieta/farmacologia , Eucalyptus , Fumaça/efeitos adversos , Administração por Inalação , Animais , Glicemia/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Débito Cardíaco/efeitos dos fármacos , Citocinas/sangue , Masculino , Líquido da Lavagem Nasal/química , Líquido da Lavagem Nasal/citologia , Período Pós-Prandial/fisiologia , Ratos Sprague-Dawley , Volume Sistólico/efeitos dos fármacos , Incêndios Florestais
2.
Environ Res ; 150: 227-235, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27318255

RESUMO

We investigated health effects associated with fine particulate matter during a long-lived, large wildfire complex in northern California in the summer of 2008. We estimated exposure to PM2.5 for each day using an exposure prediction model created through data-adaptive machine learning methods from a large set of spatiotemporal data sets. We then used Poisson generalized estimating equations to calculate the effect of exposure to 24-hour average PM2.5 on cardiovascular and respiratory hospitalizations and ED visits. We further assessed effect modification by sex, age, and area-level socioeconomic status (SES). We observed a linear increase in risk for asthma hospitalizations (RR=1.07, 95% CI=(1.05, 1.10) per 5µg/m(3) increase) and asthma ED visits (RR=1.06, 95% CI=(1.05, 1.07) per 5µg/m(3) increase) with increasing PM2.5 during the wildfires. ED visits for chronic obstructive pulmonary disease (COPD) were associated with PM2.5 during the fires (RR=1.02 (95% CI=(1.01, 1.04) per 5µg/m(3) increase) and this effect was significantly different from that found before the fires but not after. We did not find consistent effects of wildfire smoke on other health outcomes. The effect of PM2.5 during the wildfire period was more pronounced in women compared to men and in adults, ages 20-64, compared to children and adults 65 or older. We also found some effect modification by area-level median income for respiratory ED visits during the wildfires, with the highest effects observed in the ZIP codes with the lowest median income. Using a novel spatiotemporal exposure model, we found some evidence of differential susceptibility to exposure to wildfire smoke.


Assuntos
Poluentes Atmosféricos/toxicidade , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental , Incêndios , Material Particulado/toxicidade , Doenças Respiratórias/epidemiologia , Fumaça , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Poluentes Atmosféricos/análise , California/epidemiologia , Doenças Cardiovasculares/induzido quimicamente , Criança , Pré-Escolar , Desastres , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Tamanho da Partícula , Material Particulado/análise , Distribuição de Poisson , Doenças Respiratórias/induzido quimicamente , Fatores de Risco , Fatores de Tempo , Adulto Jovem
3.
J Environ Manage ; 166: 227-36, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26513321

RESUMO

This study examines the production and efficiency of wildland fire suppression effort. We estimate the effectiveness of suppression resource inputs to produce controlled fire lines that contain large wildland fires using stochastic frontier analysis. Determinants of inefficiency are identified and the effects of these determinants on the daily production of controlled fire line are examined. Results indicate that the use of bulldozers and fire engines increase the production of controlled fire line, while firefighter crews do not tend to contribute to controlled fire line production. Production of controlled fire line is more efficient if it occurs along natural or built breaks, such as rivers and roads, and within areas previously burned by wildfires. However, results also indicate that productivity and efficiency of the controlled fire line are sensitive to weather, landscape and fire characteristics.


Assuntos
Incêndios , Agricultura Florestal/métodos , Processos Estocásticos , Tempo (Meteorologia)
4.
Disasters ; 38(2): 249-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24601916

RESUMO

The Victorian Country Fire Authority in Australia runs the Community Fireguard (CFG) programme to assist individuals and communities in preparing for fire. The objective of this qualitative research was to understand the impact of CFG groups on their members' fire preparedness and response during the 2009 Australian bushfires. Social connectedness emerged as a strong theme, leading to an analysis of data using social capital theory. The main strength of the CFG programme was that it was driven by innovative community members; however, concerns arose regarding the extent to which the programme covered all vulnerable areas, which led the research team to explore the theory of diffusion of innovation. The article concludes by stepping back from the evaluation and using both applied theories to reflect on broad options for community fire preparedness programmes in general. The exercise produced two contrasting options for principles underlying community fire preparedness programmes.


