RESUMO
Retrograde transport of lysosomes is recognised as a critical autophagy regulator. Here, we found that acrolein, an aldehyde that is significantly elevated in Parkinson's disease patient serum, enhances autophagy by promoting lysosomal clustering around the microtubule organising centre via a newly identified JIP4-TRPML1-ALG2 pathway. Phosphorylation of JIP4 at T217 by CaMK2G in response to Ca2+ fluxes tightly regulated this system. Increased vulnerability of JIP4 KO cells to acrolein indicated that lysosomal clustering and subsequent autophagy activation served as defence mechanisms against cytotoxicity of acrolein itself. Furthermore, the JIP4-TRPML1-ALG2 pathway was also activated by H2 O2 , indicating that this system acts as a broad mechanism of the oxidative stress response. Conversely, starvation-induced lysosomal retrograde transport involved both the TMEM55B-JIP4 and TRPML1-ALG2 pathways in the absence of the JIP4 phosphorylation. Therefore, the phosphorylation status of JIP4 acts as a switch that controls the signalling pathways of lysosoma l distribution depending on the type of autophagy-inducing signal.
Assuntos
Acroleína , Canais de Potencial de Receptor Transitório , Humanos , Acroleína/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Lisossomos/metabolismo , Fosforilação Oxidativa , Estresse OxidativoRESUMO
Lignin is an abundant polymer in plant secondary cell walls. Prototypical lignins derive from the polymerization of monolignols (hydroxycinnamyl alcohols), mainly coniferyl and sinapyl alcohol, via combinatorial radical coupling reactions and primarily via the endwise coupling of a monomer with the phenolic end of the growing polymer. Hydroxycinnamaldehyde units have long been recognized as minor components of lignins. In plants deficient in cinnamyl alcohol dehydrogenase, the last enzyme in the monolignol biosynthesis pathway that reduces hydroxycinnamaldehydes to monolignols, chain-incorporated aldehyde unit levels are elevated. The nature and relative levels of aldehyde components in lignins can be determined from their distinct and dispersed correlations in 2D 1H-13C-correlated nuclear magnetic resonance (NMR) spectra. We recently became aware of aldehyde NMR peaks, well resolved from others, that had been overlooked. NMR of isolated low-molecular-weight oligomers from biomimetic radical coupling reactions involving coniferaldehyde revealed that the correlation peaks belonged to hydroxycinnamaldehyde-derived benzofuran moieties. Coniferaldehyde 8-5-coupling initially produces the expected phenylcoumaran structures, but the derived phenolic radicals undergo preferential disproportionation rather than radical coupling to extend the growing polymer. As a result, the hydroxycinnamaldehyde-derived phenylcoumaran units are difficult to detect in lignins, but the benzofurans are now readily observed by their distinct and dispersed correlations in the aldehyde region of NMR spectra from any lignin or monolignol dehydrogenation polymer. Hydroxycinnamaldehydes that are coupled to coniferaldehyde can be distinguished from those coupled with a generic guaiacyl end-unit. These benzofuran peaks may now be annotated and reported and their structural ramifications further studied.
Assuntos
Acroleína/análogos & derivados , Benzofuranos , Cinamatos , Lignina , Lignina/metabolismo , Aldeídos , PolímerosRESUMO
Natural plant extracts have demonstrated significant potential in alternative antibiotic therapies. Cinnamaldehyde (CA) has garnered considerable attention as a natural antibacterial agent. In this study, Tandem mass tag (TMT) quantitative proteomics combined with Western blot and RT-qPCR methods were employed to explore the antibacterial mechanism of CA against Methicillin-Resistant Staphylococcus aureus (MRSA) at the protein level. The results showed that a total of 254 differentially expressed proteins (DEPs) were identified in the control group and CA treatment group, of which 161 were significantly upregulated and 93 were significantly downregulated. DEPs related to nucleotide synthesis, homeostasis of the internal environment, and protein biosynthesis were significantly upregulated, while DEPs involved in the cell wall, cell membrane, and virulence factors were significantly downregulated. The results of GO and KEGG enrichment analyses demonstrated that CA could exert its antibacterial effects by influencing pyruvate metabolism, the tricarboxylic acid (TCA) cycle, teichoic acid biosynthesis, and the Staphylococcus aureus (S. aureus) infection pathway in MRSA. CA significantly inhibited the expression of recombinant protein MgrA (p < 0.05), significantly reduced the mRNA transcription levels of mgrA, hla, and sdrD genes (p < 0.05), and thermostability migration assays demonstrated that CA can directly interact with MgrA protein, thereby inhibiting its activity. These findings suggest that CA exerts its antibacterial mechanism by regulating the expression of related proteins, providing a theoretical basis for further development of clinical applications of antimicrobial agents derived from natural plant essential oils in the treatment of dairy cow mastitis.
Assuntos
Acroleína , Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Proteômica , Acroleína/farmacologia , Acroleína/análogos & derivados , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Antibacterianos/farmacologia , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Espectrometria de Massas em Tandem , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologiaRESUMO
Dental caries is a chronic oral infectious disease, and Streptococcus mutans (S. mutans) plays an important role in the formation of dental caries. Trans-cinnamaldehyde (CA) exhibits broad-spectrum antibacterial activity; however, its target and mechanism of action of CA on S. mutans needs to be further explored. In this study, it was verified that CA could inhibit the growth and biofilm formation of S. mutans. Further proteomic analysis identified 33, 55, and 78 differentially expressed proteins (DEPs) in S. mutans treated with CA for 1, 2, and 4 h, respectively. Bioinformatics analysis showed that CA interfered with carbohydrate metabolism, glycolysis, pyruvate metabolism, and the TCA cycle, as well as amino acid metabolism of S. mutans. Protein interactions suggested that pyruvate dehydrogenase (PDH) plays an important role in the antibacterial effect of CA. Moreover, the upstream and downstream pathways related to PDH were verified by various assays, and the results proved that CA not only suppressed the glucose and sucrose consumption and inhibited glucosyltransferase (GTF) and lactate dehydrogenase (LDH) activities but also decreased the ATP production. Interestingly, the protein interaction, qRT-PCR, and molecular docking analysis showed that PDH might be the target of CA to fight S. mutans. In summary, the study shows that CA interferes with the carbohydrate metabolism of bacteria by inhibiting glycolysis and the tricarboxylic acid (TCA) cycle via binding to PDH, which verifies that PDH is a potential target for the development of new drugs against S. mutans.
Assuntos
Acroleína , Metabolismo dos Carboidratos , Simulação de Acoplamento Molecular , Complexo Piruvato Desidrogenase , Streptococcus mutans , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/genética , Streptococcus mutans/enzimologia , Acroleína/farmacologia , Acroleína/análogos & derivados , Acroleína/metabolismo , Metabolismo dos Carboidratos/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Complexo Piruvato Desidrogenase/antagonistas & inibidores , Antibacterianos/farmacologia , Glicólise/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/antagonistas & inibidores , Proteômica/métodos , Cárie Dentária/microbiologia , Ciclo do Ácido Cítrico/efeitos dos fármacos , Trifosfato de Adenosina/metabolismoRESUMO
Ferroptosis is a pattern of cell death caused by iron-dependent accumulation of lipid peroxides and is closely associated with the occurrence and development of multiple diseases. Acrolein (ACR), one of the final metabolites of lipid peroxidation, is a reactive carbonyl species with strong biotoxicity. Effective detection of ACR is important for understanding its role in the progression of ferroptosis and studying the specific mechanisms of ferroptosis-mediated diseases. However, visualization detection of ACR during ferroptosis has not yet been reported. In this work, the first ratiometric fluorescent probe (HBT-SH) based on 2-(2'-hydroxyphenyl) benzothiazole (HBT) was designed for tracing endogenous ACR with an unprecedented regiospecific ACR-induced intramolecular cyclization strategy, which employs 2-aminoethanethiol as an ACR-selective recognition receptor. The experimental results showed that HBT-SH has excellent selectivity, high sensitivity (LOD = 0.26 µM) and good biocompatibility. More importantly, the upregulation of ACR levels was observed during ferroptosis in HeLa cells and zebrafish, indicating that ACR may be a specific active molecule that plays an essential biological role during ferroptosis or may serve as a potential marker of ferroptosis, which has great significance for studying the pathological process and treatment options of ferroptosis-related diseases.
Assuntos
Acroleína , Ferroptose , Corantes Fluorescentes , Peixe-Zebra , Ferroptose/efeitos dos fármacos , Acroleína/química , Acroleína/metabolismo , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Humanos , Células HeLa , Animais , Regulação para Cima/efeitos dos fármacos , Imagem Óptica , Estrutura MolecularRESUMO
The oxazaphosphorine cyclophosphamide (CP) is a DNA-alkylating agent commonly used in cancer chemotherapy. This anticancer agent is administered as a prodrug activated by a liver cytochrome P450-catalyzed 4-hydroxylation reaction that yields the active, cytotoxic metabolite. The primary metabolite, 4-hydroxycyclophosphamide, equilibrates with the ring-open aldophosphamide that undergoes ß-elimination to yield the therapeutically active DNA cross-linking phosphoramide mustard and the byproduct acrolein. The present paper presents a DFT investigation of the different metabolic phases and an insight into the mechanism by which CP exerts its cytotoxic action. A detailed computational analysis of the energy profiles describing all the involved transformations and the mechanism of DNA alkylation is given with the aim to contribute to an increase of knowledge that, after more than 60 years of unsuccessful attempts, can lead to the design and development of a new generation of oxazaphosphorines.
Assuntos
Acroleína , DNA , Ciclofosfamida/farmacologia , HidroxilaçãoRESUMO
MAIN CONCLUSION: The identification of a functional cinnamoyl-CoA reductase enzyme from Cinnamomum cassia involved in trans-cinnamaldehyde biosynthesis offers the potential for enhancing trans-cinnamaldehyde production through genetic engineering. A significant accumulation of trans-cinnamaldehyde has been found in the bark tissues of C. cassia, used in traditional Chinese medicine. trans-Cinnamaldehyde exhibits various pharmacological properties such as anti-inflammatory, analgesic, and protection of the stomach and the digestive tract. However, further elucidation and characterization of the biosynthetic pathway for trans-cinnamaldehyde is required. In this study, we conducted an integrated analysis of trans-cinnamaldehyde accumulation profiles and transcriptomic data from five different C. cassia tissues to identify the genes involved in its biosynthesis. The transcriptome data we obtained included nearly all genes associated with the trans-cinnamaldehyde pathway, with the majority demonstrating high abundance in branch barks and trunk barks. We successfully cloned four C. cassia cinnamoyl-CoA reductases (CcCCRs), a key gene in trans-cinnamaldehyde biosynthesis. We found that the recombinant CcCCR1 protein was the only one that more efficiently converted cinnamoyl-CoA into trans-cinnamaldehyde. CcCCR1 exhibited approximately 14.7-fold higher catalytic efficiency (kcat/Km) compared to the Arabidopsis thaliana cinnamoyl-CoA reductase 1 (AtCCR1); therefore, it can be utilized for engineering higher trans-cinnamaldehyde production as previously reported. Molecular docking studies and mutagenesis experiments also validated the superior catalytic activity of CcCCR1 compared to AtCCR1. These findings provide valuable insights for the functional characterization of enzyme-coding genes and hold potential for future engineering of trans-cinnamaldehyde biosynthetic pathways.
Assuntos
Acroleína , Acroleína/análogos & derivados , Aldeído Oxirredutases , Cinnamomum aromaticum , Acroleína/metabolismo , Cinnamomum aromaticum/genética , Cinnamomum aromaticum/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Casca de Planta/genética , Casca de Planta/metabolismo , Regulação da Expressão Gênica de PlantasRESUMO
BACKGROUND: Candida albicans is an opportunistic pathogen commonly found in human mucous membranes. In light of the escalating challenge posed by antibiotic resistance of C. albicans strains worldwide, it is an urgently necessary to explore alternative therapeutic options. OBJECTIVE: This study aims to assess the efficacy of two Cinnamaldehyde derivatives, 2-Cl Cinnamaldehyde (2-Cl CA) and 4-Cl Cinnamaldehyde (4-Cl CA), against C. albicans through both in vitro experiments and in vivo murine models and to evaluate their potential as new drug candidates for treating C. albicans. METHODS AND RESULTS: The minimum inhibitory concentrations (MICs) of Cinnamaldehyde 2-Cl and 4-Cl benzene ring derivatives against C. albicans were 25 µg/mL. Time-killing experiments revealed that both Cinnamaldehyde derivatives exhibited fungicidal activity against C. albicans at concentrations of 5 MIC and 10 MIC. In the checkerboard experiment, 4-Cl CA did not show any antagonistic effect when combined with first-line antifungal drugs. Instead, it exhibited additive effects in combination with nystatin. Both 2-Cl and 4-Cl CA demonstrated inhibitory activity against C. albicans biofilm formation, especially at 8 MIC and 16 MIC concentrations. In C. albicans biofilm eradication experiments, although high drug concentrations of 2-Cl and 4-Cl CA were unable to eradicate the biofilm completely, they were still effective in killing C. albicans cells within the biofilm. Moreover, sub-inhibitory concentrations of 4-Cl CA (ranging from 5 to 20 µg/mL) significantly inhibited cell aggregation and hyphal formation. Furthermore, 4-Cl CA effectively inhibited intracellular C. albicans infection in macrophages. Lastly, the effectiveness of 4-Cl CA was evaluated in a mouse model of hematogenous disseminated candidiasis caused by C. albicans, which revealed that 4-Cl CA significantly reduced fungal burden and improved mouse survival compared to the untreated controls. CONCLUSION: The 4-Cl CA exhibited inhibitory effects against C. albicans through both in vivo and in vitro models, demonstrating its therapeutic potential as a promising new drug candidate for treating drug-resistant candidiasis albicans.
Assuntos
Acroleína , Antifúngicos , Biofilmes , Candida albicans , Candidíase , Modelos Animais de Doenças , Farmacorresistência Fúngica , Fluconazol , Testes de Sensibilidade Microbiana , Acroleína/análogos & derivados , Acroleína/farmacologia , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Animais , Biofilmes/efeitos dos fármacos , Farmacorresistência Fúngica/efeitos dos fármacos , Camundongos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Fluconazol/farmacologia , Feminino , Camundongos Endogâmicos BALB CRESUMO
BACKGROUND: Quantification of the vasodilation after topical application of capsaicin or cinnamaldehyde is often implemented to indirectly assess Transient Receptor Potential (TRP) Vanilloid 1 (TRPV1) or Ankyrin 1 (TRPA1) functionality respectively. This method has been well-established on the human forearm. However, to enable TRP functionality assessments in distal peripheral neuropathy, the vascular response upon TRP activation on dorsal finger skin was characterized. METHODS: Two doses of cinnamaldehyde (3 % and 10 % v/v) and capsaicin (300 µg and 1000 µg) were topically applied (20 µL) on the skin of the mid three proximal phalanges in 17 healthy men. The dose-response, and inter-hand and inter-period reproducibility of the dermal blood flow (DBF) increase was assessed using Laser Speckle Contrast Imaging (LSCI) during 60 min post-application. Linear mixed models explored dose-driven differences, whereas the intra-class correlation coefficient (ICC) estimated the reproducibility of the vascular response. RESULTS: Both doses of cinnamaldehyde and capsaicin induced a robust, dose-dependent increase in DBF. The vascular response to cinnamaldehyde 10 % on finger skin, expressed as area under the curve, correlated well over time (ICC = 0.66) and excellently between hands (ICC = 0.87). Similarly, the response to capsaicin 1000 µg correlated moderately over time (ICC = 0.50) and well between hands (ICC = 0.73). CONCLUSION: The vascular response upon topical cinnamaldehyde and capsaicin application on finger skin is an alternative approach for measurements on forearm skin. Thereby, it is a promising vascular read-out to investigate the pathophysiology, and TRP involvement in particular, of specific peripheral neuropathic pain syndromes.
Assuntos
Acroleína/análogos & derivados , Canais de Potencial de Receptor Transitório , Masculino , Humanos , Capsaicina/farmacologia , Reprodutibilidade dos Testes , Nervos Periféricos , Canais de Cátion TRPVRESUMO
Inflammation is the primary driver of skeletal muscle wasting, with oxidative stress serving as both a major consequence and a contributor to its deleterious effects. In this regard, regulation of both can efficiently prevent atrophy and thus will increase the rate of survival [1]. With this idea, we hypothesize that preincubation of Cinnamaldehyde (CNA), a known compound with anti-oxidative and anti-inflammatory properties, may be able to prevent skeletal muscle loss. To examine the same, C2C12 post-differentiated myotubes were treated with 25 ng/ml Tumor necrosis factor-alpha (TNF-α) in the presence or absence of 50 µM CNA. The data showed that TNF-α mediated myotube thinning and a lower fusion index were prevented by CNA supplementation 4 h before TNF-α treatment. Moreover, a lower level of ROS and thus maintained antioxidant defense system further underlines the antioxidative function of CNA in atrophic conditions. CNA preincubation also inhibited an increase in the level of inflammatory cytokines and thus led to a lower level of inflammation even in the presence of TNF-α. With decreased oxidative stress and inflammation by CNA, it was able to maintain the intracellular level of injury markers (CK, LDH) and SDH activity of mitochondria. In addition, CNA modulates all five proteolytic systems [cathepsin-L, UPS (atrogin-1), calpain, LC3, beclin] simultaneously with an upregulation of Akt/mTOR pathway, in turn, preserves the muscle-specific proteins (MHCf) from degradation by TNF-α. Altogether, our study exhibits attenuation of muscle loss and provides insight into the possible mechanism of action of CNA in curbing TNF-α induced muscle loss, specifically its effect on proteolysis and protein synthesis.
Assuntos
Acroleína/análogos & derivados , Músculo Esquelético , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Proteólise , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Inflamação/metabolismoRESUMO
Acrolein is an environmental toxicant and is also generated by microbial metabolism in the intestinal tract. Aqueous acrolein rapidly dissipates from standard human cell culture media with nondetectable levels after 8 h, hindering cell-based studies to understand its biological impacts. Thus, we developed an extracellular acrolein biosynthesis system to continuously produce acrolein compatible with human cell culture conditions. The approach uses spermine as a precursor, amine oxidase found in fetal calf serum, and catalase to remove the hydrogen peroxide byproduct. We confirmed amine oxidase activity of calf serum using a colorimetric assay and further tested the requirement for catalase in the system to mitigate hydrogen peroxide-induced cytotoxicity. We calibrated responses of human colon cells to this enzymatic acrolein production system by comparing transcriptional responses, DNA adduct formation and cytotoxicity responses to either this system or pure acrolein exposures in a human colon cell line. Several genes related to oxidative stress including HMOX1, and the colorectal cancer-related gene SEMA4A were upregulated similarly between the enzymatic acrolein production system or pure acrolein. The acrolein-DNA adduct γ-OH-Acr-dG increased in a dose-dependent manner with spermine in the enzymatic acrolein production system, producing a maximum of 1065 adducts per 108 nucleosides when 400 µM spermine was used. This biosynthetic production method provides a relevant model for controlled acrolein exposure in cultured human cells and overcomes current limitations due to its physical properties and limited availability.
Assuntos
Acroleína , Humanos , Acroleína/metabolismo , Peróxido de Hidrogênio/metabolismo , Adutos de DNA/metabolismo , Catalase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espermina/metabolismoRESUMO
Transient receptor potential ankyrin 1 (TRPA1) plays an important role in different cardiovascular diseases. However, the role of TRPA1 in dilated cardiomyopathy (DCM) remains unclear. Here, we aimed to investigate the role of TRPA1 in DCM induced by doxorubicin (DOX) and explore its possible mechanisms. GEO data were used to explore the expression of TRPA1 in DCM patients. DOX (2.5 mg/kg/week, 6 weeks, i.p.) was used to induce DCM. Bone marrow-derived macrophages (BMDMs) and neonatal rat cardiomyocytes (NRCMs) were isolated to explore the role of TRPA1 in macrophage polarization, cardiomyocyte apoptosis, and pyroptosis. In addition, DCM rats were treated with the TRPA1 activator, cinnamaldehyde to explore the possibility of clinical translation. TRPA1 expression was increased in left ventricular (LV) tissue in DCM patients and rats. TRPA1 deficiency aggravated the cardiac dysfunction, cardiac injury, and LV remodeling in DCM rats. In addition, TRPA1 deficiency promoted the M1 macrophage polarization, oxidative stress, cardiac apoptosis, and pyroptosis induced by DOX. RNA-seq results showed that TRPA1 knockout promoted the expression of S100A8, an inflammatory molecule that belongs to the family of Ca2+ -binding S100 proteins, in DCM rats. Furthermore, S100A8 inhibition attenuated M1 macrophage polarization in BMDMs isolated from TRPA1 deficiency rats. Recombinant S100A8 promoted the apoptosis, pyroptosis, and oxidative stress in primary cardiomyocytes stimulated with DOX. Finally, TRPA1 activation via cinnamaldehyde alleviated the cardiac dysfunction and reduced S100A8 expression in DCM rats. Taken together, these results suggested that TRPA1 deficiency aggravates DCM by promoting S100A8 expression to induce M1 macrophage polarization and cardiac apoptosis.
Assuntos
Cardiomiopatia Dilatada , Animais , Ratos , Acroleína , Calgranulina A , Proteínas do Citoesqueleto , Doxorrubicina , Macrófagos , Miócitos Cardíacos , Canal de Cátion TRPA1 , HumanosRESUMO
Biocatalysis is becoming a powerful and sustainable alternative for asymmetric catalysis. However, enzymes are often restricted to metabolic and less complex reactivities. This can be addressed by protein engineering, such as incorporating new-to-nature functional groups into proteins through the so-called expansion of the genetic code to produce artificial enzymes. Selecting a suitable protein scaffold is a challenging task that plays a key role in designing artificial enzymes. In this work, we explored different protein scaffolds for an abiological model of iminium-ion catalysis, Michael addition of nitromethane into E-cinnamaldehyde. We studied scaffolds looking for open hydrophobic pockets and enzymes with described binding sites for the targeted substrate. The proteins were expressed and variants harboring functional amine groups - lysine, p-aminophenylalanine, or N6-(D-prolyl)-L-lysine - were analyzed for the model reaction. Among the newly identified scaffolds, a thermophilic ene-reductase from Thermoanaerobacter pseudethanolicus was shown to be the most promising biomolecular scaffold for this reaction.
Assuntos
Biocatálise , Iminas , Iminas/química , Iminas/metabolismo , Engenharia de Proteínas , Thermoanaerobacter/enzimologia , Acroleína/química , Acroleína/análogos & derivados , Acroleína/metabolismo , Modelos MolecularesRESUMO
PURPOSE: Colistin is used as a last resort antibiotic against infections caused by multidrug-resistant gram-negative bacteria, especially carbapenem-resistant bacteria. However, colistin-resistance in clinical isolates is becoming more prevalent. Cinnamaldehyde and baicalin, which are the major active constituents of Cinnamomum and Scutellaria, have been reported to exhibit antibacterial properties. The aim of this study was to evaluate the capacity of cinnamaldehyde and baicalin to enhance the antibiotic activity of colistin in Enterobacterales and Acinetobacter baumannii strains. METHODS: The MICs of colistin were determined with and without fixed concentrations of cinnamaldehyde and baicalin by the broth microdilution method. The FIC indices were also calculated. In addition, time-kill assays were performed with colistin alone and in combination with cinnamaldehyde and baicalin to determine the bactericidal action of the combinations. Similarly, the effects of L-arginine, L-glutamic acid and sucrose on the MICs of colistin combined with cinnamaldehyde and baicalin were studied to evaluate the possible effects of these compounds on the charge of the bacterial cell- wall. RESULTS: At nontoxic concentrations, cinnamaldehyde and baicalin partially or fully reversed resistance to colistin in Enterobacterales and A. baumannii. The combinations of the two compounds with colistin had bactericidal or synergistic effects on the most resistant strains. The ability of these agents to reverse colistin resistance could be associated with bacterial cell wall damage and increased permeability. CONCLUSION: Cinnamaldehyde and baicalin are good adjuvants for the antibiotic colistin against Enterobacterales- and A. baumannii-resistant strains.
Assuntos
Acinetobacter baumannii , Acroleína , Antibacterianos , Colistina , Flavonoides , Testes de Sensibilidade Microbiana , Acroleína/análogos & derivados , Acroleína/farmacologia , Colistina/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Flavonoides/farmacologia , Humanos , Enterobacteriaceae/efeitos dos fármacos , Sinergismo Farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacosRESUMO
Bacterial infections are a global health concern, particularly due to the increasing resistance of bacteria to antibiotics. Multi-drug resistance (MDR) is a considerable challenge, and novel approaches are needed to treat bacterial infections. Photodynamic inactivation (PDI) of microorganisms is increasingly recognized as an effective method to inactivate a broad spectrum of bacteria and overcome resistance mechanisms. This study presents the synthesis of a new cationic 5,15-di-imidazolyl porphyrin derivative and the impact of n-octanol/water partition coefficient (logP) values of this class of photosensitizers on PDI efficacy of Escherichia coli. The derivative with logP = -0.5, IP-H-OH2+, achieved a remarkable 3 log CFU reduction of E. coli at 100 nM with only 1.36 J/cm2 light dose at 415 nm, twice as effective as the second-best porphyrin IP-H-Me2+, of logP = -1.35. We relate the rapid uptake of IP-H-OH2+ by E. coli to improved PDI and the very low uptake of a fluorinated derivative, IP-H-CF32+, logP ≈ 1, to its poor performance. Combination of PDI with cinnamaldehyde, a major component of the cinnamon plant known to alter bacteria cell membranes, offered synergic inactivation of E. coli (7 log CFU reduction), using 50 nM of IP-H-OH2+ and just 1.36 J/cm2 light dose. The success of combining PDI with this natural compound broadens the scope of therapies for MDR infections that do not add drug resistance. In vivo studies on a mouse model of wound infection showed the potential of cationic 5,15-di-imidazolyl porphyrins to treat clinically relevant infected wounds.
Assuntos
Acroleína , Antibacterianos , Escherichia coli , Imidazóis , Fármacos Fotossensibilizantes , Porfirinas , Escherichia coli/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Porfirinas/farmacologia , Porfirinas/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Acroleína/análogos & derivados , Acroleína/farmacologia , Acroleína/química , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Cátions/química , Cátions/farmacologia , Testes de Sensibilidade Microbiana , Animais , Camundongos , Sinergismo Farmacológico , FotoquimioterapiaRESUMO
Accumulation of advanced glycation end-products (AGEs) in the brain contributes significantly to cognitive impairment in patients with diabetes by disrupting the post-mitotic state of neuronal cells, thereby triggering ectopic cell cycle re-entry (CCR) and subsequent neuronal apoptosis. Cinnamaldehyde (CINA), a potential mitigator of cognitive impairment due to its blood glucose-lowering properties, warrants exploration for its role in counteracting diabetes-related neurological damage. In this study, we examined the neuroprotective effect of CINA on AGE-damaged SH-SY5Y human neuroblastoma cells differentiated in vitro. We investigated the impact of CINA on AGE-induced neuronal CCR and apoptosis, finding that it substantially suppressed aberrant DNA replication, precluded cells from entering the mitotic preparatory phase, and diminished apoptosis. Additionally, CINA inhibited the expression of eIF4E without altering S6K1 phosphorylation. These findings indicate that CINA safeguards neuronal cells from AGE-related damage by preventing abnormal CCR, preserving the post-mitotic state of neuronal cells, and reducing AGE-induced apoptosis, potentially through the inhibition of eIF4E-controlled cell proliferation. Our results highlight the prospective utility of CINA in managing diabetic neuropathy.
Assuntos
Acroleína , Apoptose , Ciclo Celular , Produtos Finais de Glicação Avançada , Neurônios , Fármacos Neuroprotetores , Acroleína/análogos & derivados , Acroleína/farmacologia , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ciclo Celular/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Linhagem Celular Tumoral , Neuropatias Diabéticas/prevenção & controle , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Replicação do DNA/efeitos dos fármacos , Fosforilação/efeitos dos fármacosRESUMO
AIMS: This study aimed to investigate whether pathways involving transient receptor potential ankyrin 1 (TRPA1) channels in the urinary bladder mediate the bladder overactivity elicited by exposure to a low temperature in rats. METHODS: At postnatal week 10, female Sprague-Dawley (SD) rats were intraperitoneally injected with the TRPA1 channel antagonist, HC030031, at room temperature (RT) and subsequently exposed to low temperature (LT). Bladder specimens treated with HC030031 were evaluated for contractions through cumulative addition of the TRPA1 channel agonist trans-cinnamaldehyde. Two days before cystometric investigation, small interfering RNA (siRNA) targeting TRPA1 was transfected into urinary bladders. Then, cystometric investigations were performed on rats subjected to TRPA1 siRNA transfection at both RT and LT. Expression of TRPA1 channels in the urinary bladder was assessed through immunohistochemistry and real-time reverse transcription-polymerase chain reaction. RESULTS: At RT, micturition patterns were unaffected by HC030031 treatment. However, upon exposure to LT, rats treated with HC030031 exhibited a reduction of LT-elicited bladder overactivity, as evidenced by inhibited decreases in voiding interval, micturition volume, and bladder capacity. Additionally, HC030031 inhibited trans-cinnamaldehyde-induced contractions. Immunohistochemical analysis showed the presence of TRPA1 channels in the urinary bladder. Notably, rats with TRPA1 siRNA-transfected bladders could partially inhibit bladder overactivity during LT exposure. CONCLUSIONS: These findings indicate that pathways involving TRPA1 channels expressed in the urinary bladder could mediate the LT-elicited bladder overactivity.
Assuntos
Bexiga Urinária Hiperativa , Bexiga Urinária , Animais , Ratos , Bexiga Urinária/metabolismo , Bexiga Urinária Hiperativa/metabolismo , Feminino , Ratos Sprague-Dawley , Canal de Cátion TRPA1/metabolismo , Acroleína/administração & dosagem , Acroleína/análogos & derivadosRESUMO
AIMS: This study aimed to explore the effectiveness of dietary citronellol, thymol, and trans-cinnamaldehyde (CTC) essential oils blend on broilers' growth performance, immunity, intestinal microbial count, gut integrity, and resistance against Clostridium perfringens utilizing the necrotic enteritis (NE) challenge model. METHODS AND RESULTS: A total of 200 Ross 308 male broiler chicks received either a control diet or diet supplemented with three graded levels of CTC blend, including 300, 600, and 900 mg of CTC blend/kg diet and experimentally infected with C. perfringens strain at 23 days of age. Herein, dietary CTC blend fortifications significantly improved the broilers' growth performance, which was supported by upregulating the expression levels of MUC-2, occludin, and JAM-2 genes. Moreover, dietary CTC blend inclusion significantly enhanced the levels of blood phagocytic percentage and serum IgA, IgG, and MPO, and reduced the values of serum CRP, and NO at 5 days pre-infection, 10-, and 15 days post-infection (dpi) with C. perfringens. At 15 dpi, CTC blend inclusion significantly reduced the intestinal digesta pH, coliforms and C. perfringens loads, and the expression levels of genes related to C. perfringens virulence (cpe, cnaA, and nanI), proinflammatory cytokines (IL-1ß and TNF-α), and chemokines (CCL20), in addition to increasing the count of beneficial total Lactobacillus and total aerobic bacteria, and the expression levels of genes related to anti-inflammatory cytokines (IL-10) and chemokines (AvBD6 and AvBD612). CONCLUSION: Our results point to the growth-provoking, immunostimulant, antibacterial, anti-inflammatory, and antivirulence characteristics of the CTC blend, which improves the broilers' resistance to C. perfringens and ameliorates the negative impacts of NE.
Assuntos
Acroleína , Monoterpenos Acíclicos , Ração Animal , Galinhas , Infecções por Clostridium , Clostridium perfringens , Doenças das Aves Domésticas , Timol , Animais , Galinhas/microbiologia , Timol/farmacologia , Acroleína/análogos & derivados , Acroleína/farmacologia , Doenças das Aves Domésticas/microbiologia , Infecções por Clostridium/veterinária , Infecções por Clostridium/microbiologia , Masculino , Monoterpenos Acíclicos/farmacologia , Ração Animal/análise , Suplementos Nutricionais , Dieta/veterinária , Microbioma Gastrointestinal/efeitos dos fármacos , Resistência à Doença/efeitos dos fármacos , Enterite/microbiologia , Enterite/veterinária , Óleos Voláteis/farmacologia , Monoterpenos/farmacologiaRESUMO
AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.
Assuntos
Acroleína , Acroleína/análogos & derivados , Antibacterianos , Corynebacterium , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Monoterpenos , Óleos Voláteis , Antibacterianos/farmacologia , Corynebacterium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Acroleína/farmacologia , Monoterpenos/farmacologia , Cimenos/farmacologia , Ciprofloxacina/farmacologia , Gentamicinas/farmacologia , Vancomicina/farmacologia , Linezolida/farmacologia , Limoneno/farmacologia , Eucaliptol/farmacologia , Timol/farmacologia , Clindamicina/farmacologia , Humanos , Penicilinas/farmacologia , Terpenos/farmacologia , Cicloexenos/farmacologia , Infecções por Corynebacterium/microbiologiaRESUMO
AIMS: To evaluate the effect of silver nanoparticles alone and in combination with Triclosan, and trans-cinnamaldehyde against Staphylococcus aureus and Escherichia coli biofilms on sutures to improve patients' outcomes. METHODS AND RESULTS: Silver nanoparticles were prepared by chemical method and characterized by UV-visible spectrophotometer and dynamic light scattering. The minimum inhibitory concentration was assessed by the Microdilution assay. The antibiofilm activity was determined using crystal violet assay. A checkerboard assay using the fractional inhibitory concentration index and time-kill curve was used to investigate the synergistic effect of silver nanoparticle combinations. The hemolytic activity was determined using an erythrocyte hemolytic assay. Our results revealed that silver nanoparticles, Triclosan, and trans-cinnamaldehyde (TCA) inhibited S.aureus and E.coli biofilms. Silver nanoparticles with TCA showed a synergistic effect (FICI values 0.35 and 0.45 against S. aureus and E. coli biofilms, respectively), and silver nanoparticles with Triclosan showed complete inhibition of S. aureus biofilm. The hemolytic activity was <2.50% for the combinations.