Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.651
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2312851121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38771864

RESUMO

The way goal-oriented birds adjust their travel direction and route in response to wind significantly affects their travel costs. This is expected to be particularly pronounced in pelagic seabirds, which utilize a wind-dependent flight style called dynamic soaring. Dynamic soaring seabirds in situations without a definite goal, e.g. searching for prey, are known to preferentially fly with crosswinds or quartering-tailwinds to increase the speed and search area, and reduce travel costs. However, little is known about their reaction to wind when heading to a definite goal, such as homing. Homing tracks of wandering albatrosses (Diomedea exulans) vary from beelines to zigzags, which are similar to those of sailboats. Here, given that both albatrosses and sailboats travel slower in headwinds and tailwinds, we tested whether the time-minimizing strategies used by yacht racers can be compared to the locomotion patterns of wandering albatrosses. We predicted that when the goal is located upwind or downwind, albatrosses should deviate their travel directions from the goal on the mesoscale and increase the number of turns on the macroscale. Both hypotheses were supported by track data from albatrosses and racing yachts in the Southern Ocean confirming that albatrosses qualitatively employ the same strategy as yacht racers. Nevertheless, albatrosses did not strictly minimize their travel time, likely making their flight robust against wind fluctuations to reduce flight costs. Our study provides empirical evidence of tacking in albatrosses and demonstrates that man-made movement strategies provide a new perspective on the laws underlying wildlife movement.


Assuntos
Aves , Voo Animal , Vento , Animais , Voo Animal/fisiologia , Aves/fisiologia , Orientação/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Orientação Espacial/fisiologia , Migração Animal/fisiologia
2.
Mol Cell Proteomics ; 23(3): 100738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38364992

RESUMO

Wind is one of the most prevalent environmental forces entraining plants to develop various mechano-responses, collectively called thigmomorphogenesis. Largely unknown is how plants transduce these versatile wind force signals downstream to nuclear events and to the development of thigmomorphogenic phenotype or anemotropic response. To identify molecular components at the early steps of the wind force signaling, two mechanical signaling-related phosphoproteins, identified from our previous phosphoproteomic study of Arabidopsis touch response, mitogen-activated protein kinase kinase 1 (MKK1) and 2 (MKK2), were selected for performing in planta TurboID (ID)-based quantitative proximity-labeling (PL) proteomics. This quantitative biotinylproteomics was separately performed on MKK1-ID and MKK2-ID transgenic plants, respectively, using the genetically engineered TurboID biotin ligase expression transgenics as a universal control. This unique PTM proteomics successfully identified 11 and 71 MKK1 and MKK2 putative interactors, respectively. Biotin occupancy ratio (BOR) was found to be an alternative parameter to measure the extent of proximity and specificity between the proximal target proteins and the bait fusion protein. Bioinformatics analysis of these biotinylprotein data also found that TurboID biotin ligase favorably labels the loop region of target proteins. A WInd-Related Kinase 1 (WIRK1), previously known as rapidly accelerated fibrosarcoma (Raf)-like kinase 36 (RAF36), was found to be a putative common interactor for both MKK1 and MKK2 and preferentially interacts with MKK2. Further molecular biology studies of the Arabidopsis RAF36 kinase found that it plays a role in wind regulation of the touch-responsive TCH3 and CML38 gene expression and the phosphorylation of a touch-regulated PATL3 phosphoprotein. Measurement of leaf morphology and shoot gravitropic response of wirk1 (raf36) mutant revealed that the WIRK1 gene is involved in both wind-triggered rosette thigmomorphogenesis and gravitropism of Arabidopsis stems, suggesting that the WIRK1 (RAF36) protein probably functioning upstream of both MKK1 and MKK2 and that it may serve as the crosstalk point among multiple mechano-signal transduction pathways mediating both wind mechano-response and gravitropism.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Gravitropismo , Biotina/metabolismo , Vento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfoproteínas/metabolismo , Ligases/metabolismo , Calmodulina/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(3): e2212105120, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36623184

RESUMO

Windthrow, or the uprooting of trees by extreme wind gusts, is a natural forest disturbance that creates microhabitats, turns over soil, alters hydrology, and removes carbon from the above-ground carbon stock. Long recurrence intervals between extreme wind events, however, make direct observations of windthrow rare, challenging our understanding of this important disturbance process. To overcome this difficulty, we present an approach that uses the geomorphic record of hillslope topographic roughness as a proxy for the occurrence of windthrow. The approach produces a probability function of the number of annual windthrow events for a maximum wind speed, allowing us to explore how windthrow or tree strengths may change due to shifting wind climates. Slight changes to extreme wind speeds may drive comparatively large changes in windthrow production rates or force trees to respond and change the distribution. We also highlight that topographic roughness has the potential to serve as an important archive of extreme wind speeds.


Assuntos
Florestas , Vento , Clima , Carbono
4.
Proc Natl Acad Sci U S A ; 120(38): e2303466120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37695920

RESUMO

Low-grade wind with airspeed Vwind < 5 m/s, while distributed far more abundantly, is still challenging to extract because current turbine-based technologies require particular geography (e.g., wide-open land or off-shore regions) with year-round Vwind > 5 m/s to effectively rotate the blades. Here, we report that low-speed airflow can sensitively enable directional flow within nanowire-anchored ionic liquid (IL) drops. Specifically, wind-induced air/liquid friction continuously raises directional leeward fluid transport in the upper portion, whereas three-phase contact line (TCL) pinning blocks further movement of IL. To remove excessive accumulation of IL near TCL, fluid dives, and headwind flow forms in the lower portion, as confirmed by microscope observation. Such stratified circulating flow within single drop can generate voltage output up to ~0.84 V, which we further scale up to ~60 V using drop "wind farms". Our results demonstrate a technology to tap the widespread low-grade wind as a reliable energy resource.

5.
Proc Natl Acad Sci U S A ; 120(40): e2302313120, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37748062

RESUMO

Addressing climate change requires societies to transition away from fossil fuels toward low-carbon energy, including renewables. Unfortunately, large wind projects have proven politically controversial, with groups opposing them across advanced economies. To date, there are few large-scale, systematic studies to identify the prevalence and predictors of opposition to wind energy projects. Here, we analyzed a dataset of wind energy projects across the United States and Canada between 2000 and 2016. We found that during this period, in the United States, 17% of wind projects faced significant opposition, and in Canada, 18% faced opposition, with rates in both countries growing over time. Opposition was concentrated regionally in the Northeastern United States and in Ontario, Canada. In both countries, larger projects with more turbines were more likely to be opposed. In the United States, opposition was more likely and more intense in areas with a higher proportion of White people, and a smaller proportion of Hispanic people. In Canada, opposition was more likely and more intense in wealthier communities. The most common tactics used to oppose wind energy were court cases, legislation, and physical protests. The number of people engaging in opposition to wind projects is likely small: Across articles that cited the number of individuals engaging in protests, the median number was 23 in the United States and 34 in Canada. When wealthier, Whiter communities oppose wind projects, this slows down the transition away from fossil fuel projects in poorer communities and communities of color, an environmental injustice we call "energy privilege."

6.
Proc Natl Acad Sci U S A ; 120(8): e2209805120, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36780519

RESUMO

The response of trade cumulus clouds to warming remains a major source of uncertainty for climate sensitivity. Recent studies have highlighted the role of the cloud-convection coupling in explaining this spread in future warming estimates. Here, using observations from an instrumented site and an airborne field campaign, together with high-frequency climate model outputs, we show that i) over the course of the daily cycle, a cloud transition is observed from deeper cumuli during nighttime to shallower cumuli during daytime, ii) the cloud evolution that models predict from night to day reflects the strength of cloud sensitivity to convective mass flux and exhibits many similarities with the cloud evolution they predict under global warming, and iii) those models that simulate a realistic cloud transition over the daily cycle tend to predict weak trade cumulus feedback. Our findings thus show that the daily cycle is a particularly relevant testbed, amenable to process studies and anchored by observations, to assess and improve the model representation of cloud-convection coupling and thus make climate projections more reliable.

7.
Proc Natl Acad Sci U S A ; 120(23): e2220927120, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252951

RESUMO

We report analytical and numerical investigations of subion-scale turbulence in low-beta plasmas using a rigorous reduced kinetic model. We show that efficient electron heating occurs and is primarily due to Landau damping of kinetic Alfvén waves, as opposed to Ohmic dissipation. This collisionless damping is facilitated by the local weakening of advective nonlinearities and the ensuing unimpeded phase mixing near intermittent current sheets, where free energy concentrates. The linearly damped energy of electromagnetic fluctuations at each scale explains the steepening of their energy spectrum with respect to a fluid model where such damping is excluded (i.e., a model that imposes an isothermal electron closure). The use of a Hermite polynomial representation to express the velocity-space dependence of the electron distribution function enables us to obtain an analytical, lowest-order solution for the Hermite moments of the distribution, which is borne out by numerical simulations.

8.
Proc Natl Acad Sci U S A ; 120(48): e2306723120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37956437

RESUMO

Anthropogenic climate change has significantly altered the flowering times (i.e., phenology) of plants worldwide, affecting their reproduction, survival, and interactions. Recent studies utilizing herbarium specimens have uncovered significant intra- and inter-specific variation in flowering phenology and its response to changes in climate but have mostly been limited to animal-pollinated species. Thus, despite their economic and ecological importance, variation in phenological responses to climate remain largely unexplored among and within wind-pollinated dioecious species and across their sexes. Using both herbarium specimens and volunteer observations of cottonwood (Populus) species, we examined how phenological sensitivity to climate varies across species, their ranges, sexes, and phenophases. The timing of flowering varied significantly across and within species, as did their sensitivity to spring temperature. In particular, male flowering generally happened earlier in the season and was more sensitive to warming than female flowering. Further, the onset of flowering was more sensitive to changes in temperature than leaf out. Increased temporal gaps between male and female flowering time and between the first open flower date and leaf out date were predicted for the future under two climate change scenarios. These shifts will impact the efficacy of sexual reproduction and gene flow among species. Our study demonstrates significant inter- and intra-specific variation in phenology and its responses to environmental cues, across species' ranges, phenophases, and sex, in wind-pollinated species. These variations need to be considered to predict accurately the effects of climate change and assess their ecological and evolutionary consequences.


Assuntos
Flores , Reprodução , Humanos , Animais , Flores/fisiologia , Folhas de Planta , Sexo , Plantas , Mudança Climática , Estações do Ano , Temperatura
9.
Proc Natl Acad Sci U S A ; 119(22): e2119369119, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35609201

RESUMO

SignificanceThe presented model describes the vertical structure of conventionally neutral atmospheric boundary layers. Due to the complicated interplay between buoyancy, shear, and Coriolis effects, analytical descriptions have been limited to the mean wind speed. We introduce an analytical approach based on the Ekman equations and the basis function of the universal potential temperature flux profile that allows one to describe the wind and turbulent shear stress profiles and hence capture features like the wind veer profile. The analytical profiles are validated against high-fidelity large-eddy simulations and atmospheric measurements. Our findings contribute to the scientific community's fundamental understanding of atmospheric turbulence with direct relevance for weather forecasting, climate modeling, and wind energy applications.

10.
Proc Natl Acad Sci U S A ; 119(52): e2205429119, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36538483

RESUMO

Given the dire consequences of climate change and the war in Ukraine, decarbonization of electrical power systems around the world must be accomplished, while avoiding recurring blackouts. A good understanding of performance and reliability of different power sources underpins this endeavor. As an energy transition involves different societal sectors, we must adopt a simple and efficient way of communicating the transition's key indicators. Capacity factor (CF) is a direct measure of the efficacy of a power generation system and of the costs of power produced. Since the year 2000, the explosive expansion of solar PV and wind power made their CFs more reliable. Knowing the long-time average CFs of different electricity sources allows one to calculate directly the nominal capacity required to replace the current fossil fuel mix for electricity generation or expansion to meet future demand. CFs are straightforwardly calculated, but they are rooted in real performance, not in modeling or wishful thinking. Based on the current average CFs, replacing 1 W of fossil electricity generation capacity requires installation of 4 W solar PV or 2 W of wind power. An expansion of the current energy mix requires installing 8.8 W of solar PV or 4.3 W of wind power.


Assuntos
Humanos , Reprodutibilidade dos Testes , Vento , Combustíveis Fósseis , Eletricidade , Energia Renovável
11.
Proc Natl Acad Sci U S A ; 119(51): e2214395119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508675

RESUMO

Remote sensing data revealed that the presence of water (OH/H2O) on the Moon is latitude-dependent and probably time-of-day variation, suggesting a solar wind (SW)-originated water with a high degassing loss rate on the lunar surface. However, it is unknown whether or not the SW-derived water in lunar soil grains can be preserved beneath the surface. We report ion microprobe analyses of hydrogen abundances, and deuterium/hydrogen ratios of the lunar soil grains returned by the Chang'e-5 mission from a higher latitude than previous missions. Most of the grain rims (topmost ~100 nm) show high abundances of hydrogen (1,116 to 2,516 ppm) with extremely low δD values (-908 to -992‰), implying nearly exclusively a SW origin. The hydrogen-content depth distribution in the grain rims is phase-dependent, either bell-shaped for glass or monotonic decrease for mineral grains. This reveals the dynamic equilibrium between implantation and outgassing of SW-hydrogen in soil grains on the lunar surface. Heating experiments on a subset of the grains further demonstrate that the SW-implanted hydrogen could be preserved after burial. By comparing with the Apollo data, both observations and simulations provide constraints on the governing role of temperature (latitude) on hydrogen implantation/migration in lunar soils. We predict an even higher abundance of hydrogen in the grain rims in the lunar polar regions (average ~9,500 ppm), which corresponds to an estimation of the bulk water content of ~560 ppm in the polar soils assuming the same grain size distribution as Apollo soils, consistent with the orbit remote sensing result.


Assuntos
Solo , Água , Lua , Vento , Hidrogênio
12.
Am J Epidemiol ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38879742

RESUMO

Traffic related air pollution is a major concern for perinatal health. Determining causal associations, however, is difficult since high-traffic areas tend to correspond with lower socioeconomic neighborhoods and other environmental exposures. To overcome confounding, we compared pregnant individuals living downwind and upwind of the same high-traffic road. We leveraged vital statistics data for Texas from 2007-2016 (n=3,570,272 births) and computed hourly wind estimates for residential addresses within 500 m of high-traffic roads (i.e., annual average daily traffic greater than 25,000) (10.9% of births). We matched pregnant individuals predominantly upwind to pregnant neighbors downwind of the same road segment (n=37,631 pairs). Living downwind was associated with an 11.6 gram (95% CI: -18.01, -5.21) decrease in term birth weight. No associations were observed with low term birth weight, preterm birth, or very preterm birth. In distance-stratified models, living downwind within 50 m was associated with a -36.3 gram (95% CI: -67.74, -4.93) decrease in term birth weight and living 51-100m downwind was associated with an odds ratio of 3.68 (95% CI: 1.71, 7.90) for very preterm birth. These results suggest traffic air pollution is associated with adverse birth outcomes, with steep distance decay gradients around major roads.

13.
Small ; 20(10): e2307119, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37875768

RESUMO

Shelter forests (or shelter-belts), while crucial for climate regulation, lack monitoring systems, e.g., Internet of Things (IoT) devices, but their abundant wind energy can potentially power these devices using the trees as mounting points. To harness wind energy, an omnidirectional fluid-induced vibration triboelectric nanogenerator (OFIV-TENG) has been developed. The device is installed on shelter forest trees to harvest wind energy from all directions, employing a fluid-induced vibration (FIV) mechanism (fluid-responding structure) that can capture and use wind energy, ranging from low wind speeds (vortex vibration) to high wind speeds (galloping). The rolling-bead triboelectric nanogenerator (TENG) can efficiently harvest energy while minimizing wear and tear. Additionally, the usage of double electrodes results in an effective surface charge density of 21.4 µC m-2 , which is the highest among all reported rolling-bead TENGs. The collected energy is utilized for temperature and humidity monitoring, providing feedback on the effect of climate regulation in shelter forests, alarming forest fires, and wireless wind speed warning. In general, this work provides a promising and rational strategy, using natural resources like trees as the supporting structures, and shows broad application prospects in efficient energy collection, wind speed warning, and environmentally friendliness.

14.
Small ; : e2402661, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813727

RESUMO

Traffic lights play vital roles in urban traffic management systems, providing clear directional guidance for vehicles and pedestrians while ensuring traffic safety. However, the vast quantity of traffic lights widely distributed in the transportation system aggravates energy consumption. Here, a self-powered traffic light system is proposed through wind energy harvesting based on a high-performance fur-brush dish triboelectric nanogenerator (FD-TENG). The FD-TENG harvests wind energy to power the traffic light system continuously without needing an external power supply. Natural rabbit furs are applied to dish structures, due to their outstanding characteristics of shallow wear, high performance, and resistance to humidity. Also, the grid pattern of the dish structure significantly impacts the TENG outputs. Additionally, the internal electric field and the influences of mechanical and structural parameters on the outputs are analyzed by finite element simulations. After optimization, the FD-TENG can achieve a peak power density of 3.275 W m-3. The portable and miniature features of FD-TENG make it suitable for other natural environment systems such as forests, oceans, and mountains, besides the traffic light systems. This study presents a viable strategy for self-powered traffic lights, establishing a basis for efficient environmental energy harvesting toward big data and Internet of Things applications.

15.
Proc Biol Sci ; 291(2027): 20240875, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39016113

RESUMO

During spring migration, nocturnal migrants attempt to minimize their travel time to reach their breeding grounds early. However, how they behave and respond to unfavourable conditions during their springtime travels is much less understood. In this study, we reveal the effects of atmospheric factors on nocturnal bird migration under adverse conditions during spring and autumn, based on one of the most detailed bird migration studies globally, using radar data from 13 deployments over a period of seven years (2014-2020) in the Levant region. Using ERA5 reanalysis data, we found that migratory birds maintain similar ground speeds in both autumn and spring migrations, but during spring, when encountering unfavourable winds, they put more effort into maintaining their travel speed by increasing self-powered airspeed by 18%. Moreover, we report for the first time that spring migrants showed less selectivity to wind conditions and migrated even under unfavourable headwind and crosswind conditions. Interestingly, we discovered that temperature was the most important weather parameter, such that warm weather substantially increased migration intensities in both seasons. Our results enhance our understanding of bird migration over the Levant region, one of the world's largest and most important migration flyways, and the factors controlling it. This information is essential for predicting bird migration, which-especially under the ongoing anthropogenic changes-is of high importance.


Assuntos
Migração Animal , Estações do Ano , Aves Canoras , Vento , Animais , Aves Canoras/fisiologia , Voo Animal
16.
Proc Biol Sci ; 291(2023): 20240454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38807519

RESUMO

Challenges imposed by geographical barriers during migration are selective agents for animals. Juvenile soaring landbirds often cross large water bodies along their migratory path, where they lack updraft support and are vulnerable to harsh weather. However, the consequences of inexperience in accomplishing these water crossings remain largely unquantified. To address this knowledge gap, we tracked the movements of juvenile and adult black kites Milvus migrans over the Strait of Gibraltar using high-frequency tracking devices in variable crosswind conditions. We found that juveniles crossed under higher crosswind speeds and at wider sections of the strait compared with adults during easterly winds, which represent a high risk owing to their high speed and steady direction towards the Atlantic Ocean. Juveniles also drifted extensively with easterly winds, contrasting with adults who strongly compensated for lateral displacement through flapping. Age differences were inconspicuous during winds with a west crosswind speed component, as well as for airspeed modulation in all wind conditions. We suggest that the suboptimal sea-crossing behaviour of juvenile black kites may impact their survival rates, either by increasing chances of drowning owing to exhaustion or by depleting critical energy reserves needed to accomplish their first migration.


Assuntos
Migração Animal , Vento , Animais , Fatores Etários , Falconiformes/fisiologia , Voo Animal , Oceano Atlântico
17.
New Phytol ; 242(1): 289-301, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38009313

RESUMO

Many trees exhibit masting - where reproduction is temporally variable and synchronous over large areas. Several dominant masting species occur in tropical cyclone (TC)-prone regions, but it is unknown whether TCs correlate with mast seeding. We analyzed long-term data (1958-2022) to test the hypothesis that TCs influence cone production in longleaf pine (Pinus palustris). We integrate field observations, weather data, satellite imagery, and hurricane models to test whether TCs influence cone production via: increased precipitation; canopy density reduction; and/or mechanical stress from wind. Cone production was 31% higher 1 yr after hurricanes and 71% higher after 2 yr, before returning to baseline levels. Cyclone-associated precipitation was correlated with increased cone production in wet years and cone production increased after low-intensity winds (≤ 25 m s-1 ) but not with high-intensity winds (> 25 m s-1 ). Tropical cyclones may stimulate cone production via precipitation addition, but high-intensity winds may offset any gains. Our study is the first to support the direct influence of TCs on reproduction, suggesting a previously unknown environmental correlate of masting, which may occur in hurricane-prone forests world-wide.


Assuntos
Tempestades Ciclônicas , Pinus , Vento , Florestas , Árvores
18.
New Phytol ; 243(4): 1600-1609, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937955

RESUMO

Pollination presents a risky journey for pollen grains. Pollen loss is sometimes thought to favour greater pollen investment to compensate for the inefficiency of transport. Sex allocation theory, to the contrary, has consistently concluded that postdispersal loss should have no selective effect on investment in either sex function. But the intuitively appealing compensation idea continues to be raised despite the lack of theoretical endorsement. We address the theoretical issue with a model that directly represents pollen loss (and ovule loss through floral demise or loss of receptivity) as rate-dependent dynamical processes. These loss rates can be varied to examine the effect of pollination efficiency on optimal sex allocation. Pollen-ovule ratios follow from the sex allocation based on the resource costs of pollen and ovule production. This model confirms conventional findings that pollen loss should have essentially no effect on sexual resource allocation in large, panmictic populations. Pollen limitation of seed set does not alter this conclusion. These results force us to rethink the empirical association of pollination efficiency with low pollen-ovule ratios. This pattern could arise if efficient pollen transport commonly results in stigmatic deposition of cohorts of related pollen. Empirical evidence of correlated paternity supports this explanation.


Assuntos
Modelos Biológicos , Óvulo Vegetal , Pólen , Polinização , Pólen/fisiologia , Polinização/fisiologia , Óvulo Vegetal/fisiologia
19.
Glob Chang Biol ; 30(4): e17259, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38655624

RESUMO

Nature-based climate solutions (NCS) are championed as a primary tool to mitigate climate change, especially in forested regions capable of storing and sequestering vast amounts of carbon. New England is one of the most heavily forested regions in the United States (>75% forested by land area), and forest carbon is a significant component of climate mitigation policies. Large infrequent disturbances, such as hurricanes, are a major source of uncertainty and risk for policies relying on forest carbon for climate mitigation, especially as climate change is projected to alter the intensity and extent of hurricanes. To date, most research into disturbance impacts on forest carbon stocks has focused on fire. Here, we show that a single hurricane in the region can down between 121 and 250 MMTCO2e or 4.6%-9.4% of the total aboveground forest carbon, much greater than the carbon sequestered annually by New England's forests (16 MMTCO2e year-1). However, emissions from hurricanes are not instantaneous; it takes approximately 19 years for downed carbon to become a net emission and 100 years for 90% of the downed carbon to be emitted. Reconstructing hurricanes with the HURRECON and EXPOS models across a range of historical and projected wind speeds, we find that an 8% and 16% increase in hurricane wind speeds leads to a 10.7- and 24.8-fold increase in the extent of high-severity damaged areas (widespread tree mortality). Increased wind speed also leads to unprecedented geographical shifts in damage, both inland and northward, into heavily forested regions traditionally less affected by hurricanes. Given that a single hurricane can emit the equivalent of 10+ years of carbon sequestered by forests in New England, the status of these forests as a durable carbon sink is uncertain. Understanding the risks to forest carbon stocks from disturbances is necessary for decision-makers relying on forests as a NCS.


Assuntos
Mudança Climática , Tempestades Ciclônicas , Florestas , New England , Carbono/análise , Sequestro de Carbono , Modelos Teóricos
20.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38663017

RESUMO

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Assuntos
Biota , Mudança Climática , Camada de Gelo , Perda de Ozônio , Neve , Regiões Antárticas , Animais , Raios Ultravioleta , Estações do Ano , Ozônio Estratosférico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA