Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 530
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proteomics ; 24(9): e2300312, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446070

RESUMO

The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-ß signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.


Assuntos
Peroxissomos , Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Abelhas/parasitologia , Varroidae/virologia , Peroxissomos/metabolismo , Peroxissomos/virologia , Vírus de RNA/fisiologia , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Proteínas de Insetos/metabolismo , Transdução de Sinais , Interações Hospedeiro-Parasita
2.
J Virol ; 97(12): e0114923, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37966226

RESUMO

IMPORTANCE: The parasitic mite Varroa destructor is a significant driver of worldwide colony losses of our most important commercial pollinator, the Western honey bee Apis mellifera. Declines in honey bee health are frequently attributed to the viruses that mites vector to honey bees, yet whether mites passively transmit viruses as a mechanical vector or actively participate in viral amplification and facilitate replication of honey bee viruses is debated. Our work investigating the antiviral RNA interference response in V. destructor demonstrates that key viruses associated with honey bee declines actively replicate in mites, indicating that they are biological vectors, and the host range of bee-associated viruses extends to their parasites, which could impact virus evolution, pathogenicity, and spread.


Assuntos
Abelhas , Vetores de Doenças , Especificidade de Hospedeiro , Parasitos , Varroidae , Replicação Viral , Vírus , Animais , Abelhas/parasitologia , Abelhas/virologia , Parasitos/fisiologia , Parasitos/virologia , Varroidae/fisiologia , Varroidae/virologia , Vírus/crescimento & desenvolvimento , Vírus/patogenicidade , Interferência de RNA
3.
Biol Lett ; 20(5): 20230600, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38715462

RESUMO

Novel transmission routes change pathogen landscapes and may facilitate disease emergence. The varroa mite is a virus vector that switched to western honeybees at the beginning of the last century, leading to hive mortality, particularly in combination with RNA viruses. A recent invasion of varroa on the French island of Ushant introduced vector-mediated transmission to one of the last varroa-naive native honeybee populations and caused rapid changes in the honeybee viral community. These changes were characterized by a drastic increase in deformed wing virus type B prevalence and titre in honeybees, as well as knock-on effects in bumblebees, particularly in the year following the invasion. Slow bee paralysis virus also appeared in honeybees and bumblebees, with a 1 year delay, while black queen cell virus declined in honeybees. This study highlights the rapid and far-reaching effects of vector-borne transmission that can extend beyond the directly affected host species, and that the direction of the effect depends on the pathogen's virulence.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Varroidae/virologia , Varroidae/fisiologia , Vírus de RNA/fisiologia , Vírus de RNA/genética , França/epidemiologia , Espécies Introduzidas , Dicistroviridae/genética , Dicistroviridae/fisiologia , Prevalência
4.
J Invertebr Pathol ; 205: 108124, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729295

RESUMO

The most common viral diseases affecting honey bees (Apis mellifera) in Israel include deformed wing viruses (DWV-A and DWV-B) and acute paralysis viruses (ABPV and IAPV). These viruses are transmitted within and between colonies, both horizontally and vertically. All members of the colony contribute to this transmission, on the other hand individual and social immunity, particularly hygienic behaviour, may affect the outcome of the process. In this study, we evaluated the ontogeny of natural infections of DWV-A, DWV-B, ABPV and IAPV, their prevalence and loads, in workers and drones from high (H) and low (L) hygienic colonies. In parallel, we evaluated the expression of two immune genes: peptidoglycan recognition protein S2(PGRP-S2) and hymenoptaecin. The prevalence of DWV-B and IAPV increased with age and was higher in workers than in drones. ABPV was not detected in drones. The expression of both immune genes was significantly affected by age and sex. Drones from H colonies had higher expression of these genes. The increased expression of immune genes with drones' age, particularly in hygienic colonies, suggest additional value of honey bee breeding for hygienic behaviour for sustainable beekeeping.


Assuntos
Proteínas de Insetos , Abelhas/virologia , Abelhas/imunologia , Animais , Proteínas de Insetos/genética , Dicistroviridae , Vírus de RNA , Proteínas de Transporte/genética , Feminino , Peptídeos Catiônicos Antimicrobianos , Masculino
5.
J Invertebr Pathol ; 204: 108125, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705353

RESUMO

In La Réunion, the established honeybee subspecies Apis mellifera unicolor, an endemic subspecies of African lineage, is facing considerable challenges. Since the introduction of the Varroa destructor mite in 2017 high colony losses have been recorded. We investigated the dynamics of V. destructor and two viruses, the Deformed Wing Virus (DWV), known to be transmitted by the mite, and the Chronic Bee Paralysis Virus (CBPV), in A. m. unicolor. Colonies from two apiaries located at 300 and 900 m a.s.l were monitored twice for one year without any acaricide treatment. The brood area, V. destructor infestation rates, DWV and CBPV prevalence and load were recorded monthly. A. m. unicolor maintained brood rearing throughout the year. Varroa destructor infestation resulted in high colony mortality (up to 85 %) and high phoretic mite rates (up to 52 mites per hundred bees). The establishment of DWV in colonies occurred after that of V. destructor and the mite infestation rate had a significant effect on the virus prevalence and load. CBPV appeared only transiently throughout the surveys. The data showed that, in tropical colonies with permanent brood rearing, V. destructor and DWV can reach high levels, but are still subject to seasonal variations that appear to be influenced by environmental conditions. This suggests that beekeeping practices could be adapted by favouring sites and periods for transhumance or acaricide treatment.


Assuntos
Vírus de RNA , Varroidae , Animais , Abelhas/virologia , Abelhas/parasitologia , Varroidae/virologia , Varroidae/fisiologia , Infestações por Ácaros/veterinária , Infestações por Ácaros/parasitologia , Vírus de Insetos , Espécies Introduzidas , Interações Hospedeiro-Parasita , Ilhas , Dicistroviridae/fisiologia
6.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805657

RESUMO

Despite the use of various integrated pest management strategies to control the honey bee mite, Varroa destructor, varroosis remains the most important threat to honey bee colony health in many countries. In Canada, ineffective varroa control is linked to high winter colony losses and new treatment options, such as a summer treatment, are greatly needed. In this study, a total of 135 colonies located in 6 apiaries were submitted to one of these 3 varroa treatment strategies: (i) an Apivar® fall treatment followed by an oxalic acid (OA) treatment by dripping method; (ii) same as in (i) with a summer treatment consisting of formic acid (Formic Pro™); and (iii) same as in (i) with a summer treatment consisting of slow-release OA/glycerin pads (total of 27 g of OA/colony). Treatment efficacy and their effects on colony performance, mortality, varroa population, and the abundance of 6 viruses (acute bee paralysis virus [ABPV], black queen cell virus [BQCV], deformed wing virus variant A [DWV-A], deformed wing virus variant B [DWV-B], Israeli acute paralysis virus [IAPV], and Kashmir bee virus [KBV]) were assessed. We show that a strategy with a Formic Pro summer treatment tended to reduce the varroa infestation rate to below the economic fall threshold of 15 daily varroa drop, which reduced colony mortality significantly but did not reduce the prevalence or viral load of the 6 tested viruses at the colony level. A strategy with glycerin/OA pads reduced hive weight gain and the varroa infestation rate, but not below the fall threshold. A high prevalence of DWV-B was measured in all groups, which could be related to colony mortality.


Assuntos
Criação de Abelhas , Estações do Ano , Varroidae , Carga Viral , Animais , Varroidae/fisiologia , Abelhas/parasitologia , Abelhas/virologia , Criação de Abelhas/métodos , Acaricidas , Formiatos/farmacologia , Canadá
7.
Mol Ecol ; 32(14): 3859-3871, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37194687

RESUMO

Domesticated honeybees and wild bees are some of the most important beneficial insects for human and environmental health, but infectious diseases pose a serious risk to these pollinators, particularly following the emergence of the ectoparasitic mite Varroa destructor as a viral vector. The acquisition of this novel viral vector from the Asian honeybee Apis ceranae has fundamentally changed viral epidemiology in its new host, the western honeybee A. mellifera. While the recently discovered Lake Sinai Viruses (LSV) have been associated with weak honeybee colonies, they have not been associated with vector-borne transmission. By combining a large-scale multi-year survey of LSV in Chinese A. mellifera and A. cerana honeybee colonies with globally available LSV-sequence data, we investigate the global epidemiology of this virus. We find that globally distributed LSV is a highly diverse multi-strain virus, which is predominantly associated with the western honeybee A. mellifera. In contrast to the vector-borne deformed wing virus, LSV is not an emerging disease. Instead, demographic reconstruction and strong global and local population structure indicates that it is a highly variable multi-strain virus in a stable association with its main host, the western honeybee. Prevalence patterns in China suggest a potential role for migratory beekeeping in the spread of this pathogen, demonstrating the potential for disease transmission with the man-made transport of beneficial insects.