Assuntos
Redes Comunitárias , Planejamento em Desastres , Incêndios , Austrália , Difusão de Inovações , Humanos , Avaliação de Programas e Projetos de Saúde , Política Pública , Pesquisa Qualitativa
5.
Data Brief ; 56: 110856, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39281008

RESUMO

Wildland fire activity is provided in a geospatial database of polygons over the conterminous United States for the 2004 through 2017 time period. The location, timing, and size of the fires are derived from a fusion of wildland fire activity from a consistent set of national ground reports, satellite, and geospatial fire data. A combination of information from the underlying data sources and a regional climatological approach is used to differentiate prescribed fire from unplanned wildfire. The data were developed as part of the United States Environmental Protection Agency (US EPA) Air Quality Time Series project (EQUATES). This dataset can be useful for the evaluation of wildland fire activity over time and across regions.

6.
J Environ Radioact ; 274: 107410, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38457870

RESUMO

The aim of this study was to assess the exposures received by firefighters engaged in extinguishing the large-scale wildfires in the most contaminated areas of the Ukrainian part of the Chornobyl Exclusion Zone in 2016 and 2020. The assessments are based on measurements of radionuclide airborne concentrations in the breathing zones of workers and at the aerosol sampling stations of the automated radiation monitoring system operated by SSE Ecocenter. During the wildfires, the radionuclide airborne concentrations increased by orders of magnitude compared to the background levels, reaching maximum values in the firefighting area of 1.20 ± 0.01 Bq m-3 for 90Sr, 0.18 ± 0.01 Bq m-3 for 137Cs, (1.8 ± 0.3) ∙10-4 Bq m-3 for 238Pu, (4.5 ± 0.7) ∙10-4 Bq m-3 for 239-240Pu, and (8.0 ± 1.3) ∙10-3 Bq m-3 for 241Pu. The internal effective doses to firefighters due to inhaled radionuclides did not exceed 2 µSv h-1 and were 3-5 times lower compared to the external dose of gamma radiation. Thus, the time of firefighting in the ChEZ will be limited by the external dose.


Assuntos
Poluentes Radioativos do Ar , Acidente Nuclear de Chernobyl , Bombeiros , Monitoramento de Radiação , Incêndios Florestais , Humanos , Poluentes Radioativos do Ar/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-36767304

RESUMO

Wildfires are increasing yearly in number and severity as a part of the evolving climate crisis. These fires are a significant source of air pollution, a common driver of flares in cardiorespiratory disease, including asthma, which is the most common chronic disease of childhood. Poorly controlled asthma leads to significant societal costs through morbidity, mortality, lost school and work time and healthcare utilization. This retrospective cohort study set in Calgary, Canada evaluates the relationship between asthma exacerbations during wildfire smoke events and equivalent low-pollution periods in a pediatric asthma population. Air pollution was based on daily average levels of PM2.5. Wildfire smoke events were determined by combining information from provincial databases and local monitors. Exposures were assumed using postal codes in the health record at the time of emergency department visits. Provincial claims data identified 27,501 asthma exacerbations in 57,375 children with asthma between 2010 to 2021. Wildfire smoke days demonstrated an increase in asthma exacerbations over the baseline (incidence rate ratio: 1.13; 95% CI: 1.02-1.24); this was not seen with air pollution in general. Increased rates of asthma exacerbations were also noted yearly in September. Asthma exacerbations were significantly decreased during periods of COVID-19 healthcare precautions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , COVID-19 , Incêndios Florestais , Humanos , Criança , Fumaça/efeitos adversos , Estudos Retrospectivos , Exposição Ambiental/efeitos adversos , Poluição do Ar/efeitos adversos , Asma/epidemiologia , Poluentes Atmosféricos/análise , Material Particulado/análise
8.
Int J Epidemiol ; 51(1): 166-178, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-34561694

RESUMO

BACKGROUND: We studied the impact of fine particulate matter (PM2.5) exposure due to a remote wildfire event in the Pacific Northwest on daily outpatient respiratory and cardiovascular physician visits during wildfire (24-31 August, 2015) and post-wildfire period (1-30 September, 2015) relative to the pre-wildfire period (1-23 August, 2015) in the city of Calgary, Canada. METHODS: A quasi-Poisson regression model was used for modelling daily counts of physician visits due to PM2.5 while adjusting for day of the week (weekday versus weekend or public holiday), wildfire exposure period (before, during, after), methane, relative humidity, and wind direction. A subgroup analysis of those with pre-existing diabetes or hypertension was performed. RESULTS: An elevated risk of respiratory disease morbidity of 33% (relative risk: RR) [95% confidence interval (CI): 10%-59%] and 55% (95% CI: 42%-69%) was observed per 10µg/m3 increase in PM2.5 level during and after wildfire, respectively, relative to the pre-wildfire time period. Increased risk was observed for children aged 0-9 years during (RR = 1.57, 95% CI: 1.21-2.02) and after the wildfire (RR = 2.11, 95% CI: 1.86-2.40) especially for asthma, acute bronchitis and acute respiratory infection. The risk of physician visits among seniors increased by 11% (95% CI: 3%-21%), and 19% (95% CI: 7%-33%) post-wildfire for congestive heart failure and ischaemic heart disease, respectively. Individuals with pre-existing diabetes had an increased risk of both respiratory and cardiovascular morbidity in the post-wildfire period (RR = 1.35, 95% CI: 1.09-1.67; RR = 1.22, 95% CI: 1.01-1.46, respectively). CONCLUSIONS: Wildfire-related PM2.5 exposure led to increased respiratory condition-related outpatient physician visits during and after wildfires, particularly for children. An increased risk of physician visits for congestive heart failure and ischaemic heart disease among seniors in the post-wildfire period was also observed.


Assuntos
Poluentes Atmosféricos , Doenças Cardiovasculares , Médicos , Incêndios Florestais , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Canadá , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Criança , Pré-Escolar , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Lactente , Recém-Nascido , Material Particulado/efeitos adversos , Material Particulado/análise , Fumaça/efeitos adversos , Fumaça/análise
9.
Sci Total Environ ; 836: 155723, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35523328

RESUMO

Prescribed (Rx) burns are conducted on days when the meteorological thresholds of maximum air temperature, relative humidity, and wind speeds are all met (burn window) in order to ensure safe Rx burn practices. Limited burn windows have been consistently identified as one of the most important constraints for conducting Rx burns in California. We investigate whether burn windows across California can be extended from the typical fall season to include other opportune seasons for facilitating specific management objectives. We quantify the seasonal Rx burn efficiencies by assessing the frequency and burned areas using an aggregate of Rx datasets, and we compute the seasonal spatiotemporal trends in the number of days the set of meteorological parameters are met over thirty-five years (1984 to 2019), using the gridMET 4 km dataset. Our results indicate that while fall burns are most frequently executed (40% of the time), the spring (and to a lesser extent winter) seasons yield efficient Rx burns similar to fall because greater acres are being consumed with less burns. In addition, winter and spring seasons experience burn window opportunities (70-90% of the time) over larger areas than the other seasons, and this is predominantly over forested regions in Northern California. Our results also indicate that burn windows in the winter and spring are decreasing at a rate of one day per year over a larger spatial area than that of summer and fall. This decrease is primarily driven by changes in the number of days the relative humidity thresholds are met. Policymakers recognize the critical importance that Rx burns have on a multitude of ecosystem restoration factors, fire behavior dynamics, and firefighter safety. Therefore, there is a need to capitalize on these additional burn windows before these opportunities become less feasible in the future.


Assuntos
Queimaduras , Incêndios , Queimaduras/epidemiologia , California , Ecossistema , Humanos , Estações do Ano
10.
Environ Res Lett ; 16(2)2021 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-33747119

RESUMO

Ecosystems require access to key nutrients like nitrogen (N) and sulfur (S) to sustain growth and healthy function. However, excessive deposition can also damage ecosystems through nutrient imbalances, leading to changes in productivity and shifts in ecosystem structure. While wildland fires are a known source of atmospheric N and S, little has been done to examine the implications of wildland fire deposition for vulnerable ecosystems. We combine wildland fire emission estimates, atmospheric chemistry modeling, and forest inventory data to (a) quantify the contribution of wildland fire emissions to N and S deposition across the U S, and (b) assess the subsequent impacts on tree growth and survival rates in areas where impacts are likely meaningful based on the relative contribution of fire to total deposition. We estimate that wildland fires contributed 0.2 kg N ha-1 yr-1 and 0.04 kg S ha-1 yr-1 on average across the U S during 2008-2012, with maxima up to 1.4 kg N ha-1 yr-1 and 0.6 kg S ha-1 yr-1 in the Northwest representing over ~30% of total deposition in some areas. Based on these fluxes, exceedances of S critical loads as a result of wildland fires are minimal, but exceedances for N may affect the survival and growth rates of 16 tree species across 4.2 million hectares, with the most concentrated impacts occurring in Oregon, northern California, and Idaho. Understanding the broader environmental impacts of wildland fires in the U S will inform future decision making related to both fire management and ecosystem services conservation.

11.
Geohealth ; 5(5): e2020GH000359, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33977180

RESUMO

Major wildfires starting in the summer of 2020 along the west coast of the United States made PM2.5 concentrations in this region rank among the highest in the world. Washington was impacted both by active wildfires in the state and aged wood smoke transported from fires in Oregon and California. This study aims to estimate the magnitude and disproportionate spatial impacts of increased PM2.5 concentrations attributable to these wildfires on population health. Daily PM2.5 concentrations for each county before and during the 2020 Washington wildfire episode (September 7-19) were obtained from regulatory air monitors. Utilizing previously established concentration-response function (CRF) of PM2.5 (CRF of total PM2.5) and odds ratio (OR) of wildfire smoke days (OR of wildfire smoke days) for mortality, we estimated excess mortality attributable to the increased PM2.5 concentrations in Washington. On average, daily PM2.5 concentrations increased 97.1 µg/m3 during the wildfire smoke episode. With CRF of total PM2.5, the 13-day exposure to wildfire smoke was estimated to lead to 92.2 (95% CI: 0.0, 178.7) more all-cause mortality cases; with OR of wildfire smoke days, 38.4 (95% CI: 0.0, 93.3) increased all-cause mortality cases and 15.1 (95% CI: 0.0, 27.9) increased respiratory mortality cases were attributable to the wildfire smoke episode. The potential impact of avoiding elevated PM2.5 exposures during wildfire events significantly reduced the mortality burden. Because wildfire smoke episodes are likely to impact the Pacific Northwest in future years, continued preparedness and mitigations to reduce exposures to wildfire smoke are necessary to avoid excess health burden.

12.
medRxiv ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32995819

RESUMO

Major wildfires that started in the summer of 2020 along the west coast of the U.S. have made PM2.5 concentrations in cities in this region rank among the highest in the world. Regions of Washington were impacted by active wildfires in the state, and by aged wood smoke transported from fires in Oregon and California. This study aims to assess the population health impact of increased PM2.5 concentrations attributable to the wildfire. Average daily PM2.5 concentrations for each county before and during the 2020 Washington wildfire episode were obtained from the Washington Department of Ecology. Utilizing previously established associations of short-term mortality for PM2.5, we estimated excess mortality for Washington attributable to the increased PM2.5 levels. On average, PM2.5 concentrations increased 91.7 µg/m3 during the wildfire episode. Each week of wildfire smoke exposures was estimated to result in 87.6 (95% CI: 70.9, 103.1) cases of increased all-cause mortality, 19.1 (95% CI: 10.0, 28.2) increased cardiovascular disease deaths, and 9.4 (95% CI: 5.1, 13.5) increased respiratory disease deaths. Because wildfire smoke episodes are likely to continue impacting the Pacific Northwest in future years, continued preparedness and mitigations to reduce exposures to wildfire smoke are necessary to avoid this excess health burden.

13.
Sci Total Environ ; 725: 138506, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32302851

RESUMO

Smoke from wildfires contains many air pollutants of concern and epidemiological studies have identified associations between exposure to wildfire smoke PM2.5 and mortality and respiratory morbidity, and a possible association with cardiovascular morbidity. For this study, a retrospective analysis of air quality modelling was performed to quantify the exposure to wildfire-PM2.5 across the Canadian population. The model included wildfire emissions from across North America for a 5-month period from May to September (i.e. wildfire season), between 2013 and 2015 and 2017-2018. Large variations in wildfire-PM2.5 were noted year-to-year, geospatially, and within fire season. The model results were then used to estimate the national population health impacts attributable to wildfire-PM2.5 and the associated economic valuation. The analysis estimated annual premature mortalities ranging from 54-240 premature mortalities attributable to short-term exposure and 570-2500 premature mortalities attributable to long-term exposure, as well as many non-fatal cardiorespiratory health outcomes. The economic valuation of the population health impacts was estimated per year at $410M-$1.8B for acute health impacts and $4.3B-$19B for chronic health impacts for the study period. The health impacts were greatest in the provinces with populations in close proximity to wildfire activity, though health impacts were also noted across many provinces indicating the long-range transport of wildfire-PM2.5. Understanding the population health impacts of wildfire smoke is important as climate change is anticipated to increase wildfire activity in Canada and abroad.


Assuntos
Poluentes Atmosféricos/análise , Incêndios , Incêndios Florestais , Canadá , Exposição Ambiental , América do Norte , Material Particulado , Estudos Retrospectivos , Fumaça/análise
14.
Sensors (Basel) ; 9(2): 1204-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22399963

RESUMO

In response to the urging need of fire managers for timely information on fire location and extent, the SITHON system was developed. SITHON is a fully digital thermal imaging system, integrating INS/GPS and a digital camera, designed to provide timely positioned and projected thermal images and video data streams rapidly integrated in the GIS operated by Crisis Control Centres. This article presents in detail the hardware and software components of SITHON, and demonstrates the first encouraging results of test flights over the Sithonia Peninsula in Northern Greece. It is envisaged that the SITHON system will be soon operated onboard various airborne platforms including fire brigade airplanes and helicopters as well as on UAV platforms owned and operated by the Greek Air Forces.

15.
Sci Total Environ ; 610-611: 802-809, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28826118

RESUMO

INTRODUCTION: Wildland fires degrade air quality and adversely affect human health. A growing body of epidemiology literature reports increased rates of emergency departments, hospital admissions and premature deaths from wildfire smoke exposure. OBJECTIVE: Our research aimed to characterize excess mortality and morbidity events, and the economic value of these impacts, from wildland fire smoke exposure in the U.S. over a multi-year period; to date no other burden assessment has done this. METHODS: We first completed a systematic review of the epidemiologic literature and then performed photochemical air quality modeling for the years 2008 to 2012 in the continental U.S. Finally, we estimated the morbidity, mortality, and economic burden of wildland fires. RESULTS: Our models suggest that areas including northern California, Oregon and Idaho in the West, and Florida, Louisiana and Georgia in the East were most affected by wildland fire events in the form of additional premature deaths and respiratory hospital admissions. We estimated the economic value of these cases due to short term exposures as being between $11 and $20B (2010$) per year, with a net present value of $63B (95% confidence intervals $6-$170); we estimate the value of long-term exposures as being between $76 and $130B (2010$) per year, with a net present value of $450B (95% confidence intervals $42-$1200). CONCLUSION: The public health burden of wildland fires-in terms of the number and economic value of deaths and illnesses-is considerable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA