Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 137: 155307, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33011402

RESUMO

Physiological parturition is characterized by sterile, inflammatory-like processes. During parturition, the placenta expresses various proinflammatory mediators, such as chemokines and IL-17. Nevertheless, inflammatory processes present in the parturient mare are poorly characterized. The aim of this study was to investigate the expression of selected chemokines and IL-17 in the allantochorion and the endometrium of mares that retained fetal membranes (RFM) and expelled them physiologically. We hypothesized that the expression of these mediators may be altered in the placenta of mares with RFM and result in RFM occurrence. Differences in mRNA expression in the placenta of investigated groups of mares were detected for CCL2, CCL3, CCL4, CCL8, CXCL1, CXCL8, CXCL10, CX3CL1 and IL-17. There were no differences in mRNA expression of CCL5 and CXCL6. Gene ontology network analysis showed enrichment in genes related to leukocyte migration, cell chemotaxis and response to chemokine in tissues of RFM mares. Analysis of association network suggested denotations between CXCL6, CXCL8, CXCL1, CCL5, CCL4, CX3CL1 and CXCL10. Moreover, possible inhibition of CXCL10 by IL-17A and prostaglandin peroxide synthase 2 (PTGS2) by CXCL1 was detected. Our results suggest that, based on differences in chemokines and IL-17 expression, recruited subsets of leukocytes might differ between the analyzed groups of mares, which in turn may impair the separation of fetal membranes in the group of RFM mares. In addition, the results of the expression analysis suggest that macrophages might be one of the most abundant cells infiltrating the equine placenta during the expulsion of fetal membranes. Furthermore, we suspect that the synthesis of PTGS2 might be inhibited in mares with RFM.


Assuntos
Quimiocinas/genética , Membranas Extraembrionárias/metabolismo , Perfilação da Expressão Gênica/métodos , Mediadores da Inflamação/metabolismo , Interleucina-17/genética , Placenta/metabolismo , Alantoide/metabolismo , Animais , Quimiocinas/metabolismo , Córion/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Endométrio/metabolismo , Feminino , Cavalos , Interleucina-17/metabolismo , Gravidez
2.
Dev Biol ; 444(1): 20-32, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236446

RESUMO

TMED2, a member of the transmembrane emp24 domain (TMED) family, is required for transport of cargo proteins between the ER and Golgi. TMED2 is also important for normal morphogenesis of mouse embryos and their associated placenta, and in fact Tmed2 homozygous mutant embryos arrest at mid-gestation due to a failure of placental labyrinth layer formation. Differentiation of the placental labyrinth layer depends on chorioallantoic attachment (contact between the chorion and allantois), and branching morphogenesis (mingling of cells from these two tissues). Since Tmed2 mRNA was found in both the chorion and allantois, and 50% of Tmed2 homozygous mutant embryos failed to undergo chorioallantoic attachment, the tissue-specific requirement of Tmed2 during placental labyrinth layer formation remained a mystery. Herein, we report differential localization of TMED2 protein in the chorion and allantois, abnormal ER retention of Fibronectin in Tmed2 homozygous mutant allantoises and cell-autonomous requirement for Tmed2 in the chorion for chorioallantoic attachment and fusion. Using an ex vivo model of explanted chorions and allantoises, we showed that chorioallantoic attachment failed to occur in 50% of samples when homozygous mutant chorions were recombined with wild type allantoises. Furthermore, though expression of genes associated with trophoblast differentiation was maintained in Tmed2 mutant chorions with chorioallantoic attachment, expression of these genes was attenuated. In addition, Tmed2 homozygous mutant allantoises could undergo branching morphogenesis, however the region of mixing between mutant and wild type cells was reduced, and expression of genes associated with trophoblast differentiation was also attenuated. Our data also suggest that Fibronectin is a cargo protein of TMED2 and indicates that Tmed2 is required cell-autonomously and non-autonomously in the chorion and the allantois for placental labyrinth layer formation.


Assuntos
Alantoide/metabolismo , Córion/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Diferenciação Celular/fisiologia , Retículo Endoplasmático/metabolismo , Feminino , Fibronectinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/fisiologia , Placenta/metabolismo , Gravidez , Ratos , Trofoblastos
3.
Reprod Domest Anim ; 54(12): 1507-1515, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31465588

RESUMO

The objective of this study was to describe the dynamic changes in protein composition and protein abundance in amniotic and allantoic fluids from buffaloes during gestation. Amniotic and allantoic fluids were collected during the first, second and third trimesters of gestation. The foetuses were measured and weighed. Fluid samples were centrifuged at 800 g for 10 min and then at 10,000 g for 60 min at 4°C. The supernatant was collected to determine the total protein concentration. Based on total protein concentration, an aliquot (50 µg) was used for in-solution tryptic digestion, and mass spectrometry analysis (nano-LC-MS/MS) was performed. A multivariate statistical analysis of the proteomic data was conducted. Across the different stages of buffalo gestation, fifty-one proteins were found in the amniotic fluid, and twenty-one were found in the allantoic fluid. A total of twelve proteins were common among the stages, and four presented significant differences (VIP score α > 1). Fibronectin and alpha-1-antiproteinase were more abundant in the amniotic fluid than in the allantoic fluid. Alpha-2-macroglobulin and alpha-2-HS-glycoprotein were more abundant in the allantoic fluid than in the amniotic fluid. Alpha-2-macroglobulin participates in remodelling and growth of the uterus at beginning of the gestation (first trimester), and these findings indicate that can serve as a potential tool for the early diagnosis of pregnancy in buffaloes.


Assuntos
Alantoide/metabolismo , Líquido Amniótico/metabolismo , Líquidos Corporais/metabolismo , Desenvolvimento Fetal , Proteoma/metabolismo , Animais , Búfalos , Cromatografia Líquida , Feminino , Análise Multivariada , Gravidez , Espectrometria de Massas em Tandem
4.
Dev Biol ; 425(2): 208-222, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389228

RESUMO

How the fetal-placental arterial connection is made and positioned relative to the embryonic body axis, thereby ensuring efficient and directed blood flow to and from the mother during gestation, is not known. Here we use a combination of genetics, timed pharmacological inhibition in living mouse embryos, and three-dimensional modeling to link two novel architectural features that, at present, have no status in embryological atlases. The allantoic core domain (ACD) is the extraembryonic extension of the primitive streak into the allantois, or pre-umbilical tissue; the vessel of confluence (VOC), situated adjacent to the ACD, is an extraembryonic vessel that marks the site of fetal-placental arterial union. We show that genesis of the fetal-placental connection involves the ACD and VOC in a series of steps, each one dependent upon the last. In the first, Brachyury (T) ensures adequate extension of the primitive streak into the allantois, which in turn designates the allantoic-yolk sac junction. Next, the streak-derived ACD organizes allantoic angioblasts to the axial junction; upon signaling from Fibroblast Growth Factor Receptor-1 (FGFR1), these endothelialize and branch, forming a sprouting VOC that unites the umbilical and omphalomesenteric arteries with the fetal dorsal aortae. Arterial union is followed by the appearance of the medial umbilical roots within the VOC, which in turn designate the correct axial placement of the lateral umbilical roots/common iliac arteries. In addition, we show that the ACD and VOC are conserved across Placentalia, including humans, underscoring their fundamental importance in mammalian biology. We conclude that T is required for correct axial positioning of the VOC via the primitive streak/ACD, while FGFR1, through its role in endothelialization and branching, further patterns it. Together, these genetic, molecular and structural elements safeguard the fetus against adverse outcomes that can result from vascular mispatterning of the fetal-placental arterial connection.


Assuntos
Artérias/embriologia , Proteínas Fetais/metabolismo , Feto/embriologia , Gástrula/irrigação sanguínea , Gástrula/metabolismo , Morfogênese , Placenta/embriologia , Proteínas com Domínio T/metabolismo , Alantoide/embriologia , Alantoide/metabolismo , Animais , Artérias/metabolismo , Endotélio Vascular/metabolismo , Feminino , Feto/metabolismo , Gástrula/embriologia , Camundongos , Modelos Biológicos , Placenta/metabolismo , Gravidez , Linha Primitiva/embriologia , Linha Primitiva/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Artérias Umbilicais/embriologia , Artérias Umbilicais/metabolismo , Remodelação Vascular , Saco Vitelino/metabolismo
5.
Dev Biol ; 425(1): 44-57, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28322735

RESUMO

The allantois-derived umbilical component of the chorio-allantoic placenta shuttles fetal blood to and from the chorion, thereby ensuring fetal-maternal exchange. The progenitor populations that establish and supply the fetal-umbilical interface lie, in part, within the base of the allantois, where the germ line is claimed to segregate from the soma. Results of recent studies in the mouse have reported that STELLA (DPPA-3, PGC7) co-localizes with PRDM1 (BLIMP1), the bimolecular signature of putative primordial germ cells (PGCs) throughout the fetal-placental interface. Thus, if PGCs form extragonadally within the posterior region of the mammal, they cannot be distinguished from the soma on the basis of these proteins. We used immunohistochemistry, immunofluorescence, and confocal microscopy of the mouse gastrula to co-localize STELLA with a variety of gene products, including pluripotency factor OCT-3/4, mesendoderm-associated T and MIXl1, mesendoderm- and endoderm-associated FOXa2 and hematopoietic factor Runx1. While a subpopulation of cells localizing OCT-3/4 was always found independently of STELLA, STELLA always co-localized with OCT-3/4. Despite previous reports that T is involved in specification of the germ line, co-localization of STELLA and T was detected only in a small subset of cells in the base of the allantois. Slightly later in the hindgut lip, STELLA+/(OCT-3/4+) co-localized with FOXa2, as well as with RUNX1, indicative of definitive endoderm and hemangioblasts, respectively. STELLA was never found with MIXl1. On the basis of these and previous results, we conclude that STELLA identifies at least five distinct cell subpopulations within the allantois and hindgut, where they may be involved in mesendodermal differentiation and hematopoiesis at the posterior embryonic-extraembryonic interface. These data provide a new point of departure for understanding STELLA's potential roles in building the fetal-placental connection.


Assuntos
Embrião de Mamíferos/metabolismo , Endoderma/metabolismo , Gástrula/metabolismo , Proteínas Repressoras/metabolismo , Alantoide/citologia , Alantoide/embriologia , Alantoide/metabolismo , Animais , Proteínas Cromossômicas não Histona , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Endoderma/citologia , Endoderma/embriologia , Feminino , Proteínas Fetais/metabolismo , Feto/embriologia , Feto/metabolismo , Gástrula/embriologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Camundongos , Microscopia Confocal , Fator 3 de Transcrição de Octâmero/metabolismo , Placenta/embriologia , Placenta/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Gravidez , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo
6.
Morfologiia ; 150(4): 76-9, 2016.
Artigo em Russo | MEDLINE | ID: mdl-30136930

RESUMO

The aim of the study was an analysis of the peculiarities of morphological changes of the placenta in rats with experimental chronic hepatic lesion. Liver injury was modeled in 3-month-old sexually mature female rats by 2-fold intragastric administration of paracetamol at a dose of 2.5 g/kg body weight (drug group, n=15) and a single intraperitoneal injection of D-galactosamine at a dose of 250 mg/kg of body weight (toxic group, n=15). Intact rats served as a control. The placenta examined at Day 21 of pregnancy using histological and morphometric methods. Рroliferative activity of placental cells was evaluated with the immunocytochemical method using antibodies against Ki-67 antigen. The membrane permeability in different trophoblast compartments was examined. It was found that experimental chronic liver pathology caused morphological changes in the placenta, which were manifested by a decrease in the area of its labyrinthine portion, maternal sinusoids in the basal area, fetal capillaries and maternal lacunae of the labyrinth. In addition, in the experiments with an intraperitoneal injection of trypan blue it was shown that changes in the liver caused increased permeability of the placental barrier, and reduced the proliferative activity of trophoblast cells.


Assuntos
Acetaminofen/efeitos adversos , Alantoide , Doença Hepática Induzida por Substâncias e Drogas , Complicações na Gravidez , Trofoblastos , Acetaminofen/farmacologia , Alantoide/metabolismo , Alantoide/patologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Feminino , Gravidez , Complicações na Gravidez/induzido quimicamente , Complicações na Gravidez/metabolismo , Complicações na Gravidez/patologia , Ratos , Ratos Wistar , Trofoblastos/metabolismo , Trofoblastos/patologia
7.
Genesis ; 52(7): 657-70, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24740971

RESUMO

Epidermal growth factor-like domain 7 (Egfl7) expression in the developing embryo is largely restricted to sites of mesodermal progenitors of angioblasts/hemangioblasts and the vascular endothelium. We hypothesize that Egfl7 marks the endothelial lineage during embryonic development, and can be used to define the emergence of endothelial progenitor cells, as well as to visualize newly-forming vasculature in the embryo and during the processes of physiologic and pathologic angiogenesis in the adult. We have generated a transgenic mouse strain that expresses enhanced green fluorescent protein (eGFP) under the control of a minimal Egfl7 regulatory sequence (Egfl7:eGFP). Expression of the transgene recapitulated that of endogenous Egfl7 at sites of vasculogenesis and angiogenesis in the allantois, yolk sac, and in the embryo proper. The transgene was not expressed in the quiescent endothelium of most adult organs. However, the uterus and ovary, which undergo vascular growth and remodeling throughout the estrus cycle, expressed high levels of Egfl7:eGFP. Importantly, expression of the Egfl7:eGFP transgene was induced in adult neovasculature. We also found that increased Egfl7 expression contributed to pathologic revascularization in the mouse retina. To our knowledge, this is the first mouse model that enables monitoring of endothelial cells at sites of active vasculogenesis and angiogenesis. This model also facilitated the isolation and characterization of EGFL7(+) endothelial cell populations by fluorescence activated cell sorting (FACS). Together, our results demonstrate that the Egfl7:eGFP reporter mouse is a valuable tool that can be used to elucidate the mechanisms by which blood vessels form during development and under pathologic circumstances.


Assuntos
Linhagem da Célula , Células Progenitoras Endoteliais/metabolismo , Neovascularização Fisiológica , Proteínas/genética , Alantoide/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF , Células Progenitoras Endoteliais/citologia , Feminino , Camundongos , Neovascularização Patológica , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Proteínas/metabolismo , Vasos Retinianos/metabolismo , Retinopatia da Prematuridade/metabolismo , Útero/crescimento & desenvolvimento , Útero/metabolismo , Saco Vitelino/metabolismo
8.
Blood ; 120(13): 2562-72, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22855605

RESUMO

The allantois is the embryonic precursor of the umbilical cord in mammals and is one of several embryonic regions, including the yolk sac and dorsal aorta, that undergoes vasculogenesis, the de novo formation of blood vessels. Despite its importance in establishing the chorioallantoic placenta and umbilical circulation, the allantois frequently is overlooked in embryologic studies. Nonetheless, recent studies demonstrate that vasculogenesis, vascular remodeling, and angiogenesis are essential allantois functions in the establishment of the chorioallantoic placenta. Here, we review blood vessel formation in the murine allantois, highlighting the expression of genes and involvement of pathways common to vasculogenesis or angiogenesis in other parts of the embryo. We discuss experimental techniques available for manipulation of the allantois that are unavailable for yolk sac or dorsal aorta, and review how this system has been used as a model system to discover new genes and mechanisms involved in vessel formation. Finally, we discuss the potential of the allantois as a model system to provide insights into disease and therapeutics.


Assuntos
Alantoide/irrigação sanguínea , Alantoide/embriologia , Vasos Sanguíneos/crescimento & desenvolvimento , Modelos Animais , Neovascularização Fisiológica , Alantoide/metabolismo , Animais , Camundongos
9.
Amino Acids ; 46(2): 375-84, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24337831

RESUMO

Embryonic loss is a major problem in mammals, but there are few effective ways to prevent it. Using a porcine model, we determined effects of dietary L-arginine supplementation between days 14 and 25 of gestation on embryonic growth and survival. Gilts were checked daily for estrus with boars in the morning and bred at onset of the second estrus and 12 h later (the time of breeding = day 0 of gestation). Between days 14 and 25 of gestation, 15 gilts/treatment were housed individually and fed twice daily 1 kg of a corn- and soybean meal-based diet supplemented with 0.0, 0.4, or 0.8 % L-arginine. All diets were made isonitrogenous by addition of L-alanine. On day 25 of gestation, gilts were hysterectomized to obtain conceptuses. Compared with controls, dietary supplementation with 0.4 or 0.8 % L-arginine increased (P ≤ 0.05) arginine concentrations in maternal plasma, total volume of amniotic fluid; total amounts of arginine in allantoic and amniotic fluids; total amounts of fructose and most amino acids in amniotic fluid; placental growth; and the number of viable fetuses per litter by 2. The numbers of total fetuses, fetal weight, corpora lutea, volume of allantoic fluid, maternal circulating levels of progesterone and estrogen, or total amounts of hormones in allantoic fluid did not differ among the three treatment groups. Reproductive performance of gilts did not differ between the 0.4 and 0.8 % L-arginine groups. Thus, dietary supplementation with 0.4 or 0.8 % L-arginine between days 14 and 25 of gestation enhances embryonic/fetal survival in swine.


Assuntos
Arginina/administração & dosagem , Suplementos Nutricionais , Desenvolvimento Embrionário/efeitos dos fármacos , Alantoide/metabolismo , Aminoácidos/sangue , Líquido Amniótico/metabolismo , Animais , Arginina/farmacocinética , Feminino , Hormônios Esteroides Gonadais/sangue , Placenta/metabolismo , Gravidez , Sus scrofa , Artéria Uterina/metabolismo
10.
Vet Med Sci ; 10(3): e1452, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38654677

RESUMO

BACKGROUND AND OBJECTIVES: This study aimed to evaluate the volume, the concentration of steroid hormones, and biochemical composition of the foetal fluids at different gestational ages in dogs and cats. METHODS: Following the ovariohysterectomy, the allantoic and amniotic fluid samples were collected from pregnant bitches and queens and were assigned to different groups according to their gestational age. RESULTS: The canine and feline allantoic fluid volume increased during pregnancy, reached its maximum values on days 40-49 and then decreased. The canine and feline amniotic fluid volume increased steadily by the last days of pregnancy. In spite of significant changes of sex hormones in the foetal fluids, their concentration and ratios were not significantly different between male and female fetuses. The canine amniotic cortisol concentration increased until days 40-49 and decreased significantly afterwards. The maximum cortisol concentrations in the feline allantoic and amniotic fluids were observed on days 50-60 and 40-49, respectively. During the canine pregnancy, the concentrations of calcium, phosphorus, chloride, sodium, triglyceride, cholesterol, total protein, albumin and the activities of aminotransferase (AST), alkaline phosphatase (ALP), amylase and gamma-glutamyl transferase (GGT) in the amniotic fluid were higher than the allantoic fluid. The magnesium, potassium, lactate dehydrogenase (LDH) activity, creatine and lipase were higher in the allantoic fluid. In the feline allantoic fluid, potassium, magnesium, phosphorus, creatinine, albumin and glucose concentrations and the activities of creatine kinase (CK), GGT, LDH and lipase were higher. The ALP, AST activities, sodium and calcium concentrations were higher in the amniotic fluid (p < 0.05). CONCLUSION: Volume of foetal fluids was determined in dogs and cats. Concentration of sex hormones did not different between male and female fetuses.


Assuntos
Líquido Amniótico , Animais , Gatos/fisiologia , Cães/fisiologia , Feminino , Gravidez , Líquido Amniótico/química , Líquido Amniótico/metabolismo , Masculino , Prenhez/fisiologia , Prenhez/metabolismo , Idade Gestacional , Hidrocortisona/análise , Alantoide/metabolismo
11.
Adv Sci (Weinh) ; 11(32): e2400238, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38923264

RESUMO

The placenta links feto-maternal circulation for exchanges of nutrients, gases, and metabolic wastes between the fetus and mother, being essential for pregnancy process and maintenance. The allantois and mesodermal components of amnion, chorion, and yolk sac are derived from extraembryonic mesoderm (Ex-Mes), however, the mechanisms contributing to distinct components of the placenta and regulation the interactions between allantois and epithelium during chorioallantoic fusion and labyrinth formation remains unclear. Isl1 is expressed in progenitors of the Ex-Mes and allantois the Isl1 mut mouse line is analyzed to investigate contribution of Isl1+ Ex-Mes / allantoic progenitors to cells of the allantois and placenta. This study shows that Isl1 identifies the Ex-Mes progenitors for endothelial and vascular smooth muscle cells, and most of the mesenchymal cells of the placenta and umbilical cord. Deletion of Isl1 causes defects in allantois growth, chorioallantoic fusion, and placenta vessel morphogenesis. RNA-seq and CUT&Tag analyses revealed that Isl1 promotes allantoic endothelial, inhibits mesenchymal cell differentiation, and allantoic signals regulated by Isl1 mediating the inductive interactions between the allantois and chorion critical for chorionic epithelium differentiation, villous formation, and labyrinth angiogenesis. This study above reveals that Isl1 plays roles in regulating multiple genetic and epigenetic pathways of vascular morphogenesis, provides the insight into the mechanisms for placental formation, highlighting the necessity of Isl1 for placenta formation/pregnant maintenance.


Assuntos
Alantoide , Proteínas com Homeodomínio LIM , Mesoderma , Placenta , Fatores de Transcrição , Animais , Gravidez , Camundongos , Feminino , Proteínas com Homeodomínio LIM/metabolismo , Proteínas com Homeodomínio LIM/genética , Alantoide/metabolismo , Placenta/metabolismo , Placenta/irrigação sanguínea , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Mesoderma/metabolismo , Mesoderma/embriologia , Morfogênese/genética , Morfogênese/fisiologia , Placentação/genética , Placentação/fisiologia
12.
Dev Biol ; 371(2): 227-34, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22960234

RESUMO

Cdx gene products regulate the extent of axial elongation from the posterior growth zone. These transcription factors sustain the emergence of trunk and tail tissues by providing a suitable niche in the axial progenitor zone, via regulation of Wnt signaling. Cdx genes are expressed in and along the complete primitive streak including its posterior part wherefrom the extraembryonic mesoderm of the allantois emerges. Cdx genes are required for the full development of the allantois and its derivatives in the placental labyrinth. The mouse germ cell lineage also originates from the proximo-posterior epiblast of the primitive streak, and is established within the extraembryonic mesoderm that generates the allantois. We asked whether the expression of Cdx genes around the newly specified PGCs is necessary for the maintenance and expansion of this population, as it is for the allantois and axial progenitors. We observed a significantly lower number of PGCs in Cdx2(null) embryos than in controls. We found that Wnt3a loss of function decreases the PGC population to the same extent as Cdx2 inactivation. Moreover, exogenous Wnt3a corrects the lower PGC number in Cdx2(null) posterior embryonic tissues cultured in vitro. Cdx2 is not expressed in PGCs themselves, and we propose that the expression of Cdx2 in posterior extraembryonic tissues contributes to the proper niche of the germ cell progenitors by stimulating canonical Wnt signaling. Since PGC residence within the posterior growth zone is a mouse-specific feature, our data suggest that mouse PGCs opportunistically became dependent on the axial progenitor niche.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/citologia , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Alantoide/citologia , Alantoide/embriologia , Alantoide/metabolismo , Animais , Fator de Transcrição CDX2 , Embrião de Mamíferos/citologia , Células Germinativas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Camundongos Knockout , Fatores de Transcrição/metabolismo
13.
Dev Biol ; 363(1): 201-18, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22019303

RESUMO

The developmental relationship between the posterior embryonic and extraembryonic regions of the mammalian gastrula is poorly understood. Although many different cell types are deployed within this region, only the primordial germ cells (PGCs) have been closely studied. Recent evidence has suggested that the allantois, within which the PGCs temporarily take up residence, contains a pool of cells, called the Allantoic Core Domain (ACD), critical for allantoic elongation to the chorion. Here, we have asked whether the STELLA-positive cells found within this region, thought to be specified PGCs, are actually part of the ACD and to what extent they, and other ACD cells, contribute to the allantois and fetal tissues. To address these hypotheses, STELLA was immunolocalized to the mouse gastrula between Early Streak (ES) and 12-somite pair (-s) stages (~6.75-9.0 days post coitum, dpc) in histological sections. STELLA was found in both the nucleus and cytoplasm in a variety of cell types, both within and outside of the putative PGC trajectory. Fate-mapping the headfold-stage (~7.75-8.0 dpc) posterior region, by which time PGCs are thought to be segregated into a distinct lineage, revealed that the STELLA-positive proximal ACD and intraembryonic posterior primitive streak (IPS) contributed to a wide range of somatic tissues that encompassed derivatives of the three primary germ layers. This contribution included STELLA-positive cells localizing to tissues both within and outside of the putative PGC trajectory. Thus, while STELLA may identify a subpopulation of cells destined for the PGC lineage, our findings reveal that it may be part of a broader niche that encompasses the ACD and through which the STELLA population may contribute cells to a wide variety of posterior tissues of the mouse gastrula.


Assuntos
Alantoide/metabolismo , Embrião de Mamíferos/metabolismo , Linha Primitiva/metabolismo , Proteínas Repressoras/metabolismo , Alantoide/citologia , Alantoide/embriologia , Animais , Linhagem da Célula , Núcleo Celular/metabolismo , Proteínas Cromossômicas não Histona , Citoplasma/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Feminino , Gástrula/citologia , Gástrula/embriologia , Gástrula/metabolismo , Células Germinativas/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Gravidez , Linha Primitiva/embriologia , Fatores de Tempo
14.
Dev Growth Differ ; 55(1): 1-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23278669

RESUMO

The chick embryo is as ancient a source of knowledge on animal development as the very beginning of embryology. Already, at the time of Caspar Friedrich Wolff, contemplating the strikingly beautiful scenario of the germ deploying on the yellow background of the yolk inspired and supported the tenants of epigenesis at the expense of the preformation theory. In this article, we shall mention some of the many problems of developmental biology that were successfully clarified by research on chick embryos. Two topics, the development of the neural system and that of blood and blood vessels, familiar to the authors, will be discussed in more detail.


Assuntos
Embrião de Galinha/embriologia , Embrião não Mamífero/irrigação sanguínea , Células-Tronco Hematopoéticas/citologia , Rede Nervosa/embriologia , Alantoide/embriologia , Alantoide/metabolismo , Animais , Evolução Biológica , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem da Célula , Movimento Celular , Biologia do Desenvolvimento/métodos , Embrião não Mamífero/imunologia , Embrião não Mamífero/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Rede Nervosa/irrigação sanguínea , Rede Nervosa/metabolismo , Crista Neural/embriologia , Crista Neural/metabolismo , Especificidade da Espécie , Linfócitos T Reguladores/imunologia , Saco Vitelino/irrigação sanguínea , Saco Vitelino/metabolismo
15.
Mol Reprod Dev ; 80(12): 977-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038527

RESUMO

We determined if somatic cell nuclear transfer (SCNT) cloning is associated with WNT-related gene expression in cattle development, and if the expression of genes in the WNT pathway changes during the peri-implantation period. Extra-embryonic and endometrial tissues were collected at gestation days 18 and 34 (d18, d34). WNT5A, FZD4, FZD5, LRP5, CTNNB1, GNAI2, KDM1A, BCL2L1, and SFRP1 transcripts were localized in extra-embryonic tissue, whereas SFRP1 and DKK1 were localized in the endometrium. There were no differences in the localization of these transcripts in extra-embryonic tissue or endometrium from SCNT or artificial insemination (AI) pregnancies. Expression levels of WNT5A were 11-fold greater in the allantois of SCNT than AI samples. In the trophoblast, expression of WNT5A, FZD5, CTNNB1, and DKK1 increased significantly from d18 to d34, whereas expression of KDM1A and SFRP1 decreased, indicating that implantation is associated with major changes in WNT signaling. SCNT was associated with altered WNT5A expression in trophoblasts, with levels increasing 2.3-fold more in AI than SCNT conceptuses from d18 to d34. In the allantois, expression of WNT5A increased 6.3-fold more in SCNT than AI conceptuses from d18 to d34. Endometrial tissue expression levels of the genes tested did not differ between AI or SCNT pregnancies, although expression of individual genes showed variation across developmental stages. Our results demonstrate that SCNT is associated with altered expression of specific WNT-related genes in extra-embryonic tissue in a time- and tissue-specific manner. The pattern of gene expression in the WNT pathway suggests that noncanonical WNT signal transduction is important for implantation of cattle conceptuses.


Assuntos
Implantação do Embrião/genética , Endométrio/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Técnicas de Transferência Nuclear , Via de Sinalização Wnt/genética , Alantoide/metabolismo , Animais , Blastocisto/fisiologia , Bovinos , Clonagem de Organismos , Endométrio/metabolismo , Feminino , Expressão Gênica , Inseminação Artificial , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas Wnt/biossíntese , Proteínas Wnt/metabolismo
16.
EMBO J ; 27(7): 993-1004, 2008 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-18337748

RESUMO

VE-cadherin is an endothelial-specific transmembrane protein concentrated at cell-to-cell adherens junctions. Besides promoting cell adhesion and controlling vascular permeability, VE-cadherin transfers intracellular signals that contribute to vascular stabilization. However, the molecular mechanism by which VE-cadherin regulates vascular homoeostasis is still poorly understood. Here, we report that VE-cadherin expression and junctional clustering are required for optimal transforming growth factor-beta (TGF-beta) signalling in endothelial cells (ECs). TGF-beta antiproliferative and antimigratory responses are increased in the presence of VE-cadherin. ECs lacking VE-cadherin are less responsive to TGF-beta/ALK1- and TGF-beta/ALK5-induced Smad phosphorylation and target gene transcription. VE-cadherin coimmunoprecipitates with all the components of the TGF-beta receptor complex, TbetaRII, ALK1, ALK5 and endoglin. Clustered VE-cadherin recruits TbetaRII and may promote TGF-beta signalling by enhancing TbetaRII/TbetaRI assembly into an active receptor complex. Taken together, our data indicate that VE-cadherin is a positive and EC-specific regulator of TGF-beta signalling. This suggests that reduction or inactivation of VE-cadherin may contribute to progression of diseases where TGF-beta signalling is impaired.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Receptores de Activinas Tipo II/metabolismo , Alantoide/citologia , Alantoide/efeitos dos fármacos , Alantoide/metabolismo , Animais , Caderinas/deficiência , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Dimerização , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Células Endoteliais/citologia , Humanos , Cinética , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Transcrição Gênica/efeitos dos fármacos
17.
J Cell Sci ; 123(Pt 10): 1684-92, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20406889

RESUMO

Members of the bone morphogenetic protein (BMP) family have been implicated in the development and maintenance of vascular systems. Whereas members of the BMP-2/4 and osteogenic protein-1 groups signal via activin receptor-like kinase (ALK)-2, ALK-3 and ALK-6, BMP-9 and BMP-10 have been reported to bind to ALK-1 in endothelial cells. However, the roles of BMP-9-ALK-1 signaling in the regulation of endothelial cells have not yet been fully elucidated. Here, using various systems, we examined the effects of BMP-9 on the proliferation of endothelial cells. Vascular-tube formation from ex vivo allantoic explants of mouse embryos was promoted by BMP-9. BMP-9, as well as BMP-4 and BMP-6, also induced the proliferation of in-vitro-cultured mouse embryonic-stem-cell-derived endothelial cells (MESECs) by inducing the expression of vascular endothelial growth factor receptor 2 and Tie2, a receptor for angiopoietin-1. A decrease in ALK-1 expression or expression of constitutively active ALK-1 in MESECs abrogated and mimicked the effects of BMP-9 on the proliferation of MESECs, respectively, suggesting that BMP-9 promotes the proliferation of these cells via ALK-1. Furthermore, in vivo angiogenesis was promoted by BMP-9 in a Matrigel plug assay and in a BxPC3 xenograft model of human pancreatic cancer. Consistent with these in vivo findings, BMP-9 enhanced the proliferation of in-vitro-cultured normal endothelial cells from dermal tissues of adult mice and of tumor-associated endothelial cells isolated from tumor xenografts in host mice. These findings suggest that BMP-9 signaling activates the endothelium tested in the present study via ALK-1.


Assuntos
Adenocarcinoma/metabolismo , Vasos Sanguíneos/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Fator 2 de Diferenciação de Crescimento/farmacologia , Neoplasias Pancreáticas/metabolismo , Receptores de Activinas Tipo II/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Alantoide/metabolismo , Animais , Vasos Sanguíneos/embriologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Mamíferos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Transplante de Neoplasias , Neovascularização Fisiológica/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos
18.
Philos Trans R Soc Lond B Biol Sci ; 377(1865): 20210263, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36252211

RESUMO

In amniotic vertebrates (birds, reptiles and mammals), an extraembryonic structure called the chorioallantoic membrane (CAM) functions as respiratory organ for embryonic development. The CAM is derived from fusion between two pre-existing membranes, the allantois, a hindgut diverticulum and a reservoir for metabolic waste, and the chorion which marks the embryo's external boundary. Modified CAM in eutherian mammals, including humans, gives rise to chorioallantoic placenta. Despite its importance, little is known about cellular and molecular mechanisms mediating CAM formation and maturation. In this work, using the avian model, we focused on the early phase of CAM morphogenesis when the allantois and chorion meet and initiate fusion. We report here that chicken chorioallantoic fusion takes place when the allantois reaches the size of 2.5-3.0 mm in diameter and in about 6 hours between E3.75 and E4. Electron microscopy and immunofluorescence analyses suggested that before fusion, in both the allantois and chorion, an epithelial-shaped mesothelial layer is present, which dissolves after fusion, presumably by undergoing epithelial-mesenchymal transition. The fusion process per se, however, is independent of allantoic growth, circulation, or its connection to the developing mesonephros. Mesoderm cells derived from the allantois and chorion can intermingle post-fusion, and chorionic ectoderm cells exhibit a specialized sub-apical intercellular interface, possibly to facilitate infiltration of allantois-derived vascular progenitors into the chorionic ectoderm territory for optimal oxygen transport. Finally, we investigated chorioallantoic fusion-like process in primates, with limited numbers of archived human and fresh macaque samples. We summarize the similarities and differences of CAM formation among different amniote groups and propose that mesothelial epithelial-mesenchymal transition mediates chorioallantoic fusion in most amniotic vertebrates. Further study is needed to clarify tissue morphogenesis leading to chorioallantoic fusion in primates. Elucidating molecular mechanisms regulating mesothelial integrity and epithelial-mesenchymal transition will also help understand mesothelial diseases in the adult, including mesothelioma, ovarian cancer and fibrosis. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.


Assuntos
Alantoide , Membrana Corioalantoide , Alantoide/metabolismo , Animais , Córion/metabolismo , Epitélio , Humanos , Mamíferos , Oxigênio/metabolismo
19.
Virology ; 562: 29-39, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34246113

RESUMO

When human influenza viruses are isolated and passaged in chicken embryos, variants with amino acid substitutions around the receptor binding site of hemagglutinin (HA) are selected; however, the mechanisms that underlie this phenomenon have yet to be elucidated. Here, we analyzed the receptor structures that contributed to propagation of egg-passaged human H1N1 viruses. The analysis included seasonal and 2009 pandemic strains, both of which have amino acid substitutions of HA found in strains isolated or passaged in eggs. These viruses exhibited high binding to sulfated glycans containing NeuAcα2-3Gal. In MDCK cells overexpressing the sulfotransferase that synthesize Galß1-4(SO3--6)GlcNAc, production of human H1N1 viruses was increased up to 90-fold. Furthermore, these sulfated glycans were expressed on the allantoic and amniotic membranes of chicken embryos. These results suggest that 6-sulfo sialyl Lewis X and/or NeuAcα2-3Galß1-4(SO3--6)GlcNAc are involved in efficient propagation of human H1N1 viruses in chicken embryos.


Assuntos
Embrião de Galinha/virologia , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Sulfatos/metabolismo , Alantoide/metabolismo , Âmnio/metabolismo , Animais , Embrião de Galinha/metabolismo , Cães , Galactosídeos/química , Galactosídeos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/metabolismo , Células Madin Darby de Rim Canino , Mutação , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/química , Receptores Virais/metabolismo , Sulfatos/química , Sulfotransferases/genética , Sulfotransferases/metabolismo , Carboidrato Sulfotransferases
20.
Microcirculation ; 17(6): 447-57, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20690983

RESUMO

OBJECTIVE: To assess the impact of vascular endothelial growth factor (VEGF) on intussusceptive angiogenesis. METHODS AND RESULTS: Polyurethane casts of the microvasculature of chicken chorioallantoic membrane (CAM) were prepared on embryonic days (E) 8, 10, 12, and 14. At light microscopy level, minute holes (<2 microm in diameter) and hollows (>2 microm) were observed in the casts. Transmission electron microscopy disclosed the minute holes to mainly represent transluminal pillars characteristic for intussusceptive angiogenesis. The numerical density of the holes/pillars was highest at an early (E8) and a late (E12-E14) stage. Only mRNA of VEGF-A-122 and VEGF-A-166 isoforms was detected in the CAM. The transcription rate of VEGF-A mRNA peaked on E8/9 and E12, while VEGF-A protein expression increased on E8/9 and E11/12 to rapidly decrease thereafter as determined by immunoblotting. At all time points investigated, VEGF-A immunohistochemical reactivity was restricted to cells of the chorionic epithelium in direct contact to the capillary plexus. When the VEGF-R-inhibitor PTK787/ZK222584 (0.1 mg/mL) was applied on E9 CAM, the microvasculature topology on E12 was similar to that on E10. CONCLUSIONS: The temporal course of intussusception corresponded to the expression of VEGF-A in CAM microvasculature. Inhibition of VEGF-signaling retarded intussusceptive-dependent capillary maturation. These data suggest that VEGF promotes intussusception.


Assuntos
Alantoide/irrigação sanguínea , Alantoide/embriologia , Córion/irrigação sanguínea , Córion/embriologia , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Alantoide/metabolismo , Animais , Embrião de Galinha , Córion/metabolismo , Molde por Corrosão , Microcirculação , Neovascularização Fisiológica/genética , Ftalazinas/farmacologia , Piridinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA