RESUMO
Cardiac cellular hypertrophy is the increase in the size of individual cardiac cells. Cytochrome P450 1B1 (CYP1B1) is an extrahepatic inducible enzyme that is associated with toxicity, including cardiotoxicity. We previously reported that 19-hydroxyeicosatetraenoic acid (19-HETE) inhibited CYP1B1 and prevented cardiac hypertrophy in enantioselective manner. Therefore, our aim is to investigate the effect of 17-HETE enantiomers on cardiac hypertrophy and CYP1B1. Human adult cardiomyocyte (AC16) cells were treated with 17-HETE enantiomers (20 µM); cellular hypertrophy was evaluated by cell surface area and cardiac hypertrophy markers. In addition, CYP1B1 gene, protein and activity were assessed. Human recombinant CYP1B1 and heart microsomes of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated rats were incubated with 17-HETE enantiomers (10-80 nM). Our results demonstrated that 17-HETE induced cellular hypertrophy, which is manifested by increase in cell surface area and cardiac hypertrophy markers. 17-HETE enantiomers allosterically activated CYP1B1 and selectively upregulated CYP1B1 gene and protein expression in AC16 cells at uM range. In addition, CYP1B1 was allosterically activated by 17-HETE enantiomers at nM range in recombinant CYP1B1 and heart microsomes. In conclusion, 17-HETE acts as an autocrine mediator, leading to the cardiac hypertrophy through induction of CYP1B1 activity in the heart.
Assuntos
Cardiomegalia , Miócitos Cardíacos , Adulto , Ratos , Humanos , Animais , Estereoisomerismo , Miócitos Cardíacos/metabolismo , Linhagem Celular , Cardiomegalia/induzido quimicamente , Cardiomegalia/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Citocromo P-450 CYP1B1/genética , Citocromo P-450 CYP1B1/metabolismoRESUMO
Human parturition is associated with massive arachidonic acid (AA) mobilization in the amnion, indicating that large amounts of AA-derived eicosanoids are required for parturition. Prostaglandin E2 (PGE2) synthesized from the cyclooxygenase (COX) pathway is the best characterized AA-derived eicosanoid in the amnion which plays a pivotal role in parturition. The existence of any other pivotal AA-derived eicosanoids involved in parturition remains elusive. Here, we screened such eicosanoids in human amnion tissue with AA-targeted metabolomics and studied their role and synthesis in parturition by using human amnion fibroblasts and a mouse model. We found that lipoxygenase (ALOX) pathway-derived 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) and its synthetic enzymes ALOX15 and ALOX15B were significantly increased in human amnion at parturition. Although 15(S)-HETE is ineffective on its own, it potently potentiated the activation of NF-κB by inflammatory mediators including lipopolysaccharide, interleukin-1ß, and serum amyloid A1, resulting in the amplification of COX-2 expression and PGE2 production in amnion fibroblasts. In turn, we determined that PGE2 induced ALOX15/15B expression and 15(S)-HETE production through its EP2 receptor-coupled PKA pathway, thereby forming a feed-forward loop between 15(S)-HETE and PGE2 production in the amnion at parturition. Our studies in pregnant mice showed that 15(S)-HETE injection induced preterm birth with increased COX-2 and PGE2 abundance in the fetal membranes and placenta. Conclusively, 15(S)-HETE is identified as another crucial parturition-pertinent AA-derived eicosanoid in the amnion, which may form a feed-forward loop with PGE2 in parturition. Interruption of this feed-forward loop may be of therapeutic value for the treatment of preterm birth.
Assuntos
Âmnio , Dinoprostona , Ácidos Hidroxieicosatetraenoicos , Nascimento Prematuro , Animais , Feminino , Humanos , Camundongos , Gravidez , Âmnio/metabolismo , Ciclo-Oxigenase 2/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Parto/metabolismo , Nascimento Prematuro/metabolismoRESUMO
Acute kidney injury is a frequent complication in the clinical setting and associated with significant morbidity and mortality. Preconditioning with short-term caloric restriction is highly protective against kidney injury in rodent ischemia reperfusion injury models. However, the underlying mechanisms are unknown hampering clinical translation. Here, we examined the molecular basis of caloric restriction-mediated protection to elucidate the principles of kidney stress resistance. Analysis of an RNAseq dataset after caloric restriction identified Cyp4a12a, a cytochrome exclusively expressed in male mice, to be strongly downregulated after caloric restriction. Kidney ischemia reperfusion injury robustly induced acute kidney injury in male mice and this damage could be markedly attenuated by pretreatment with caloric restriction. In females, damage was significantly less pronounced and preconditioning with caloric restriction had only little effect. Tissue concentrations of the metabolic product of Cyp4a12a, 20-hydroxyeicosatetraenoic acid (20-HETE), were found to be significantly reduced by caloric restriction. Conversely, intraperitoneal supplementation of 20-HETE in preconditioned males partly abrogated the protective potential of caloric restriction. Interestingly, this effect was accompanied by a partial reversal of caloric restriction--induced changes in protein but not RNA expression pointing towards inflammation, endoplasmic reticulum stress and lipid metabolism. Thus, our findings provide an insight into the mechanisms underlying kidney protection by caloric restriction. Hence, understanding the mediators of preconditioning is an important prerequisite for moving towards translation to the clinical setting.
Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Restrição Calórica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Rim/metabolismo , Masculino , Camundongos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controleRESUMO
Pre-existing conditions modulate sensitivity to numerous xenobiotic exposures such as air pollution. Specifically, individuals suffering from metabolic syndrome (MetS) demonstrate enhanced acute inflammatory responses following particulate matter inhalation. The mechanisms associated with these exacerbated inflammatory responses are unknown, impairing interventional strategies and our understanding of susceptible populations. We hypothesize MetS-associated lipid dysregulation influences mediators of inflammatory resolution signaling contributing to increased acute pulmonary toxicity. To evaluate this hypothesis, healthy and MetS mouse models were treated with either 18-hydroxy eicosapentaenoic acid (18-HEPE), 14-hydroxy docosahexaenoic acid (14-HDHA), 17-hydroxy docosahexaenoic acid (17-HDHA), or saline (control) via intraperitoneal injection prior to oropharyngeal aspiration of silver nanoparticles (AgNP). In mice receiving saline treatment, AgNP exposure resulted in an acute pulmonary inflammatory response that was exacerbated in MetS mice. A targeted lipid assessment demonstrated 18-HEPE, 14-HDHA, and 17-HDHA treatments altered lung levels of specialized pro-resolving lipid mediators (SPMs). 14-HDHA and 17-HDHA treatments more efficiently reduced the exacerbated acute inflammatory response in AgNP exposed MetS mice as compared to 18-HEPE. This included decreased neutrophilic influx, diminished induction of inflammatory cytokines/chemokines, and reduced alterations in SPMs. Examination of SPM receptors determined baseline reductions in MetS mice compared to healthy as well as decreases due to AgNP exposure. Overall, these results demonstrate AgNP exposure disrupts inflammatory resolution, specifically 14-HDHA and 17-HDHA derived SPMs, in MetS contributing to exacerbated acute inflammatory responses. Our findings identify a potential mechanism responsible for enhanced susceptibility in MetS that can be targeted for interventional therapeutic approaches.
Assuntos
Mediadores da Inflamação/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Síndrome Metabólica/complicações , Nanopartículas Metálicas/toxicidade , Pneumonia/induzido quimicamente , Compostos de Prata/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Citocinas/genética , Citocinas/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação da Expressão Gênica , Ácidos Hidroxieicosatetraenoicos/farmacologia , Metabolismo dos Lipídeos/genética , Pulmão/metabolismo , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia/genética , Pneumonia/metabolismo , Pneumonia/prevenção & controle , Transdução de SinaisRESUMO
The polarization of macrophages is critical to inflammation and tissue repair, with unbalanced macrophage polarization associated with critical dysfunctions of the immune system. Cytochrome P450 1A1 (CYP1A1) is a hydroxylase mainly controlled by the inflammation-limiting aryl hydrocarbon receptor (AhR), which plays a critical role in mycoplasma infection, oxidative stress injury, and cancer. Arginase-1 (Arg-1) is a surrogate for polarized alternative macrophages and is important to the production of nitric oxide (NO) by the modulation of arginine. In the present study, we found CYP1A1 to be upregulated in IL-4-stimulated mouse peritoneal macrophages (PMs) and human peripheral blood monocytes. Using CYP1A1-overexpressing RAW264.7 cells (CYP1A1/RAW) we found that CYP1A1 augmented Arg-1 expression by strengthening the activation of the JAK1/STAT6 signaling pathway in macrophages treated with IL-4. 15(S)-HETE, a metabolite of CYP1A1 hydroxylase, was elevated in IL-4-induced CYP1A1/RAW cells. Further, in macrophages, the loss-of-CYP1A1-hydroxylase activity was associated with reduced IL-4-induced Arg-1 expression due to impaired 15(S)-HETE generation. Of importance, CYP1A1 overexpressing macrophages reduced the inflammation associated with LPS-induced peritonitis. Taken together, these findings identified a novel signaling axis, CYP1A1-15(S)-HETE-JAK1-STAT6, that may be a promising target for the proper maintenance of macrophage polarization and may also be a means by which to treat immune-related disease due to macrophage dysfunction.
Assuntos
Arginase/biossíntese , Citocromo P-450 CYP1A1/fisiologia , Janus Quinase 1/antagonistas & inibidores , Macrófagos Peritoneais/efeitos dos fármacos , Peritonite/prevenção & controle , Fator de Transcrição STAT6/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacologia , Transferência Adotiva , Animais , Araquidonato 15-Lipoxigenase/fisiologia , Arginase/genética , Citocromo P-450 CYP1A1/biossíntese , Citocromo P-450 CYP1A1/genética , Endotoxinas/toxicidade , Humanos , Ácidos Hidroxieicosatetraenoicos/biossíntese , Ácidos Hidroxieicosatetraenoicos/genética , Ácidos Hidroxieicosatetraenoicos/farmacologia , Interleucina-4/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/transplante , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peritonite/induzido quimicamente , Células RAW 264.7 , Interferência de RNA , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Células THP-1 , Regulação para Cima/efeitos dos fármacosRESUMO
Aspirin (acetylsalicylic acid) inhibits prostaglandin (PG) synthesis by transfer of its acetyl group to a serine residue in the cyclooxygenase (COX) active site. Acetylation of Ser530 inhibits catalysis by preventing access of arachidonic acid substrate in the COX-1 isoenzyme. Acetylated COX-2, in contrast, gains a new catalytic activity and forms 15 R hydroxy-eicosatetraenoic acid (15 R-HETE) as alternate product. Here we show that acetylated COX-2 also retains COX activity, forming predominantly 15 R-configuration PGs (70 or 62% 15 R, respectively, determined using radiolabeled substrate or LC-MS analysis). Although the Km of arachidonic acid for acetylated COX-2 was â¼3-fold lower than for uninhibited COX-2, the catalytic efficiency for PG formation by the acetylated enzyme was reduced 10-fold due to a concomitant decrease in Vmax. Aspirin increased 15 R-PGD2 but not 15 R-PGE2 in isolated human leukocytes activated with LPS to induce COX-2. 15 R-PGD2 inhibited human platelet aggregation induced by the thromboxane receptor agonist U46,619, and this effect was abrogated by an antagonist of the DP1 prostanoid receptor. We conclude that acetylation of Ser530 in COX-2 not only triggers formation of 15 R-HETE but also allows oxygenation and cyclization of arachidonic acid to a 15 R-PG endoperoxide. 15 R-PGs are novel products of aspirin therapy via acetylation of COX-2 and may contribute to its antiplatelet and other pharmacologic effects.-Giménez-Bastida, J. A., Boeglin, W. E., Boutaud, O., Malkowski, M. G., Schneider, C. Residual cyclooxygenase activity of aspirin-acetylated COX-2 forms 15 R-prostaglandins that inhibit platelet aggregation.
Assuntos
Aspirina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Acetilação , Células Cultivadas , Cromatografia Líquida , Humanos , Cinética , Leucócitos/metabolismo , Espectrometria de MassasRESUMO
Lipid mediators play active roles in each stage of inflammation under physiological and pathologic conditions. We have investigated the cellular source and functions of several prostanoids in the immune inflammatory responses using follicular dendritic cell (FDC)-like cells. In this study, we report a novel finding on the role of 15(S)- hydroxyeicosatetraenoic acid (HETE). Our observation of 15(S)-HETE uptake by FDC-like cells prompted to hypothesize that 15(S)-HETE might have a regulatory role in the other branch of eicosanoid production. The effects of 15(S)-HETE on COX-2 expression and prostaglandin (PG) production were analyzed by immunoblotting and specific enzyme immunoassays. The addition of 15(S)-HETE resulted in elevated levels of COX-2 expression and PG production. The enhanced PG production was not due to growth stimulation of FDC-like cells since 15(S)-HETE did not modulate FDC-like cell proliferation by the culture period of PG measurement. Peroxisome proliferator-activated receptor gamma (PPARγ) seems to mediate the augmenting activity as the antagonist GW9662 dose- dependently prevented 15(S)-HETE from increasing PG production. In addition, PPARγ protein expression was readily detected in FDC-like cells. These effects of 15(S)-HETE were displayed in the combined addition with IL-1ß. Based on these results, we suggest that 15(S)-HETE is an inflammatory costimulator of FDC acting in a paracrine fashion.
Assuntos
Células Dendríticas Foliculares/efeitos dos fármacos , Células Dendríticas Foliculares/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Comunicação Parácrina/efeitos dos fármacos , Prostaglandinas/biossíntese , Linhagem Celular , Células Dendríticas Foliculares/citologia , HumanosRESUMO
Unregulated inflammation during bovine mastitis is characterized by severe mammary tissue damage with systemic involvement. Vascular dysfunction underlies tissue pathology because of concurrent oxidative stress mediated by several inflammatory mediators. We recently demonstrated increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P450-derived (CYP) oxylipid that correlated with oxidative stress during severe bovine coliform mastitis. The hypothesis for this study was that 20-HETE-induced oxidative stress disrupts barrier function of endothelial cells. Primary endothelial cells from the bovine aorta were utilized to investigate the effects of 20-HETE on barrier integrity in an in-vitro model of oxidative stress. The effects of various antioxidants on modulating the 20-HETE barrier integrity effects also were investigated. Our results showed that 20-HETE decreased endothelial barrier integrity, which was associated with increased reactive metabolite production and decreased total glutathione. The antioxidant, vitamin E, partially delayed the loss of endothelial resistance upon exposure to 20-HETE but did not prevent complete loss of barrier integrity. The decrease in barrier resistance due to 20-HETE was neither associated with oxidative stress as assessed by oxidative protein or lipid damage nor endothelial cell apoptosis; however, selenium supplementation conferred resistance to loss of barrier integrity suggesting a role for shifts in redox status. Specific mechanisms by which 20-HETE alters vascular barrier integrity require further investigation to identify targets for therapy during inflammatory conditions with enhanced CYP450 activity.
Assuntos
Morte Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Bovinos , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacosRESUMO
The inflammatory response is necessary for the host's defense against pathogens; however, uncontrolled or unregulated production of eicosanoids has been associated with several types of chronic inflammatory diseases. Thus, it is not surprising that enzymes implicated in the production of eicosanoids have been strategically targeted for potential therapeutic approaches. The 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] lipid mediator is among inflammatory molecules that are abundantly produced in various diseases and is primarily biosynthesized via the 12(S)-lipoxygenase pathway. The effects of the abundance of 12(S)-HETE and its contribution to several chronic inflammatory diseases have been well studied over the last few years. While most developed compounds primarily target the 5-lipoxygenase (5-LO) or the cyclooxygenase (COX) pathways, very few compounds selectively inhibiting the 12-lipoxygenase (12-LO) pathway are known. In this study, we examined whether the distribution of hydroxyl groups among flavones could influence their potency as 12-LO inhibitors. Using human platelets, the human embryonic kidney 293 (HEK293) cell line expressing 5-LO, and human polymorphonuclear leukocytes (PMNLs) we investigated the effects of these compounds on several inflammatory pathways, namely, 12-LO, 5-LO, and COX. Using high-resolution respirometry and flow cytometry, we also evaluated some normal cell functions that could be modulated by our compounds. We identified a peracetylated quercetin (compound 6) that exerts potent inhibitory activity toward the platelet 12-LO pathway (IC50 = 1.53 µM) while having a lesser affinity toward the COX pathway. This study characterizes the peracetylated quercetin (compound 6) as a more selective platelet-type 12-LO inhibitor than baicalein, with no measurable nontargeted effects on the platelet's activation or overall cell's oxygen consumption.
Assuntos
Plaquetas/efeitos dos fármacos , Inibidores de Lipoxigenase/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Quercetina/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Plaquetas/metabolismo , Linhagem Celular , Eicosanoides/metabolismo , Flavanonas/farmacologia , Células HEK293 , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologiaRESUMO
The overexpression of cytochrome P450 1B1 (CYP1B1) is a common characteristic of several diseases and conditions, such as inflammation, cancer, and cardiac hypertrophy. CYP1B1 is believed to contribute to pathogenesis of these diseases by mediating the formation of toxic compounds, either from exogenous or endogenous origin. We recently reported that an arachidonic acid metabolite, 19(S/R-)hydroxyeicosatetraenoic (HETE) acid, protects from cardiac hypertrophy by inhibiting the formation of toxic compounds, midchain HETEs, known to be formed by CYP1B1. This raised the question whether 19(S/R)-HETE can directly inhibit CYP1B1. In the current study, we report that 19(S/R)-HETE enantioselectively inhibits human recombinant CYP1B1 activity measured by 7-ethoxyresorufin O-deethylation assay. 19(S)-HETE is more potent than the R enantiomer (K i = 37.3 and 89.1 nM, respectively). Noncompetitive inhibition was identified as the mechanism of CYP1B1 inhibition, which underlines the potentially important physiologic role of 19(S/R)-HETE as an endogenous CYP1B1 inhibitor; to our knowledge, 19(S/R)-HETE is the first inhibitor of its kind to be reported.
Assuntos
Citocromo P-450 CYP1B1/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Cardiomegalia/tratamento farmacológico , Cardiomegalia/patologia , Citocromo P-450 CYP1B1/metabolismo , Ensaios Enzimáticos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/uso terapêutico , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
The severity of cardiac dysfunction predicts mortality in sepsis. Activation of transient receptor potential vanilloid receptor type (TRPV)-1, a predominantly neuronal nonselective cation channel, has been shown to improve outcome in sepsis and endotoxemia. However, the role of TRPV1 and the identity of its endogenous ligands in the cardiac dysfunction caused by sepsis and endotoxemia are unknown. Using TRPV1-/- and TRPV1+/+ mice, we showed that endogenous activation of cardiac TRPV1 during sepsis is key to limiting the ensuing cardiac dysfunction. Use of liquid chromatography-tandem mass spectrometry lipid analysis and selective inhibitors of arachidonic metabolism suggest that the arachidonate-derived TRPV1 activator, 20-hydroxyeicosateraenoic acid (20-HETE), underlies a substantial component of TRPV1-mediated cardioprotection in sepsis. Moreover, using selective antagonists for neuropeptide receptors, we show that this effect of TRPV1 relates to the activity of neuronally released cardiac calcitonin gene-related peptide (CGRP) and that, accordingly, administration of CGRP can rescue cardiac dysfunction in severe endotoxemia. In sum activation of TRPV1 by 20-HETE leads to the release of CGRP, which protects the heart against the cardiac dysfunction in endotoxemia and identifies both TRPV1 and CGRP receptors as potential therapeutic targets in endotoxemia.-Chen, J., Hamers, A. J. P., Finsterbusch, M., Massimo, G., Zafar, M., Corder, R., Colas, R. A., Dalli, J., Thiemermann, C., Ahluwalia, A. Endogenously generated arachidonate-derived ligands for TRPV1 induce cardiac protection in sepsis.
Assuntos
Cardiomiopatias/prevenção & controle , Cardiotônicos/farmacologia , Endotoxemia/complicações , Ácidos Hidroxieicosatetraenoicos/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Cardiomiopatias/etiologia , Cardiotônicos/uso terapêutico , Células HEK293 , Coração/efeitos dos fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Canais de Cátion TRPV/agonistasRESUMO
RATIONALE: 20-Hydroxyeicosatetraenoic acid (20-HETE), one of the principle cytochrome P450 eicosanoids, is a potent vasoactive lipid whose vascular effects include stimulation of smooth muscle contractility, migration, and proliferation, as well as endothelial cell dysfunction and inflammation. Increased levels of 20-HETE in experimental animals and in humans are associated with hypertension, stroke, myocardial infarction, and vascular diseases. OBJECTIVE: To date, a receptor/binding site for 20-HETE has been implicated based on the use of specific agonists and antagonists. The present study was undertaken to identify a receptor to which 20-HETE binds and through which it activates a signaling cascade that culminates in many of the functional outcomes attributed to 20-HETE in vitro and in vivo. METHODS AND RESULTS: Using crosslinking analogs, click chemistry, binding assays, and functional assays, we identified G-protein receptor 75 (GPR75), currently an orphan G-protein-coupled receptor (GPCR), as a specific target of 20-HETE. In cultured human endothelial cells, 20-HETE binding to GPR75 stimulated Gαq/11 protein dissociation and increased inositol phosphate accumulation and GPCR-kinase interacting protein-1-GPR75 binding, which further facilitated the c-Src-mediated transactivation of epidermal growth factor receptor. This results in downstream signaling pathways that induce angiotensin-converting enzyme expression and endothelial dysfunction. Knockdown of GPR75 or GPCR-kinase interacting protein-1 prevented 20-HETE-mediated endothelial growth factor receptor phosphorylation and angiotensin-converting enzyme induction. In vascular smooth muscle cells, GPR75-20-HETE pairing is associated with Gαq/11- and GPCR-kinase interacting protein-1-mediated protein kinase C-stimulated phosphorylation of MaxiKß, linking GPR75 activation to 20-HETE-mediated vasoconstriction. GPR75 knockdown in a mouse model of 20-HETE-dependent hypertension prevented blood pressure elevation and 20-HETE-mediated increases in angiotensin-converting enzyme expression, endothelial dysfunction, smooth muscle contractility, and vascular remodeling. CONCLUSIONS: This is the first report to identify a GPCR target for an eicosanoid of this class. The discovery of 20-HETE-GPR75 pairing presented here provides the molecular basis for the signaling and pathophysiological functions mediated by 20-HETE in hypertension and cardiovascular diseases.
Assuntos
Endotélio Vascular/fisiologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Remodelação Vascular/fisiologia , Animais , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Ácidos Hidroxieicosatetraenoicos/toxicidade , Hipertensão/induzido quimicamente , Masculino , Camundongos , Camundongos Transgênicos , Ligação Proteica/fisiologia , Ratos , Transdução de Sinais/efeitos dos fármacos , Remodelação Vascular/efeitos dos fármacosRESUMO
Although more than 100 lipid metabolites have been identified, their bioactivities remain unknown. In a previous study, we discovered that the production of several lipid metabolites in the intestines dramatically changed in colitis. Of these metabolites, 5,6-dihydroxyeicosatetraenoic acid (DiHETE) possesses novel anti-inflammatory activity in the vasculature. In this study, we used mouse and human umbilical vein endothelial cell (HUVEC) models to elucidate the mechanisms underlying the vascular activity of lipid metabolites, particularly those related to the release of histamine, a major proinflammatory mediator that stimulates endothelial cells to produce NO, a mediator of vascular relaxation and hyperpermeability, by activating intracellular Ca2+ concentration-dependent signaling. In a mouse ear, the administration of 5,6-DiHETE did not induce inflammatory reactions, and pretreatment with 5,6-DiHETE inhibited histamine-induced inflammation, specifically vascular dilation and hyperpermeability. In an isolated mouse aorta, 5,6-DiHETE treatment did not influence vascular contraction but attenuated acetylcholine-induced vascular relaxation. In HUVECs, treatment with 5,6-DiHETE inhibited histamine-induced endothelial barrier disruption and inhibited the production of NO. Most notably, 5,6-DiHETE inhibited histamine-induced increases in intracellular Ca2+ concentrations in HUVECs. Our findings suggest that 5,6-DiHETE attenuates vascular hyperpermeability during inflammation by inhibiting endothelial Ca2+ elevation, which might lead to a novel pharmacological strategy against inflammatory diseases.
Assuntos
Aorta/efeitos dos fármacos , Aorta/metabolismo , Cálcio/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Animais , Aorta/citologia , Aorta/fisiologia , Histamina/farmacologia , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Masculino , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo III/metabolismo , Permeabilidade/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacosRESUMO
Melanoma has a high propensity to metastasize and exhibits a poor response to classical therapies. Dysregulation of the chemokine receptor gene CXCR4 is associated with melanoma progression, and although n-3 polyunsaturated fatty acids (PUFAs) are known to be beneficial for melanoma prevention, the underlying mechanism of this effect is unclear. Here, we used the n-3 fatty acid desaturase (Fat-1) transgenic mouse model of endogenous n-3 PUFA synthesis to investigate the influence of elevated n-3 PUFA levels in a mouse model of metastatic melanoma. We found that relative to wild-type (WT) mice, Fat-1 mice exhibited fewer pulmonary metastatic colonies and improved inflammatory indices, including reduced serum tumor necrosis factor alpha (TNF-α) levels and pulmonary myeloperoxidase activity. Differential PUFA metabolites in serum were considered a key factor to alter cancer cell travelling to lung, and we found that n-6 PUFAs such as arachidonic acid induced CXCR4 protein expression although n-3 PUFAs such as eicosapentaenoic acid (EPA) decreased CXCR4 levels. In addition, serum levels of the bioactive EPA metabolite, 18-HEPE, were elevated in Fat-1 mice relative to WT mice, and 18-HEPE suppressed CXCR4 expression in B16-F0 cells. Moreover, relative to controls, numbers of pulmonary metastatic colonies were reduced in WT mice receiving intravenous injections either of 18-HEPE or 18-HEPE-pretreated melanoma cells. Our results indicate that 18-HEPE is a potential anticancer metabolite that mediates, at least in part, the preventive effect of n-3 PUFA on melanoma metastasis.
Assuntos
Caderinas/genética , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Melanoma Experimental/patologia , Receptores CXCR4/metabolismo , Animais , Ácido Araquidônico/metabolismo , Linhagem Celular Tumoral , Crisenos , Modelos Animais de Doenças , Ácido Eicosapentaenoico/sangue , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/biossíntese , Ácidos Graxos Ômega-3/genética , Feminino , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica/prevenção & controle , Peroxidase/metabolismo , Receptores CXCR4/genética , Fator de Necrose Tumoral alfa/sangueRESUMO
Tissue factor (TF) is expressed in vascular and nonvascular tissues and functions in several pathways, including embryonic development, inflammation, and cell migration. Many risk factors for atherosclerosis, including hypertension, diabetes, obesity, and smoking, increase TF expression. To better understand the TF-related mechanisms in atherosclerosis, here we investigated the role of 12/15-lipoxygenase (12/15-LOX) in TF expression. 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), the major product of human 15-LOXs 1 and 2, induced TF expression and activity in a time-dependent manner in the human monocytic cell line THP1. Moreover, TF suppression with neutralizing antibodies blocked 15(S)-HETE-induced monocyte migration. We also found that NADPH- and xanthine oxidase-dependent reactive oxygen species (ROS) production, calcium/calmodulin-dependent protein kinase IV (CaMKIV) activation, and interactions between nuclear factor of activated T cells 3 (NFATc3) and FosB proto-oncogene, AP-1 transcription factor subunit (FosB) are involved in 15(S)-HETE-induced TF expression. Interestingly, NFATc3 first induced the expression of its interaction partner FosB before forming the heterodimeric NFATc3-FosB transcription factor complex, which bound the proximal AP-1 site in the TF gene promoter and activated TF expression. We also observed that macrophages from 12/15-LOX-/- mice exhibit diminished migratory response to monocyte chemotactic protein 1 (MCP-1) and lipopolysaccharide compared with WT mouse macrophages. Similarly, compared with WT macrophages, monocytes from 12/15-LOX-/- mice displayed diminished trafficking, which was rescued by prior treatment with 12(S)-HETE, in a peritonitis model. These observations indicate that 15(S)-HETE-induced monocyte/macrophage migration and trafficking require ROS-mediated CaMKIV activation leading to formation of NFATc3 and FosB heterodimer, which binds and activates the TF promoter.
Assuntos
Araquidonato 12-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Movimento Celular/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Monócitos/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Tromboplastina/genética , Animais , Araquidonato 12-Lipoxigenase/deficiência , Araquidonato 12-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/deficiência , Araquidonato 15-Lipoxigenase/genética , Células Cultivadas , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Proto-Oncogene Mas , Espécies Reativas de Oxigênio/metabolismo , Tromboplastina/metabolismo , Fatores de TempoRESUMO
We had recently demonstrated that the racemic mixture of 19-hydroxyeicosatetraenoic acid (19-HETE) protects against angiotensin II (Ang II)-induced cardiac hypertrophy. Therefore, the purpose of this study was to investigate whether the R- or S-enantiomer of 19-HETE confers cardioprotection against Ang II-induced cellular hypertrophy in RL-14 and H9c2 cells. Both cell lines were treated with vehicle or 10 µM Ang II in the absence and presence of 20 µM 19(R)-HETE or 19(S)-HETE for 24 hours. Thereafter, the level of midchain HETEs was determined using liquid chromatography-mass spectrometry. Gene- and protein-expression levels were measured using real-time polymerase chain reaction and Western blot analysis, respectively. The results showed that both 19(R)-HETE and 19(S)-HETE significantly decreased the metabolite formation rate of midchain HETEs, namely 8-, 9-, 12-, and 15-HETE, compared with control group, whereas the level of 5-HETE was selectively decreased by S-enantiomer. Moreover, both 19(R)-HETE and 19(S)-HETE significantly inhibited the catalytic activity of CYP1B1 and decreased the protein expression of 5- and 12-lipoxygenase (LOX) as well as cyclo-oxygenase-2 (COX-2). Notably, the decrease in 15-LOX protein expression was only mediated by 19(S)-HETE. Interestingly, both enantiomers protected against Ang II-induced cellular hypertrophy, as evidenced by a significant decrease in mRNA expression of ß/α-myosin heavy chain ratio, atrial natriuretic peptide, and interleukins 6 and 8. Our data demonstrated that S-enantiomer of 19-HETE preferentially protected against Ang II-induced cellular hypertrophy by decreasing the level of midchain HETEs, inhibiting catalytic activity of CYP1B1, decreasing protein expression of LOX and COX-2 enzymes, and decreasing mRNA expression of IL-6 and IL-8.
Assuntos
Angiotensina II/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Ácidos Hidroxieicosatetraenoicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Animais , Fator Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , EstereoisomerismoRESUMO
20-Hydroxyeicosatetraenoic acid (20-HETE), a cytochrome P450 (CYP) 4A/4F-derived metabolite of arachidonic acid, directly contributes to ischemic neuronal injury. However, little is known about mediators of 20-HETE neurotoxicity after ischemia. Here, we focus on the role of transient receptor potential cation channel subfamily V member 1 (TRPV1) in 20-HETE-induced neurotoxicity. Our results showed that TRPV1 and CYP4A immunoreactivity were colocalized in neurons. TRPV1 inhibition attenuated 20-HETE mimetic 20-5,14-HEDGE-induced reactive oxygen species (ROS) production and neuronal injury in cultured neurons and protected ischemic neurons in vitro and in vivo. TRPV1 inhibition in combination with 20-HETE synthesis inhibitor HET0016 did not produce additional protective effects. Furthermore, TRPV1 genetic inhibition and NADPH oxidase inhibitor gp91ds-dat each attenuated ROS production to a similar extent. However, combined treatment did not achieve additional reduction. Therefore, we conclude that TRPV1 channels are involved in 20-HETE's ROS generation and neurotoxicity after ischemia.
Assuntos
Ácidos Hidroxieicosatetraenoicos/efeitos adversos , Isquemia/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Citocromo P-450 CYP4A/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacologia , Isquemia/induzido quimicamente , Isquemia/patologia , Camundongos , Camundongos Knockout , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Imunológicos/metabolismo , Canais de Cátion TRPV/genéticaRESUMO
15-Lipoxygenase-2 (15-LOX-2) and 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE) have been considered as latent mediators of diverse biological processes including cancer. However, their functions in lung adenocarcinoma (LAC) are unclear. In this study, we aimed to determine whether 15-LOX-2/15(S)-HETE is involved in the proliferation and migration of A549 cells and to identify the signaling pathways that participate in this process. We used immunohistochemistry to identify the expression levels of 15-LOX-2 in lung cancer tissue samples. The effects of 15(S)-HETE on the proliferation and migration of A549 cells under hypoxic conditions were assessed by cell viability assays, immunofluorescence, western blotting, scratch wound assays and transwell assays. We found that the expression of 15-LOX-2 was significantly up-regulated in LAC tissue samples compared with adjacent normal tissue samples. The content of 15(S)-HETE in A549 cells was increased under hypoxic conditions. Moreover, 15(S)-HETE could stimulate the expression of PCNA, cyclin A and cyclin D. In addition, siRNA of 15-LOX-2 inhibited the proliferation and migration of A549 cells in vitro. Our data also provide novel evidence demonstrating that the STAT3 pathway participates in the 15(S)-HETE-induced proliferation and migration of A549 cells. This study may provide a greater understanding of LAC metastasis and shed new light on the mechanisms by which the 15(S)-HETE/STAT3 pathway is related to this disease.
Assuntos
Adenocarcinoma/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Proliferação de Células/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Neoplasias Pulmonares/metabolismo , Fator de Transcrição STAT3/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/patologia , Araquidonato 15-Lipoxigenase/genética , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metástase Neoplásica , Interferência de RNA , Transdução de Sinais/efeitos dos fármacosRESUMO
We previously found that 20-hydroxyeicosatetraeonic acid (20-HETE) showed an effect on proteasome activity in cytochrome P450 F2 (CYP4F2) transgenic mice. Proteasome subunit ß5 (PSMB5) is a primary subunit of the proteasome. In the current study, we examine whether 20-HETE has any affect on PSMB5. We found that PSMB5 was upregulated in the liver, but downregulated in the kidney of transgenic mice, when compared with wild-type mice. Luciferase reporter gene experiments and electrophoretic mobility shift assays (EMSA) suggested that Smad3 directly associated with the putative Smad binding element (SBE) of the Psmb5 promoter. Furthermore, the binding affinity was different between the liver and kidney, and can be regulated by 20-HETE. Compared to wild mice, both TGF-ß1 and Smad3 phosphorylation were increased in the liver but decreased in the kidney of transgenic mice. SB431542, an inhibitor of TGF-ß receptor I kinase activity, can reverse the changes induced in PSMB5 by 20-HETE in vitro. Taken together, our data demonstrated that 20-HETE upregulated the expression of PSMB5 by activating the TGF-ß/Smad signaling pathway in the liver, but downregulated the expression of PSMB5 by inhibiting the TGF-ß/Smad signaling pathway in the kidney of transgenic mice.
Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxieicosatetraenoicos/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , CamundongosRESUMO
UNLABELLED: The canonical Wnt/ß-catenin signaling pathway is crucial for blood-brain barrier (BBB) formation in brain endothelial cells. Although glucose transporter 1, claudin-3, and plasmalemma vesicular-associated protein have been identified as Wnt/ß-catenin targets in brain endothelial cells, further downstream targets relevant to BBB formation and function are incompletely explored. By Affymetrix expression analysis, we show that the cytochrome P450 enzyme Cyp1b1 was significantly decreased in ß-catenin-deficient mouse endothelial cells, whereas its close homolog Cyp1a1 was upregulated in an aryl hydrocarbon receptor-dependent manner, hence indicating that ß-catenin is indispensable for Cyp1b1 but not for Cyp1a1 expression. Functionally, Cyp1b1 could generate retinoic acid from retinol leading to cell-autonomous induction of the barrier-related ATP-binding cassette transporter P-glycoprotein. Cyp1b1 could also generate 20-hydroxyeicosatetraenoic acid from arachidonic acid, decreasing endothelial barrier function in vitro In mice in vivo pharmacological inhibition of Cyp1b1 increased BBB permeability for small molecular tracers, and Cyp1b1 was downregulated in glioma vessels in which BBB function is lost. Hence, we propose Cyp1b1 as a target of ß-catenin indirectly influencing BBB properties via its metabolic activity, and as a potential target for modulating barrier function in endothelial cells. SIGNIFICANCE STATEMENT: Wnt/ß-catenin signaling is crucial for blood-brain barrier (BBB) development and maintenance; however, its role in regulating metabolic characteristics of endothelial cells is unclear. We provide evidence that ß-catenin influences endothelial metabolism by transcriptionally regulating the cytochrome P450 enzyme Cyp1b1 Furthermore, expression of its close homolog Cyp1a1 was inhibited by ß-catenin. Functionally, Cyp1b1 generated retinoic acid as well as 20-hydroxyeicosatetraenoic acid that regulated P-glycoprotein and junction proteins, respectively, thereby modulating BBB properties. Inhibition of Cyp1b1 in vivo increased BBB permeability being in line with its downregulation in glioma endothelia, potentially implicating Cyp1b1 in other brain pathologies. In conclusion, Wnt/ß-catenin signaling regulates endothelial metabolic barrier function through Cyp1b1 transcription.