RESUMO
Roads are expanding at the fastest pace in human history. This is the case especially in biodiversity-rich tropical nations, where roads can result in forest loss and fragmentation, wildfires, illicit land invasions and negative societal effects1-5. Many roads are being constructed illegally or informally and do not appear on any existing road map6-10; the toll of such 'ghost roads' on ecosystems is poorly understood. Here we use around 7,000 h of effort by trained volunteers to map ghost roads across the tropical Asia-Pacific region, sampling 1.42 million plots, each 1 km2 in area. Our intensive sampling revealed a total of 1.37 million km of roads in our plots-from 3.0 to 6.6 times more roads than were found in leading datasets of roads globally. Across our study area, road building almost always preceded local forest loss, and road density was by far the strongest correlate11 of deforestation out of 38 potential biophysical and socioeconomic covariates. The relationship between road density and forest loss was nonlinear, with deforestation peaking soon after roads penetrate a landscape and then declining as roads multiply and remaining accessible forests largely disappear. Notably, after controlling for lower road density inside protected areas, we found that protected areas had only modest additional effects on preventing forest loss, implying that their most vital conservation function is limiting roads and road-related environmental disruption. Collectively, our findings suggest that burgeoning, poorly studied ghost roads are among the gravest of all direct threats to tropical forests.
Assuntos
Automóveis , Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores , Clima Tropical , Ásia , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Árvores/crescimento & desenvolvimento , Conjuntos de Dados como Assunto , Agricultura Florestal/métodos , Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendênciasRESUMO
More than a quarter of the world's tropical forests are exploited for timber1. Logging impacts biodiversity in these ecosystems, primarily through the creation of forest roads that facilitate hunting for wildlife over extensive areas. Forest management certification schemes such as the Forest Stewardship Council (FSC) are expected to mitigate impacts on biodiversity, but so far very little is known about the effectiveness of FSC certification because of research design challenges, predominantly limited sample sizes2,3. Here we provide this evidence by using 1.3 million camera-trap photos of 55 mammal species in 14 logging concessions in western equatorial Africa. We observed higher mammal encounter rates in FSC-certified than in non-FSC logging concessions. The effect was most pronounced for species weighing more than 10 kg and for species of high conservation priority such as the critically endangered forest elephant and western lowland gorilla. Across the whole mammal community, non-FSC concessions contained proportionally more rodents and other small species than did FSC-certified concessions. The first priority for species protection should be to maintain unlogged forests with effective law enforcement, but for logged forests our findings provide convincing data that FSC-certified forest management is less damaging to the mammal community than is non-FSC forest management. This study provides strong evidence that FSC-certified forest management or equivalently stringent requirements and controlling mechanisms should become the norm for timber extraction to avoid half-empty forests dominated by rodents and other small species.
Assuntos
Certificação , Agricultura Florestal , Florestas , Mamíferos , Animais , África Ocidental , Biodiversidade , Peso Corporal , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Elefantes , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Agricultura Florestal/normas , Gorilla gorilla , Mamíferos/anatomia & histologia , Mamíferos/classificação , Mamíferos/fisiologia , Fotografação , Roedores , Masculino , FemininoRESUMO
Climate warming has caused a widespread increase in extreme fire weather, making forest fires longer-lived and larger1-3. The average forest fire size in Canada, the USA and Australia has doubled or even tripled in recent decades4,5. In return, forest fires feed back to climate by modulating land-atmospheric carbon, nitrogen, aerosol, energy and water fluxes6-8. However, the surface climate impacts of increasingly large fires and their implications for land management remain to be established. Here we use satellite observations to show that in temperate and boreal forests in the Northern Hemisphere, fire size persistently amplified decade-long postfire land surface warming in summer per unit burnt area. Both warming and its amplification with fire size were found to diminish with an increasing abundance of broadleaf trees, consistent with their lower fire vulnerability compared with coniferous species9,10. Fire-size-enhanced warming may affect the success and composition of postfire stand regeneration11,12 as well as permafrost degradation13, presenting previously overlooked, additional feedback effects to future climate and fire dynamics. Given the projected increase in fire size in northern forests14,15, climate-smart forestry should aim to mitigate the climate risks of large fires, possibly by increasing the share of broadleaf trees, where appropriate, and avoiding active pyrophytes.
Assuntos
Retroalimentação , Florestas , Aquecimento Global , Temperatura Alta , Árvores , Incêndios Florestais , Agricultura Florestal/métodos , Agricultura Florestal/tendências , Aquecimento Global/estatística & dados numéricos , Estações do Ano , Taiga , Árvores/anatomia & histologia , Árvores/classificação , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Incêndios Florestais/estatística & dados numéricos , Fatores de TempoRESUMO
Logged and disturbed forests are often viewed as degraded and depauperate environments compared with primary forest. However, they are dynamic ecosystems1 that provide refugia for large amounts of biodiversity2,3, so we cannot afford to underestimate their conservation value4. Here we present empirically defined thresholds for categorizing the conservation value of logged forests, using one of the most comprehensive assessments of taxon responses to habitat degradation in any tropical forest environment. We analysed the impact of logging intensity on the individual occurrence patterns of 1,681 taxa belonging to 86 taxonomic orders and 126 functional groups in Sabah, Malaysia. Our results demonstrate the existence of two conservation-relevant thresholds. First, lightly logged forests (<29% biomass removal) retain high conservation value and a largely intact functional composition, and are therefore likely to recover their pre-logging values if allowed to undergo natural regeneration. Second, the most extreme impacts occur in heavily degraded forests with more than two-thirds (>68%) of their biomass removed, and these are likely to require more expensive measures to recover their biodiversity value. Overall, our data confirm that primary forests are irreplaceable5, but they also reinforce the message that logged forests retain considerable conservation value that should not be overlooked.
Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores , Clima Tropical , Biodiversidade , Biomassa , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Agricultura Florestal/estatística & dados numéricos , Malásia , Árvores/classificação , Árvores/crescimento & desenvolvimento , AnimaisRESUMO
The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.
Assuntos
Dióxido de Carbono , Sequestro de Carbono , Florestas , Internacionalidade , Árvores , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Combustíveis Fósseis/efeitos adversos , Combustíveis Fósseis/provisão & distribuição , Taiga , Árvores/metabolismo , Árvores/crescimento & desenvolvimento , Clima TropicalRESUMO
The pulp and paper industry is an important contributor to global greenhouse gas emissions1,2. Country-specific strategies are essential for the industry to achieve net-zero emissions by 2050, given its vast heterogeneities across countries3,4. Here we develop a comprehensive bottom-up assessment of net greenhouse gas emissions of the domestic paper-related sectors for 30 major countries from 1961 to 2019-about 3.2% of global anthropogenic greenhouse gas emissions from the same period5-and explore mitigation strategies through 2,160 scenarios covering key factors. Our results show substantial differences across countries in terms of historical emissions evolution trends and structure. All countries can achieve net-zero emissions for their pulp and paper industry by 2050, with a single measure for most developed countries and several measures for most developing countries. Except for energy-efficiency improvement and energy-system decarbonization, tropical developing countries with abundant forest resources should give priority to sustainable forest management, whereas other developing countries should pay more attention to enhancing methane capture rate and reducing recycling. These insights are crucial for developing net-zero strategies tailored to each country and achieving net-zero emissions by 2050 for the pulp and paper industry.
Assuntos
Agricultura Florestal , Efeito Estufa , Gases de Efeito Estufa , Indústrias , Internacionalidade , Papel , Desenvolvimento Sustentável , Madeira , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/isolamento & purificação , Indústrias/legislação & jurisprudência , Indústrias/estatística & dados numéricos , Metano/análise , Metano/isolamento & purificação , Reciclagem/estatística & dados numéricos , Reciclagem/tendências , Países Desenvolvidos , Países em Desenvolvimento , Florestas , Agricultura Florestal/métodos , Agricultura Florestal/tendências , Desenvolvimento Sustentável/tendências , Clima TropicalRESUMO
Tropical forest degradation from selective logging, fire and edge effects is a major driver of carbon and biodiversity loss1-3, with annual rates comparable to those of deforestation4. However, its actual extent and long-term impacts remain uncertain at global tropical scale5. Here we quantify the magnitude and persistence of multiple types of degradation on forest structure by combining satellite remote sensing data on pantropical moist forest cover changes4 with estimates of canopy height and biomass from spaceborne6 light detection and ranging (LiDAR). We estimate that forest height decreases owing to selective logging and fire by 15% and 50%, respectively, with low rates of recovery even after 20 years. Agriculture and road expansion trigger a 20% to 30% reduction in canopy height and biomass at the forest edge, with persistent effects being measurable up to 1.5 km inside the forest. Edge effects encroach on 18% (approximately 206 Mha) of the remaining tropical moist forests, an area more than 200% larger than previously estimated7. Finally, degraded forests with more than 50% canopy loss are significantly more vulnerable to subsequent deforestation. Collectively, our findings call for greater efforts to prevent degradation and protect already degraded forests to meet the conservation pledges made at recent United Nations Climate Change and Biodiversity conferences.
Assuntos
Biomassa , Agricultura Florestal , Florestas , Atividades Humanas , Umidade , Árvores , Clima Tropical , Agricultura/estatística & dados numéricos , Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Incêndios , Agricultura Florestal/estatística & dados numéricos , Tecnologia de Sensoriamento Remoto , Fatores de Tempo , Árvores/crescimento & desenvolvimento , Nações Unidas/legislação & jurisprudênciaRESUMO
Anthropogenic change is contributing to the rise in emerging infectious diseases, which are significantly correlated with socioeconomic, environmental and ecological factors1. Studies have shown that infectious disease risk is modified by changes to biodiversity2-6, climate change7-11, chemical pollution12-14, landscape transformations15-20 and species introductions21. However, it remains unclear which global change drivers most increase disease and under what contexts. Here we amassed a dataset from the literature that contains 2,938 observations of infectious disease responses to global change drivers across 1,497 host-parasite combinations, including plant, animal and human hosts. We found that biodiversity loss, chemical pollution, climate change and introduced species are associated with increases in disease-related end points or harm, whereas urbanization is associated with decreases in disease end points. Natural biodiversity gradients, deforestation and forest fragmentation are comparatively unimportant or idiosyncratic as drivers of disease. Overall, these results are consistent across human and non-human diseases. Nevertheless, context-dependent effects of the global change drivers on disease were found to be common. The findings uncovered by this meta-analysis should help target disease management and surveillance efforts towards global change drivers that increase disease. Specifically, reducing greenhouse gas emissions, managing ecosystem health, and preventing biological invasions and biodiversity loss could help to reduce the burden of plant, animal and human diseases, especially when coupled with improvements to social and economic determinants of health.
Assuntos
Biodiversidade , Mudança Climática , Doenças Transmissíveis , Poluição Ambiental , Espécies Introduzidas , Animais , Humanos , Efeitos Antropogênicos , Mudança Climática/estatística & dados numéricos , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/etiologia , Conservação dos Recursos Naturais/tendências , Conjuntos de Dados como Assunto , Poluição Ambiental/efeitos adversos , Agricultura Florestal , Florestas , Espécies Introduzidas/estatística & dados numéricos , Doenças das Plantas/etiologia , Medição de Risco , UrbanizaçãoRESUMO
Methane is an important greenhouse gas1, but the role of trees in the methane budget remains uncertain2. Although it has been shown that wetland and some upland trees can emit soil-derived methane at the stem base3,4, it has also been suggested that upland trees can serve as a net sink for atmospheric methane5,6. Here we examine in situ woody surface methane exchange of upland tropical, temperate and boreal forest trees. We find that methane uptake on woody surfaces, in particular at and above about 2 m above the forest floor, can dominate the net ecosystem contribution of trees, resulting in a net tree methane sink. Stable carbon isotope measurement of methane in woody surface chamber air and process-level investigations on extracted wood cores are consistent with methanotrophy, suggesting a microbially mediated drawdown of methane on and in tree woody surfaces and tissues. By applying terrestrial laser scanning-derived allometry to quantify global forest tree woody surface area, a preliminary first estimate suggests that trees may contribute 24.6-49.9 Tg of atmospheric methane uptake globally. Our findings indicate that the climate benefits of tropical and temperate forest protection and reforestation may be greater than previously assumed.
Assuntos
Atmosfera , Florestas , Metano , Árvores , Madeira , Atmosfera/química , Metano/metabolismo , Metano/análise , Taiga , Árvores/química , Árvores/metabolismo , Árvores/microbiologia , Clima Tropical , Madeira/química , Madeira/metabolismo , Madeira/microbiologia , Gases de Efeito Estufa/análise , Gases de Efeito Estufa/metabolismo , Isótopos de Carbono , Agricultura Florestal , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricosRESUMO
After agriculture, wood harvest is the human activity that has most reduced the storage of carbon in vegetation and soils1,2. Although felled wood releases carbon to the atmosphere in various steps, the fact that growing trees absorb carbon has led to different carbon-accounting approaches for wood use, producing widely varying estimates of carbon costs. Many approaches give the impression of low, zero or even negative greenhouse gas emissions from wood harvests because, in different ways, they offset carbon losses from new harvests with carbon sequestration from growth of broad forest areas3,4. Attributing this sequestration to new harvests is inappropriate because this other forest growth would occur regardless of new harvests and typically results from agricultural abandonment, recovery from previous harvests and climate change itself. Nevertheless some papers count gross emissions annually, which assigns no value to the capacity of newly harvested forests to regrow and approach the carbon stocks of unharvested forests. Here we present results of a new model that uses time discounting to estimate the present and future carbon costs of global wood harvests under different scenarios. We find that forest harvests between 2010 and 2050 will probably have annualized carbon costs of 3.5-4.2 Gt CO2e yr-1, which approach common estimates of annual emissions from land-use change due to agricultural expansion. Our study suggests an underappreciated option to address climate change by reducing these costs.
Assuntos
Sequestro de Carbono , Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Árvores , Madeira , Carbono/metabolismo , Conservação dos Recursos Naturais/economia , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Agricultura Florestal/economia , Agricultura Florestal/métodos , Agricultura Florestal/tendências , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Madeira/economia , Madeira/metabolismo , Desenvolvimento Sustentável/tendências , Mudança Climática , Agricultura/tendênciasRESUMO
Tropical forests play a critical role in the hydrological cycle and can influence local and regional precipitation1. Previous work has assessed the impacts of tropical deforestation on precipitation, but these efforts have been largely limited to case studies2. A wider analysis of interactions between deforestation and precipitation-and especially how any such interactions might vary across spatial scales-is lacking. Here we show reduced precipitation over deforested regions across the tropics. Our results arise from a pan-tropical assessment of the impacts of 2003-2017 forest loss on precipitation using satellite, station-based and reanalysis datasets. The effect of deforestation on precipitation increased at larger scales, with satellite datasets showing that forest loss caused robust reductions in precipitation at scales greater than 50 km. The greatest declines in precipitation occurred at 200 km, the largest scale we explored, for which 1 percentage point of forest loss reduced precipitation by 0.25 ± 0.1 mm per month. Reanalysis and station-based products disagree on the direction of precipitation responses to forest loss, which we attribute to sparse in situ tropical measurements. We estimate that future deforestation in the Congo will reduce local precipitation by 8-10% in 2100. Our findings provide a compelling argument for tropical forest conservation to support regional climate resilience.
Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Chuva , Árvores , Clima Tropical , Congo , Conservação dos Recursos Naturais/tendências , Ciclo HidrológicoRESUMO
The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Objetivos , Clima Tropical , Nações Unidas , Animais , Conservação dos Recursos Naturais/legislação & jurisprudência , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Mamíferos , Agricultura Florestal/legislação & jurisprudência , Agricultura Florestal/métodos , Agricultura Florestal/tendênciasRESUMO
The globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging1-3. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area4, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa5,6. On the basis of satellite data products4,7, our analysis encompasses the heterogeneous spatial and temporal patterns of growth in degraded and secondary forests, influenced by key environmental and anthropogenic drivers. In the first 20 years of recovery, regrowth rates in Borneo were up to 45% and 58% higher than in Central Africa and the Amazon, respectively. This is due to variables such as temperature, water deficit and disturbance regimes. We find that regrowing degraded and secondary forests accumulated 107 Tg C year-1 (90-130 Tg C year-1) between 1984 and 2018, counterbalancing 26% (21-34%) of carbon emissions from humid tropical forest loss during the same period. Protecting old-growth forests is therefore a priority. Furthermore, we estimate that conserving recovering degraded and secondary forests can have a feasible future carbon sink potential of 53 Tg C year-1 (44-62 Tg C year-1) across the main tropical regions studied.
Assuntos
Sequestro de Carbono , Carbono , Conservação dos Recursos Naturais , Florestas , Umidade , Árvores , Clima Tropical , Carbono/metabolismo , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/estatística & dados numéricos , Conservação dos Recursos Naturais/tendências , Árvores/metabolismo , Agricultura Florestal/estatística & dados numéricos , Imagens de Satélites , Temperatura , Floresta Úmida , Bornéu , África Central , BrasilRESUMO
Ongoing deforestation poses a major threat to biodiversity1,2. With limited resources and imminent threats, deciding when as well as where to conserve is a fundamental question. Here we use a dynamic optimization approach to identify an optimal sequence for the conservation of plant species in 458 forested ecoregions globally over the next 50 years. The optimization approach includes species richness in each forested ecoregion, complementarity of species across ecoregions, costs of conservation that rise with cumulative protection in an ecoregion, the existing degree of protection, the rate of deforestation and the potential for reforestation in each ecoregion. The optimal conservation strategy for this formulation initially targets a small number of ecoregions where further deforestation leads to large reductions in species and where the costs of conservation are low. In later years, conservation efforts spread to more ecoregions, and invest in both expanded protection of primary forest and reforestation. The largest gains in species conservation come in Melanesia, South and Southeast Asia, the Anatolian peninsula, northern South America and Central America. The results highlight the potentially large gains in conservation that can be made with carefully targeted investments.
Assuntos
Conservação dos Recursos Naturais , Agricultura Florestal , Florestas , Biodiversidade , América Central , Conservação dos Recursos Naturais/métodos , Agricultura Florestal/métodos , América do Sul , Fatores de Tempo , Árvores/classificação , Árvores/crescimento & desenvolvimentoRESUMO
Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.
Assuntos
Aves , Metabolismo Energético , Cadeia Alimentar , Agricultura Florestal , Florestas , Mamíferos , Clima Tropical , Animais , Biodiversidade , Biomassa , Aves/fisiologia , Bornéu , Mamíferos/fisiologia , Óleo de Palmeira , Árvores/crescimento & desenvolvimento , EcologiaRESUMO
Forest ecosystems depend on their capacity to withstand and recover from natural and anthropogenic perturbations (that is, their resilience)1. Experimental evidence of sudden increases in tree mortality is raising concerns about variation in forest resilience2, yet little is known about how it is evolving in response to climate change. Here we integrate satellite-based vegetation indices with machine learning to show how forest resilience, quantified in terms of critical slowing down indicators3-5, has changed during the period 2000-2020. We show that tropical, arid and temperate forests are experiencing a significant decline in resilience, probably related to increased water limitations and climate variability. By contrast, boreal forests show divergent local patterns with an average increasing trend in resilience, probably benefiting from warming and CO2 fertilization, which may outweigh the adverse effects of climate change. These patterns emerge consistently in both managed and intact forests, corroborating the existence of common large-scale climate drivers. Reductions in resilience are statistically linked to abrupt declines in forest primary productivity, occurring in response to slow drifting towards a critical resilience threshold. Approximately 23% of intact undisturbed forests, corresponding to 3.32 Pg C of gross primary productivity, have already reached a critical threshold and are experiencing a further degradation in resilience. Together, these signals reveal a widespread decline in the capacity of forests to withstand perturbation that should be accounted for in the design of land-based mitigation and adaptation plans.
Assuntos
Aclimatação , Mudança Climática , Florestas , Modelos Biológicos , Árvores , Dióxido de Carbono/metabolismo , Mudança Climática/história , Mudança Climática/estatística & dados numéricos , Agricultura Florestal , História do Século XXI , Aprendizado de Máquina , Imagens de Satélites , Taiga , Temperatura , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Água/análise , Água/metabolismoRESUMO
Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.
Assuntos
Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Secas , Agricultura Florestal/legislação & jurisprudência , Floresta Úmida , Incêndios Florestais/estatística & dados numéricos , Animais , Brasil , Mudança Climática/estatística & dados numéricos , Florestas , Mapeamento Geográfico , Plantas , Árvores/fisiologia , VertebradosRESUMO
Forests provide a series of ecosystem services that are crucial to our society. In the European Union (EU), forests account for approximately 38% of the total land surface1. These forests are important carbon sinks, and their conservation efforts are vital for the EU's vision of achieving climate neutrality by 20502. However, the increasing demand for forest services and products, driven by the bioeconomy, poses challenges for sustainable forest management. Here we use fine-scale satellite data to observe an increase in the harvested forest area (49 per cent) and an increase in biomass loss (69 per cent) over Europe for the period of 2016-2018 relative to 2011-2015, with large losses occurring on the Iberian Peninsula and in the Nordic and Baltic countries. Satellite imagery further reveals that the average patch size of harvested area increased by 34 per cent across Europe, with potential effects on biodiversity, soil erosion and water regulation. The increase in the rate of forest harvest is the result of the recent expansion of wood markets, as suggested by econometric indicators on forestry, wood-based bioenergy and international trade. If such a high rate of forest harvest continues, the post-2020 EU vision of forest-based climate mitigation may be hampered, and the additional carbon losses from forests would require extra emission reductions in other sectors in order to reach climate neutrality by 20503.
Assuntos
Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Florestas , Biodiversidade , Biomassa , Sequestro de Carbono , Monitoramento Ambiental , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Europa (Continente) , União Europeia/economia , Agricultura Florestal/economia , Agricultura Florestal/legislação & jurisprudência , Aquecimento Global/prevenção & controle , História do Século XXI , Imagens de Satélites , Madeira/economiaRESUMO
To constrain global warming, we must strongly curtail greenhouse gas emissions and capture excess atmospheric carbon dioxide1,2. Regrowing natural forests is a prominent strategy for capturing additional carbon3, but accurate assessments of its potential are limited by uncertainty and variability in carbon accumulation rates2,3. To assess why and where rates differ, here we compile 13,112 georeferenced measurements of carbon accumulation. Climatic factors explain variation in rates better than land-use history, so we combine the field measurements with 66 environmental covariate layers to create a global, one-kilometre-resolution map of potential aboveground carbon accumulation rates for the first 30 years of natural forest regrowth. This map shows over 100-fold variation in rates across the globe, and indicates that default rates from the Intergovernmental Panel on Climate Change (IPCC)4,5 may underestimate aboveground carbon accumulation rates by 32 per cent on average and do not capture eight-fold variation within ecozones. Conversely, we conclude that maximum climate mitigation potential from natural forest regrowth is 11 per cent lower than previously reported3 owing to the use of overly high rates for the location of potential new forest. Although our data compilation includes more studies and sites than previous efforts, our results depend on data availability, which is concentrated in ten countries, and data quality, which varies across studies. However, the plots cover most of the environmental conditions across the areas for which we predicted carbon accumulation rates (except for northern Africa and northeast Asia). We therefore provide a robust and globally consistent tool for assessing natural forest regrowth as a climate mitigation strategy.
Assuntos
Sequestro de Carbono , Carbono/metabolismo , Agricultura Florestal/estatística & dados numéricos , Agricultura Florestal/tendências , Florestas , Mapeamento Geográfico , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Conservação dos Recursos Naturais , Coleta de Dados , Recuperação e Remediação Ambiental , Aquecimento Global/prevenção & controle , Internacionalidade , CinéticaRESUMO
Agricultural practices constitute both the greatest cause of biodiversity loss and the greatest opportunity for conservation1,2, given the shrinking scope of protected areas in many regions. Recent studies have documented the high levels of biodiversity-across many taxa and biomes-that agricultural landscapes can support over the short term1,3,4. However, little is known about the long-term effects of alternative agricultural practices on ecological communities4,5 Here we document changes in bird communities in intensive-agriculture, diversified-agriculture and natural-forest habitats in 4 regions of Costa Rica over a period of 18 years. Long-term directional shifts in bird communities were evident in intensive- and diversified-agricultural habitats, but were strongest in intensive-agricultural habitats, where the number of endemic and International Union for Conservation of Nature (IUCN) Red List species fell over time. All major guilds, including those involved in pest control, pollination and seed dispersal, were affected. Bird communities in intensive-agricultural habitats proved more susceptible to changes in climate, with hotter and drier periods associated with greater changes in community composition in these settings. These findings demonstrate that diversified agriculture can help to alleviate the long-term loss of biodiversity outside natural protected areas1.