Assuntos
Abelhas , Vírus de RNA , Varroidae , Animais , Humanos , Abelhas/parasitologia , Abelhas/virologia , China/epidemiologia , Vírus de RNA/genética , Varroidae/virologia , Vírus
8.
Proc Natl Acad Sci U S A ; 117(13): 7355-7362, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32179689

RESUMO

The honey bee gut microbiota influences bee health and has become an important model to study the ecology and evolution of microbiota-host interactions. Yet, little is known about the phage community associated with the bee gut, despite its potential to modulate bacterial diversity or to govern important symbiotic functions. Here we analyzed two metagenomes derived from virus-like particles, analyzed the prevalence of the identified phages across 73 bacterial metagenomes from individual bees, and tested the host range of isolated phages. Our results show that the honey bee gut virome is composed of at least 118 distinct clusters corresponding to both temperate and lytic phages and representing novel genera with a large repertoire of unknown gene functions. We find that the phage community is prevalent in honey bees across space and time and targets the core members of the bee gut microbiota. The large number and high genetic diversity of the viral clusters seems to mirror the high extent of strain-level diversity in the bee gut microbiota. We isolated eight lytic phages that target the core microbiota member Bifidobacterium asteroides, but that exhibited different host ranges at the strain level, resulting in a nested interaction network of coexisting phages and bacterial strains. Collectively, our results show that the honey bee gut virome consists of a complex and diverse phage community that likely plays an important role in regulating strain-level diversity in the bee gut and that holds promise as an experimental model to study bacteria-phage dynamics in natural microbial communities.


Assuntos
Abelhas/microbiologia , Abelhas/virologia , Animais , Bactérias/genética , Bacteriófagos/genética , Abelhas/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/virologia , Microbioma Gastrointestinal , Metagenoma , Microbiota , Simbiose/fisiologia
9.
Proc Natl Acad Sci U S A ; 117(19): 10406-10413, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341145

RESUMO

Anthropogenic changes create evolutionarily novel environments that present opportunities for emerging diseases, potentially changing the balance between host and pathogen. Honey bees provide essential pollination services, but intensification and globalization of honey bee management has coincided with increased pathogen pressure, primarily due to a parasitic mite/virus complex. Here, we investigated how honey bee individual and group phenotypes are altered by a virus of concern, Israeli acute paralysis virus (IAPV). Using automated and manual behavioral monitoring of IAPV-inoculated individuals, we find evidence for pathogen manipulation of worker behavior by IAPV, and reveal that this effect depends on social context; that is, within versus between colony interactions. Experimental inoculation reduced social contacts between honey bee colony members, suggesting an adaptive host social immune response to diminish transmission. Parallel analyses with double-stranded RNA (dsRNA)-immunostimulated bees revealed these behaviors are part of a generalized social immune defensive response. Conversely, inoculated bees presented to groups of bees from other colonies experienced reduced aggression compared with dsRNA-immunostimulated bees, facilitating entry into susceptible colonies. This reduction was associated with a shift in cuticular hydrocarbons, the chemical signatures used by bees to discriminate colony members from intruders. These responses were specific to IAPV infection, suggestive of pathogen manipulation of the host. Emerging bee pathogens may thus shape host phenotypes to increase transmission, a strategy especially well-suited to the unnaturally high colony densities of modern apiculture. These findings demonstrate how anthropogenic changes could affect arms races between human-managed hosts and their pathogens to potentially affect global food security.


Assuntos
Abelhas/virologia , Dicistroviridae/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Animais , Criação de Abelhas/métodos , Abelhas/genética , Comportamento Animal , Colapso da Colônia/epidemiologia , Vírus de DNA/genética , Vírus de DNA/metabolismo , Dicistroviridae/genética , Dicistroviridae/patogenicidade , Transmissão de Doença Infecciosa/veterinária , Ácaros/genética , Polinização , RNA de Cadeia Dupla , Comportamento Social , Virulência
10.
Proc Natl Acad Sci U S A ; 117(19): 10511-10519, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32341166

RESUMO

Honey bees (Apis mellifera) produce an enormous economic value through their pollination activities and play a central role in the biodiversity of entire ecosystems. Recent efforts have revealed the substantial influence that the gut microbiota exert on bee development, food digestion, and homeostasis in general. In this study, deep sequencing was used to characterize prokaryotic viral communities associated with honey bees, which was a blind spot in research up until now. The vast majority of the prokaryotic viral populations are novel at the genus level, and most of the encoded proteins comprise unknown functions. Nevertheless, genomes of bacteriophages were predicted to infect nearly every major bee-gut bacterium, and functional annotation and auxiliary metabolic gene discovery imply the potential to influence microbial metabolism. Furthermore, undiscovered genes involved in the synthesis of secondary metabolic biosynthetic gene clusters reflect a wealth of previously untapped enzymatic resources hidden in the bee bacteriophage community.


Assuntos
Bacteriófagos/genética , Abelhas/metabolismo , Abelhas/virologia , Animais , Bactérias/genética , Bacteriófagos/metabolismo , Abelhas/genética , Biodiversidade , Ecossistema , Microbioma Gastrointestinal/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica/métodos , Filogenia , Polinização/genética , Simbiose/genética
11.
PLoS Biol ; 17(10): e3000502, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31600204

RESUMO

The impacts of invertebrate RNA virus population dynamics on virulence and infection outcomes are poorly understood. Deformed wing virus (DWV), the main viral pathogen of honey bees, negatively impacts bee health, which can lead to colony death. Despite previous reports on the reduction of DWV diversity following the arrival of the parasitic mite Varroa destructor, the key DWV vector, we found high genetic diversity of DWV in infested United States honey bee colonies. Phylogenetic analysis showed that divergent US DWV genotypes are of monophyletic origin and were likely generated as a result of diversification after a genetic bottleneck. To investigate the population dynamics of this divergent DWV, we designed a series of novel infectious cDNA clones corresponding to coexisting DWV genotypes, thereby devising a reverse-genetics system for an invertebrate RNA virus quasispecies. Equal replication rates were observed for all clone-derived DWV variants in single infections. Surprisingly, individual clones replicated to the same high levels as their mixtures and even the parental highly diverse natural DWV population, suggesting that complementation between genotypes was not required to replicate to high levels. Mixed clone-derived infections showed a lack of strong competitive exclusion, suggesting that the DWV genotypes were adapted to coexist. Mutational and recombination events were observed across clone progeny, providing new insights into the forces that drive and constrain virus diversification. Accordingly, our results suggest that Varroa influences DWV dynamics by causing an initial selective sweep, which is followed by virus diversification fueled by negative frequency-dependent selection for new genotypes. We suggest that this selection might reflect the ability of rare lineages to evade host defenses, specifically antiviral RNA interference (RNAi). In support of this hypothesis, we show that RNAi induced against one DWV strain is less effective against an alternate strain from the same population.


Assuntos
Vetores Aracnídeos/virologia , Abelhas/virologia , Evasão da Resposta Imune/genética , Vírus de RNA/genética , Varroidae/virologia , Animais , Abelhas/genética , Abelhas/imunologia , Abelhas/parasitologia , Células Clonais , Biblioteca Gênica , Variação Genética , Genótipo , Mutação , Filogenia , Interferência de RNA/imunologia , Vírus de RNA/classificação , Vírus de RNA/imunologia , Vírus de RNA/patogenicidade , Recombinação Genética , Genética Reversa/métodos , Seleção Genética , Virulência , Replicação Viral
12.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137131

RESUMO

Transgenerational immune priming is the process of increased resistance to infection in offspring due to parental pathogen exposure. Honey bees (Apis mellifera L. (Hymenoptera: Apidae)) are hosts to multiple pathogens, and this complex immune function could help protect against overwhelming infection. Honey bees have demonstrated transgenerational immune priming for the bacterial pathogen Paenibacillus larvae; however, evidence for viral transgenerational immune priming is lacking across insects in general. Here we test for the presence of transgenerational immune priming in honey bees with Deformed wing virus (DWV) by injecting pupae from DWV-exposed queens and measuring virus titer and immune gene expression. Our data suggest that there is evidence for viral transgenerational immune priming in honey bees, but it is highly context-dependent based on route of maternal exposure and potentially host genetics or epigenetic factors.


Assuntos
Abelhas , Vírus de Insetos , Vírus de RNA , Animais , Abelhas/imunologia , Abelhas/virologia , Feminino , Exposição Materna , Pupa , Carga Viral
13.
J Insect Sci ; 22(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137136

RESUMO

The effects of honey bee management, such as intensive migratory beekeeping, are part of the ongoing debate concerning causes of colony health problems. Even though comparisons of disease and pathogen loads among differently managed colonies indicate some effects, the direct impact of migratory practices on honey bee pathogens is poorly understood. To test long- and short-term impacts of managed migration on pathogen loads and immunity, experimental honey bee colonies were maintained with or without migratory movement. Individuals that experienced migration as juveniles (e.g., larval and pupal development), as adults, or both were compared to control colonies that remained stationary and therefore did not experience migratory relocation. Samples at different ages and life-history stages (hive bees or foragers), taken at the beginning and end of the active season, were analyzed for pathogen loads and physiological markers of health. Bees exposed to migratory management during adulthood had increased levels of the AKI virus complex (Acute bee paralysis, Kashmir bee, and Israeli acute bee paralysis viruses) and decreased levels of antiviral gene expression (dicer-like). However, those in stationary management as adults had elevated gut parasites (i.e. trypanosomes). Effects of environment during juvenile development were more complex and interacted with life-history stage and season. Age at collection, life-history stage, and season all influenced numerous factors from viral load to immune gene expression. Although the factors that we examined are not independent, the results illuminate potential factors in both migratory and nonmigratory beekeeping that are likely to contribute to colony stress, and also indicate potential mitigation measures.


Assuntos
Criação de Abelhas/métodos , Abelhas , Estações do Ano , Animais , Abelhas/genética , Abelhas/imunologia , Abelhas/virologia , Expressão Gênica
14.
J Gen Virol ; 102(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34816791

RESUMO

Understanding how vectors alter the interactions between viruses and their hosts is a fundamental question in virology and disease ecology. In honey bees, transmission of deformed wing virus (DWV) by parasitic Varroa mites has been associated with elevated disease and host mortality, and Varroa transmission has been hypothesized to lead to increased viral titres or select for more virulent variants. Here, we mimicked Varroa transmission by serially passaging a mixed population of two DWV variants, A and B, by injection through in vitro reared honey bee pupae and tracking these viral populations through five passages. The DWV-A and DWV-B variant proportions shifted dynamically through passaging, with DWV-B outcompeting DWV-A after one passage, but levels of both variants becoming equivalent by Passage 5. Sequencing analysis revealed a dominant, recombinant DWV-B strain (DWV-A derived 5' IRES region with the rest of the genome DWV-B), with low nucleotide diversity that decreased through passaging. DWV-A populations had higher nucleotide diversity compared to DWV-B, but this also decreased through passaging. Selection signatures were found across functional regions of the DWV-A and DWV-B genomes, including amino acid mutations in the putative capsid protein region. Simulated vector transmission differentially impacted two closely related viral variants which could influence viral interactions with the host, demonstrating surprising plasticity in vector-host-viral dynamics.


Assuntos
Vetores Aracnídeos/virologia , Abelhas/virologia , Vírus de RNA/fisiologia , Varroidae/virologia , Animais , Mutação , Pupa/virologia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus de RNA/crescimento & desenvolvimento , Inoculações Seriadas
15.
Virol J ; 18(1): 83, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33882983

RESUMO

BACKGROUND: Sacbrood is an infectious disease of the honey bee caused by Scbrood virus (SBV) which belongs to the family Iflaviridae and is especially lethal for Asian honeybee Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV. Currently, there is a lack of an effective antiviral agent for controlling CSBV infection in honey bees. METHODS: Here, we explored the antiviral effect of a Chinese medicinal herb Radix isatidis on CSBV infection in A. cerana by inoculating the 3rd instar larvae with purified CSBV and treating the infected bee larvae with R. isatidis extract at the same time. The growth, development, and survival of larvae between the control and treatment groups were compared. The CSBV copy number at the 4th instar, 5th instar, and 6th instar larvae was measured by the absolute quantification PCR method. RESULTS: Bioassays revealed that R. isatidis extract significantly inhibited the replication of CSBV, mitigated the impacts of CSBV on larval growth and development, reduced the mortality of CSBV-infected A. cerana larvae, and modulated the expression of immune transcripts in infected bees. CONCLUSION: Although the mechanism underlying the inhibition of CSBV replication by the medicine plant will require further investigation, this study demonstrated the antiviral activity of R. isatidis extract and provides a potential strategy for controlling SBV infection in honey bees.


Assuntos
Antivirais , Abelhas/virologia , Extratos Vegetais , Plantas Medicinais , Vírus de RNA/efeitos dos fármacos , Animais , Antivirais/farmacologia , Larva , Extratos Vegetais/farmacologia , Plantas Medicinais/química
16.
Arch Virol ; 166(6): 1533-1545, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33683476

RESUMO

Beekeeping is a widespread activity in Argentina, mainly producing honey that has gained both national and international recognition. There are more than 3,000,000 hives in the country, mainly concentrated in Buenos Aires Province (approximately 1,000,000 hives). In recent decades, worrying rates of hive loss have been observed in many countries around the world. In Latin America, the estimated loss of hives is between 13% (Peru and Ecuador) and 53% (Chile). Argentina had annual losses of 34% for the period of October 1, 2016 to October 1, 2017. The causes of these losses are not clear but probably involve multiple stressors that can act simultaneously. One of the main causes of loss of bee colonies worldwide is infestation by the ectoparasitic mite Varroa destructor in combination with viral infections. To date, 10 viruses have been detected that affect honey bees (Apis mellifera) in Argentina. Of these, deformed wing virus, sacbrood virus, acute bee paralysis virus, chronic bee paralysis virus, and Israeli acute bee paralysis can be transmitted by mites. Deformed wing virus and the AIK complex are the viruses most often associated with loss of hives worldwide. Considering that bee viruses have been detected in Argentina in several hymenopteran and non-hymenopteran insects, these hosts could act as important natural reservoirs for viruses and play an important role in their dispersal in the environment. Further studies to investigate the different mechanisms by which viruses spread in the environment will enable us to develop various strategies for the control of infected colonies and the spread of viruses in the habitat where they are found.


Assuntos
Abelhas/virologia , Animais , Argentina , Vírus de DNA/genética , Vírus de DNA/isolamento & purificação , Interações Hospedeiro-Patógeno , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação
17.
Arch Virol ; 166(1): 237-241, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33136209

RESUMO

Deformed wing virus (DWV) is an emerging honeybee pathogen that has appeared across the globe in the past 40 years. When transmitted by the parasitic varroa mite, it has been associated with the collapse of millions of colonies throughout the Northern Hemisphere. However, despite the presence of the mite in the Southern Hemisphere, infested colonies survive. This study investigated the prevalence of DWV genotypes A, B and C along with their viral loads in South Africa and compared the findings with recent data from Brazil, the UK and the USA. We found that DWV-B was the most prevalent genotype throughout South Africa, although the total DWV viral load was significantly lower (2.8E+07) than found in the Northern Hemisphere (2.8E+07 vs. 2.7E+10, p > 0.00001) and not significantly different to that found in Brazil (5E+06, p = 0.13). The differences in viral load can be explained by the mite resistance in Brazil and South Africa, since mite-infested cells containing high viral loads are removed by the bees, thus lowering the colony's viral burden. This behaviour is much less developed in the vast majority of honeybees in the Northern Hemisphere.


Assuntos
Abelhas/virologia , Vírus de RNA/patogenicidade , Animais , Prevalência , Infecções por Vírus de RNA/virologia , África do Sul , Varroidae/virologia , Carga Viral/fisiologia
18.
Arch Virol ; 166(10): 2693-2702, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34275024

RESUMO

Deformed wing virus (DWV) has been linked to the global decline of honey bees. DWV exists as three master variants (DWV-A, DWV-B, and DWV-C), each with differing outcomes for the honey bee host. Research in the USA showed a shift from DWV-A to DWV-B between 2010 to 2016 in honey bee colonies. Likewise, in the UK, a small study in 2007 found only DWV-A, whereas in 2016, DWV-B was the most prevalent variant. This suggests a shift from DWV-A to DWV-B might have occurred in the UK between 2007 and 2016. To investigate this further, data from samples collected in 2009/10 (n = 46) were compared to existing data from 2016 (n = 42). These samples also allowed a comparison of DWV variants between Varroa-untreated (feral) and Varroa-treated (managed) colonies. The results revealed that, in the UK, DWV-A was far more prevalent in 2009/10 (87%) than in 2016 (43%). In contrast, DWV-B was less prevalent in 2009/10 (76%) than in 2016 (93%). Regardless if colonies had been treated for Varroa (managed) or not (feral), the same trend from DWV-A to DWV-B occurred. Overall, the results reveal a decrease in DWV-A and an increase in DWV-B in UK colonies.


Assuntos
Abelhas/virologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Abelhas/parasitologia , Variação Genética , Prevalência , Infecções por Vírus de RNA/epidemiologia , Infecções por Vírus de RNA/virologia , Vírus de RNA/genética , Reino Unido/epidemiologia , Varroidae , Carga Viral
19.
J Invertebr Pathol ; 179: 107520, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359478

RESUMO

Infectious diseases are a major threat to both managed and wild pollinators. One key question is how the movement or transplantation of honeybee colonies under different management regimes affects honeybee disease epidemiology. We opportunistically examined any persistent effect of colony management history following relocation by characterising the virus abundances of honeybee colonies from three management histories, representing different management histories: feral, low-intensity management, and high-intensity "industrial" management. The colonies had been maintained for one year under the same approximate 'common garden' condition. Colonies in this observational study differed in their virus abundances according to management history, with the feral population history showing qualitatively different viral abundance patterns compared to colonies from the two managed population management histories; for example, higher abundance of sacbrood virus but lower abundances of various paralysis viruses. Colonies from the high-intensity management history exhibited higher viral abundances for all viruses than colonies from the low-intensity management history. Our results provide evidence that management history has persistent impacts on honeybee disease epidemiology, suggesting that apicultural intensification could be majorly impacting on pollinator health, justifying much more substantial investigation.


Assuntos
Criação de Abelhas/estatística & dados numéricos , Abelhas/virologia , Vírus de Insetos/fisiologia , Animais
20.
J Invertebr Pathol ; 186: 107687, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34728219

RESUMO

Recent outbreaks of sacbrood virus (SBV) have caused serious epizootic disease in Apis cerana populations across Asia including Taiwan. Earlier phylogenetic analyses showed that cross-infection of AcSBV and AmSBV in both A. cerana and A. mellifera seems common, raising a concern of cross-infection intensifying the risk of disease resurgence in A. cerana. In this study, we analyzed the dynamics of cross-infection in three different types of apiaries (A. mellifera-only, A. cerana-only and two species co-cultured apiaries) over one year in Taiwan. Using novel, genotype-specific primer sets, we showed that SBV infection status varies across apiaries: AmSBV-AM and AcSBV-AC were the major genotype in the A. mellifera-only and the A. cerana-only apiaries, respectively, while AmSBV-AC and AcSBV-AC were the dominant genotypes in the co-cultured apiaries. Interestingly, co-cultured apiaries were among the only apiary type that harbored all variants and dual infections (i.e., AC and AM genotype co-infection in a single sample), indicating the interactions between hosts may form a conduit for cross-infection. The cross-infection between the two honey bee species appears to occur in a regular cycle with temporal fluctuation of AmSBV-AC and AcSBV-AC prevalence synchronized to each other in the co-cultured apiaries. Artificial infection of AcSBV in A. mellifera workers showed the suppression of viral replication, suggesting the potential of A. mellifera serving as a AcSBV reservoir that may contribute to virus spillover. Furthermore, the survival rate of A. cerana larvae was significantly reduced after artificial infections of both SBVs, indicating fitness costs of cross-infection on A. cerana and thus a high risk of disease resurgence in co-cultured apiaries. Our field and laboratory data provide baseline information that facilitates understanding of the risk of SBV cross-infection, and highlights the urgent need of SBV monitoring in co-cultured apiaries.


Assuntos
Criação de Abelhas , Abelhas/virologia , Vírus de RNA/fisiologia , Animais , Evolução Molecular , Medição de Risco , Especificidade da Espécie , Taiwan
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA