Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Addict Biol ; 29(3): e13382, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488467

RESUMO

Methamphetamine (METH) is a highly addictive psycho-stimulant that induces addictive behaviour by stimulating increased dopamine release in the nucleus accumbens (NAc). The sarco/endoplasmic reticulum calcium ion transport ATPases (SERCA or ATP2A) is a calcium ion (Ca2+) pump in the endoplasmic reticulum (ER) membrane. SERCA2b is a SERCA subtype mainly distributed in the central nervous system. This study used conditioned place preference (CPP), a translational drug reward model, to observe the effects of SERCA and SERCA2b on METH-CPP in mice. Result suggested that the activity of SERCA was significantly decreased in NAc after METH-CPP. Intraperitoneal SERCA agonist CDN1163 injection or bilateral CDN1163 microinjection in the NAc inhibited METH-CPP formation. SERCA2b overexpression by the Adeno-associated virus can reduce the DA release of NAc and inhibit METH-CPP formation. Although microinjection of SERCA inhibitor thapsigargin in the bilateral NAc did not significantly aggravate METH-CPP, interference with SERCA2b expression in NAc by adeno-associated virus increased DA release and promoted METH-CPP formation. METH reduced the SERCA ability to transport Ca2+ into the ER in SHSY5Y cells in vitro, which was reversed by CDN1163. This study revealed that METH dysregulates intracellular calcium balance by downregulating SERCA2b function, increasing DA release in NAc and inducing METH-CPP formation. Drugs that target SERCA2b may have the potential to treat METH addiction.


Assuntos
Benzamidas , Estimulantes do Sistema Nervoso Central , Metanfetamina , Camundongos , Animais , Metanfetamina/farmacologia , Metanfetamina/metabolismo , Núcleo Accumbens , Cálcio/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/metabolismo
2.
J Appl Toxicol ; 43(9): 1284-1292, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36908085

RESUMO

Citrinin, a mycotoxin produced by Penicillium citrinum and Penicillium verrucosum, mainly contaminates cereals. The aim of study was to investigate the novel immunoreactive effect of citrinin using a mouse model of psoriasis. A mouse model of psoriasis was generated by topical application of 5% imiquimod in female BALB/c mice. Standard rodent diet and rice samples with 3 ppm of citrinin were mixed to obtain a final citrinin concentration of 0.3 ppm, and a citrinin-contaminated diet was fed to mice daily. Skin thickness, scratching behavior, and trans epidermal water loss (TEWL) were monitored continuously during the imiquimod application. Immediately after the final imiquimod application, ear skin and auricular lymph node (LN) were sampled for further analysis. Only a slight increase was observed in skin thickness in the citrinin exposure group; however, citrinin exposure significantly exacerbated hyperkeratinization and inflammatory cell infiltration in histological evaluation. TEWL, which is representative of cutaneous barrier function, was significantly increased by citrinin exposure. In terms of immune function, the number of immune cells in LN (T cells and dendritic cells) and gene expression of interleukin (IL)-17 in skin tissue were significantly increased by citrinin exposure. Direct interaction of dendritic cells (DCs) in citrinin-induced psoriasis development was further examined by proinflammatory cytokine determination in THP-1 cells and murine bone marrow derived DCs. IL-6 and/or tumor necrosis factor α were significantly increased by citrinin exposure. Taken together, our results imply that oral exposure to citrinin exacerbates the symptoms of a mouse model of psoriasis via direct activation of DCs.


Assuntos
Citrinina , Psoríase , Feminino , Animais , Camundongos , Imiquimode/toxicidade , Citrinina/toxicidade , Citrinina/metabolismo , Aminoquinolinas/toxicidade , Aminoquinolinas/metabolismo , Células Dendríticas , Psoríase/induzido quimicamente , Pele , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
3.
Rapid Commun Mass Spectrom ; 35(22): e9195, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34491599

RESUMO

RATIONALE: Pyrotinib is an irreversible EGFR/HER2 inhibitor that has shown antitumor activity and tolerance in the treatment of breast cancer. Studies focused on its metabolic pathways and major metabolites are insufficient. In the evaluation of drug safety and therapeutic use, metabolite characterization is critical. The metabolism of pyrotinib in vitro was studied utilizing rat, dog and human hepatocytes in this study. METHODS: Pyrotinib (10 µM) was incubated with hepatocytes in Williams' E medium. The metabolites were examined and profiled using ultrahigh-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry. The metabolite structures were deduced by comparing their precise molecular weights, fragment ions and retention times with those of the parent drug. RESULTS: A total of 16 metabolites, including 6 novel ones, were discovered and structurally described under the present conditions. Oxidation, demethylation, dehydrogenation, O-dealkylation and glutathione (GSH) conjugation were all involved in the metabolism of pyrotinib in hepatocytes. The most predominant metabolic route was identified as GSH conjugation (M5). CONCLUSIONS: This study generated valuable metabolite profiles of pyrotinib in several species, which will aid in the understanding of the drug's disposition in various species and in evaluating the contribution of metabolites to overall effectiveness and toxicity of pyrotinib.


Assuntos
Acrilamidas/química , Acrilamidas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Hepatócitos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cães , Hepatócitos/química , Humanos , Ratos , Espectrometria de Massas em Tandem/métodos
4.
Biomed Chromatogr ; 35(12): e5221, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34331710

RESUMO

Pyrotinib is an irreversible EGFR/HER2 inhibitor that has been approved for the treatment of breast cancer. The aim of this work was to establish a quantification method for the simultaneous determination of pyrotinib and its metabolite pyrotinib-lactam in rat plasma using UPLC-MS/MS. After simple protein precipitation with acetonitrile, the analytes and internal standard (neratinib) were separated on an ACQUITY BEH C18 column (2.1 × 50 mm, 1.7 µm) using a mobile phase of water containing 0.1% formic acid and acetonitrile. The detection was performed using selected reaction monitoring mode with precursor-to-product ion transitions at m/z 583.2 > 138.1 for pyrotinib, m/z 597.2 > 152.1 for pyrotinib-lactam, and m/z 557.2 > 112.1 for internal standard. The assay exhibited excellent linearity in the concentration range of 0.5-1000 ng/mL for pyrotinib and pyrotinib-lactam. The assay met the criteria of the United States Food and Drug Administration-validated bioanalytical methods and was successfully applied to a pharmacokinetic study of pyrotinib and its metabolite for the first time. Our results demonstrated that pyrotinib rapidly converted into pyrotinib-lactam, whose in vivo exposure was 21% that of pyrotinib.


Assuntos
Acrilamidas/sangue , Acrilamidas/farmacocinética , Aminoquinolinas/sangue , Aminoquinolinas/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Acrilamidas/química , Acrilamidas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Animais , Limite de Detecção , Modelos Lineares , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
5.
Biochemistry ; 59(37): 3438-3446, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32833433

RESUMO

Although allosteric binding of small molecules is commonplace in protein structures, it is rather rare in DNA species such as G-quadruplexes. By using CD melting, here, we found binding of the small-molecule ligands PDS and L2H2-6OTD to the telomeric DNA G-quadruplex was cooperative. Mass spectrometry indicated a 1:1:1 ratio in the ternary binding complex of the telomeric G-quadruplex, PDS, and L2H2-6OTD. Compared to the binding of each individual ligand to the G-quadruplex, single-molecule mechanical unfolding assays revealed a significantly decreased dissociation constant when one ligand is evaluated in the presence of another. This demonstrates that cooperative binding of PDS and L2H2-6OTD to the G-quadruplex is allosteric, which is also supported by the mass spectra data that indicated the ejection of coordinated sodium ions upon binding of the heteroligands to the G-quadruplex. The unprecedented observation of the allosteric ligand binding to higher-ordered structures of DNA may help to design more effective ligands to target non-B DNA species involved in many critical cellular processes.


Assuntos
Aminoquinolinas/metabolismo , Quadruplex G , Oxazóis/metabolismo , Ácidos Picolínicos/metabolismo , Telômero/química , Telômero/metabolismo , Sítio Alostérico , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares
6.
Biochemistry ; 58(4): 245-249, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30350580

RESUMO

Numerous studies have been published stressing the importance of finding ligands that can bind specifically to DNA secondary structures. Several have identified ligands that are presented as having specific binding to the G-quadruplex; however, these were not originally tested on the complementary i-motif structure. The i-motif was overlooked and presumed to be irrelevant due to the belief that the hemiprotonated (cytosine+-cytosine) base pair at the core of the structure required acidic pH. The pathophysiological relevance of i-motifs has since been documented, as well as the discovery of several genomic sequences, which can form i-motif at neutral pH. Using different biophysical methodologies, we provide experimental evidence to show that widely used G-quadruplex ligands interact with i-motif structures at neutral pH, generally leading to their destabilization. Crucially, this has implications both for the search for quadruplex binding compounds as well as for the effects of compounds reported to have G-quadruplex specificity without examining their effects on i-motif.


Assuntos
Quadruplex G , Motivos de Nucleotídeos , Acridinas/química , Acridinas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Proteínas Reguladoras de Apoptose/genética , Berberina/química , Berberina/metabolismo , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Ligantes , Mitoxantrona/química , Mitoxantrona/metabolismo , Proteínas do Tecido Nervoso/genética , Ácidos Picolínicos/química , Ácidos Picolínicos/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Temperatura de Transição
7.
Analyst ; 144(22): 6512-6516, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31602449

RESUMO

G-quadruplex (G4) nucleic acid structures are involved in a number of different diseases and their drug-induced stabilization is deemed to be a promising therapeutic approach. Herein is reported a proof of principle study on the use of nano differential scanning fluorimetry for a rapid and accurate analysis of G4-stabilizing ligands, exploiting the fluorescence properties of a 2-aminopurine modified G4-forming oligonucleotide.


Assuntos
DNA/análise , Fluorometria/métodos , Quadruplex G , Acridinas/química , Acridinas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Dicroísmo Circular , DNA/genética , DNA/metabolismo , Humanos , Ligantes , Ácidos Picolínicos/química , Ácidos Picolínicos/metabolismo , Estudo de Prova de Conceito , Temperatura de Transição
8.
J Pharmacol Sci ; 141(2): 106-110, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31679962

RESUMO

It has recently been exhibited that Rac1 expression is increased in the bronchial tissue of a murine model with repeated antigen-challenged airway hyperresponsiveness (AHR). In the present study, the role of Rac1 in endothelin-1 (ET-1)-induced bronchial contraction and myosin light chain (MLC) phosphorylation was examined in AHR mice. Enhanced reactions in AHR mice were prevented by the Rac1 inhibitor NSC23766. These findings suggest that increased activation of Rac1 might be responsible for the enhancement of the bronchial contraction induced by ET-1 in AHR.


Assuntos
Hiper-Reatividade Brônquica/metabolismo , Broncoconstrição , Endotelina-1/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Animais , Brônquios/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Fosforilação , Pirimidinas/metabolismo , Pirimidinas/farmacologia
9.
Acta Pharmacol Sin ; 40(7): 980-988, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30382184

RESUMO

Pyrotinib is a novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor that is used to treat HER2-positive breast cancer. In this study we investigated the metabolism and disposition of pyrotinib in six healthy Chinese men after a single oral dose of 402 mg of [14C]pyrotinib. At 240 h postdose, the mean cumulative excretion of the dose radioactivity was 92.6%, including 1.7% in urine and 90.9% in feces. In feces, oxidative metabolites were detected as major drug-related materials and the primary metabolic pathways were O-depicoline (M1), oxidation of pyrrolidine (M5), and oxidation of pyridine (M6-1, M6-2, M6-3, and M6-4). In plasma, the major circulating entities identified were pyrotinib, SHR150980 (M1), SHR151468 (M2), and SHR151136 (M5), accounting for 10.9%, 1.9%, 1.0%, and 3.0%, respectively, of the total plasma radioactivity based on the AUC0-∞ ratios. Approximately 58.3% of the total plasma radioactivity AUC0-∞ was attributed to covalently bound materials. After incubation of human plasma with [14C]pyrotinib at 37 °C for 2, 5, 8, and 24 h, the recovery of radioactivity by extraction was 97.4%, 91.8%, 69.6%, and 46.7%, respectively, revealing covalent binding occurred independently of enzymes. A group of pyrotinib adducts, including pyrotinib-lysine and pyrotinib adducts of the peptides Gly-Lys, Lys-Ala, Gly-Lys-Ala, and Lys-Ala-Ser, was identified after HCl hydrolysis of the incubated plasma. Therefore, the amino acid residue Lys190 of human serum albumin was proposed to covalently bind to pyrotinib via Michael addition. Finally, the covalently bound pyrotinib could dissociate from the human plasma protein and be metabolized by oxidation and excreted via feces.


Assuntos
Acrilamidas/metabolismo , Aminoquinolinas/metabolismo , Antineoplásicos/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Albumina Sérica Humana/metabolismo , Acrilamidas/química , Acrilamidas/farmacocinética , Adulto , Aminoquinolinas/química , Aminoquinolinas/farmacocinética , Antineoplásicos/química , Antineoplásicos/farmacocinética , Análise Química do Sangue , Radioisótopos de Carbono , Fezes/química , Humanos , Masculino , Orosomucoide/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Albumina Sérica Humana/química , Urina/química
10.
Biomed Chromatogr ; 32(6): e4207, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29430676

RESUMO

Naphthoquine (NQ) is one of important partner drugs of artemisinin-based combination therapy (ACT), which is recommended for the treatment of uncomplicated Plasmodium falciparum. NQ shows a high cure rate after a single oral administration. It is absorbed quickly (time to peak concentration 2-4 h) and has a long elimination half-life (255 h). However, the metabolism of NQ has not been clarified. In this work, the metabolite profiling of NQ was studied in six liver microsomal incubates (human, cynomolgus monkey, beagle dog, mini pig, rat and CD1 mouse), seven recombinant CYP enzymes (1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4) and rat (plasma, urine, bile and feces) using liquid chromatography tandem high-resolution LTQ-Orbitrap mass spectrometry (HRMSn ) in conjunction with online hydrogen/deuterium exchange. The biological samples were pretreated by protein precipitation and solid-phase extraction. For data processing, multiple data-mining tools were applied in tandem, i.e. background subtraction and followed by mass defect filter. NQ metabolites were characterized by accurate MS/MS fragmentation characteristics, the hydrogen/deuterium exchange data and cLogP simulation. As a result, five phase I metabolites (M1-M5) of NQ were characterized for the first time. Two metabolic pathways were involved: hydroxylation and N-oxidation. This study demonstrates that LC-HRMSn in combination with multiple data-mining tools in tandem can be a valuable analytical strategy for rapid metabolite profiling of drugs.


Assuntos
1-Naftilamina/análogos & derivados , Aminoquinolinas/metabolismo , Antimaláricos/metabolismo , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , 1-Naftilamina/análise , 1-Naftilamina/metabolismo , Aminoquinolinas/análise , Animais , Antimaláricos/análise , Biologia Computacional , Mineração de Dados , Medição da Troca de Deutério , Feminino , Masculino , Ratos Wistar
11.
J Low Genit Tract Dis ; 22(1): 52-57, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29271858

RESUMO

OBJECTIVES: Localized provoked vulvodynia (LPV) afflicts approximately 8% of women in the United States and represents a huge financial, physical, and psychological burden. Women with LPV experience intense pain localized to the vulvar vestibule (area immediately surrounding vaginal opening). We have identified mechanisms involved in the development of LPV whereby vulvar fibroblasts respond to proinflammatory stimuli to perpetuate an inflammatory response that causes pain. However, these mechanisms are not fully elucidated. Therefore, we explored the role of toll-like receptors (TLRs), a class of innate immune receptors that rapidly respond to microbial assaults. MATERIALS AND METHODS: To determine whether TLRs are expressed by vulvar fibroblasts and whether these contribute to proinflammatory mediator production and pain in LPV, we examined TLR expression and innate immune responses in fibroblasts derived from painful vestibular regions compared with nonpainful external vulvar regions. RESULTS: Human vulvar fibroblasts express functional TLRs that trigger production of inflammatory mediators associated with chronic pain. We focused on the TLR-7-imiquimod proinflammatory interaction, because imiquimod, a ligand of TLR-7, may exacerbate pain in women during treatment of human papillomavirus-associated disease. CONCLUSIONS: Human vulvar fibroblasts express a broad spectrum of TLRs (a new finding). A significantly higher TLR-mediated proinflammatory response was observed in LPV case vestibular fibroblasts, and with respect to the imiquimod-TLR 7 interaction, development of chronic vestibular pain and inflammation may be a possible sequelae of treatment of vulvar human papillomavirus-associated disease. Suppressing enhanced TLR-associated innate immune responses to a spectrum of pathogen-associated molecular patterns may represent a new/effective therapeutic approach for vulvodynia.


Assuntos
Aminoquinolinas/metabolismo , Fibroblastos/imunologia , Imunidade Inata , Mediadores da Inflamação/metabolismo , Transdução de Sinais , Receptor 7 Toll-Like/análise , Vulvodinia/induzido quimicamente , Células Cultivadas , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Imiquimode , Receptor 7 Toll-Like/genética , Vulvodinia/patologia
12.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1353-1361, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28087374

RESUMO

G-quadruplexes (G4s) have become important drug targets to regulate gene expression and telomere maintenance. Many studies on G4 ligand binding focus on determining the ligand binding affinities and selectivities. Ligands, however, can also affect the G4 conformation. Here we explain how to use electrospray ionization mass spectrometry (ESI-MS) to monitor simultaneously ligand binding and cation binding stoichiometries. The changes in potassium binding stoichiometry upon ligand binding hint at ligand-induced conformational changes involving a modification of the number of G-quartets. We investigated the interaction of three quadruplex ligands (PhenDC3, 360A and Pyridostatin) with a variety of G4s. Electrospray mass spectrometry makes it easy to detect K+ displacement (interpreted as quartet disruption) upon ligand binding, and to determine how many ligand molecules must be bound for the quartet opening to occur. The reasons for ligand-induced conversion to antiparallel structures with fewer quartets are discussed. Conversely, K+ intake (hence quartet formation) was detected upon ligand binding to G-rich sequences that did not form quadruplexes in 1mM K+ alone. This demonstrates the value of mass spectrometry for assessing not only ligand binding, but also ligand-induced rearrangements in the target sequence. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Assuntos
Aminoquinolinas/metabolismo , Quadruplex G , Guanosina/metabolismo , Oligonucleotídeos/metabolismo , Ácidos Picolínicos/metabolismo , Piridinas/metabolismo , Quinolinas/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Aminoquinolinas/química , Sítios de Ligação , Dicroísmo Circular , Guanosina/química , Ligantes , Modelos Moleculares , Oligonucleotídeos/química , Ácidos Picolínicos/química , Potássio/química , Potássio/metabolismo , Piridinas/química , Quinolinas/química , Relação Estrutura-Atividade
13.
Mol Ther ; 24(12): 2078-2089, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27731313

RESUMO

Phosphodiesterase 4 (PDE4) inhibitors are approved for the treatment of some moderate to severe inflammatory conditions. However, dose-limiting side effects in the central nervous system and gastrointestinal tract, including nausea, emesis, headache, and diarrhea, have impeded the broader therapeutic application of PDE4 inhibitors. We sought to exploit the wealth of validation surrounding PDE4 inhibition by improving the therapeutic index through generation of an antibody-drug conjugate (ADC) that selectively targets immune cells through the CD11a antigen. The resulting ADC consisted of a human αCD11a antibody (based on efalizumab clone hu1124) conjugated to an analog of the highly potent PDE4 inhibitor GSK256066. Both the human αCD11a ADC and a mouse surrogate αCD11a ADC (based on the M17 clone) rapidly internalized into immune cells and suppressed lipololysaccharide (LPS)-induced TNFα secretion in primary human monocytes and mouse peritoneal cells, respectively. In a carrageenan-induced air pouch inflammation mouse model, treatment with the ADC significantly reduced inflammatory cytokine production in the air pouch exudate. Overall, these results provide compelling evidence for the feasibility of delivering drugs with anti-inflammatory activity selectively to the immune compartment via CD11a and the development of tissue-targeted PDE4 inhibitors as a promising therapeutic modality for treating inflammatory diseases.


Assuntos
Aminoquinolinas/metabolismo , Antígenos CD11/metabolismo , Imunoconjugados/administração & dosagem , Inflamação/imunologia , Inibidores da Fosfodiesterase 4/metabolismo , Sulfonas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados/farmacologia , Lipopolissacarídeos/efeitos adversos , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Peritônio/efeitos dos fármacos , Peritônio/imunologia , Fator de Necrose Tumoral alfa/metabolismo
14.
J Am Chem Soc ; 137(2): 750-6, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25525863

RESUMO

The rational design of ligands targeting human telomeric DNA G-quadruplexes is a complex problem due to the structural polymorphism that these sequences can adopt in physiological conditions. Moreover, the ability of ligands to switch conformational equilibria between different G-quadruplex structures is often overlooked in docking approaches. Here, we demonstrate that three of the most potent G-quadruplex ligands (360A, Phen-DC3, and pyridostatin) induce conformational changes of telomeric DNA G-quadruplexes to an antiparallel structure (as determined by circular dichroism) containing only one specifically coordinated K(+) (as determined by electrospray mass spectrometry) and, hence, presumably only two consecutive G-quartets. Control ligands TrisQ, known to bind preferentially to hybrid than to antiparallel structures, and L2H2-6M(2)OTD, known not to disrupt the hybrid-1 structure, did not show such K(+) removal. Instead, binding of the cyclic oxazole L2H2-6M(2)OTD was accompanied by the uptake of one additional K(+). Also contrasting with telomeric G-quadruplexes, the parallel-stranded Pu24-myc G-quadruplex, to which Phen-DC3 is known to bind by end-stacking, did not undergo cation removal upon ligand binding. Our study therefore evidences that very affine ligands can induce conformational switching of the human telomeric G-quadruplexes to an antiparallel structure and that this conformational change is accompanied by removal of one interquartet cation.


Assuntos
DNA/química , DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Telômero/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Humanos , Ligantes , Modelos Moleculares , Ácidos Picolínicos/metabolismo , Ácidos Picolínicos/farmacologia , Potássio/metabolismo , Piridinas/metabolismo , Piridinas/farmacologia , Quinolinas/metabolismo , Quinolinas/farmacologia
15.
Antimicrob Agents Chemother ; 59(10): 6151-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195527

RESUMO

The protozoan parasite Trypanosoma brucei causes human African trypanosomiasis, or sleeping sickness, a neglected tropical disease that requires new, safer, and more effective treatments. Repurposing oral drugs could reduce both the time and cost involved in sleeping sickness drug discovery. Tafenoquine (TFQ) is an oral antimalarial drug belonging to the 8-aminoquinoline family which is currently in clinical phase III. We show here that TFQ efficiently kills different T. brucei spp. in the submicromolar concentration range. Our results suggest that TFQ accumulates into acidic compartments and induces a necrotic process involving cell membrane disintegration and loss of cytoplasmic content, leading to parasite death. Cell lysis is preceded by a wide and multitarget drug action, affecting the lysosome, mitochondria, and acidocalcisomes and inducing a depolarization of the mitochondrial membrane potential, elevation of intracellular Ca(2+), and production of reactive oxygen species. This is the first report of an 8-aminoquinoline demonstrating significant in vitro activity against T. brucei.


Assuntos
Aminoquinolinas/farmacologia , Antimaláricos/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Administração Oral , Aminoquinolinas/metabolismo , Antimaláricos/metabolismo , Humanos , Lisossomos/metabolismo , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/ultraestrutura
16.
Bioorg Med Chem ; 23(14): 4065-71, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25868747

RESUMO

The search for G protein-coupled receptors (GPCRs) allosteric modulators represents an active research field in medicinal chemistry. Allosteric modulators usually exert their activity only in the presence of the orthosteric ligand by binding to protein sites topographically different from the orthosteric cleft. They therefore offer potentially therapeutic advantages by selectively influencing tissue responses only when the endogenous agonist is present. The prediction of putative allosteric site location, however, is a challenging task. In facts, they are usually located in regions showing more structural variation among the family members. In the present work, we applied the recently developed Supervised Molecular Dynamics (SuMD) methodology to interpret at the molecular level the positive allosteric modulation mediated by LUF6000 toward the human adenosine A3 receptor (hA3 AR). Our data suggest at least two possible mechanisms to explain the experimental data available. This study represent, to the best of our knowledge, the first case reported of an allosteric recognition mechanism depicted by means of molecular dynamics simulations.


Assuntos
Aminoquinolinas/metabolismo , Imidazóis/metabolismo , Receptor A3 de Adenosina/química , Receptor A3 de Adenosina/metabolismo , Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Aminoquinolinas/química , Humanos , Imidazóis/química , Modelos Moleculares , Simulação de Dinâmica Molecular
17.
Angew Chem Int Ed Engl ; 54(3): 910-3, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25421962

RESUMO

In investigating the binding interactions between the human telomeric RNA (TERRA) G-quadruplex (GQ) and its ligands, it was found that the small molecule carboxypyridostatin (cPDS) and the GQ-selective antibody BG4 simultaneously bind the TERRA GQ. We previously showed that the overall binding affinity of BG4 for RNA GQs is not significantly affected in the presence of cPDS. However, single-molecule mechanical unfolding experiments revealed a population (48%) with substantially increased mechanical and thermodynamic stability. Force-jump kinetic investigations suggested competitive binding of cPDS and BG4 to the TERRA GQ. Following this, the two bound ligands slowly rearrange, thereby leading to the minor population with increased stability. Given the relevance of G-quadruplexes in the regulation of biological processes, we anticipate that the unprecedented conformational rearrangement observed in the TERRA-GQ-ligand complex may inspire new strategies for the selective stabilization of G-quadruplexes in cells.


Assuntos
Aminoquinolinas/metabolismo , Anticorpos/imunologia , Quadruplex G , Ácidos Picolínicos/metabolismo , Telômero/metabolismo , Aminoquinolinas/química , Humanos , Ligantes , Conformação de Ácido Nucleico , Pinças Ópticas , Ácidos Picolínicos/química , RNA/química , Termodinâmica
18.
J Am Chem Soc ; 136(16): 5860-3, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24697838

RESUMO

The nitrogen mustard Chlorambucil (Chl) generates covalent adducts with double-helical DNA and inhibits cell proliferation. Among these adducts, interstrand cross-links (ICLs) are the most toxic, as they stall replication by generating DNA double strand breaks (DSBs). Conversely, intrastrand cross-links generated by Chl are efficiently repaired by a dedicated Nucleotide Excision Repair (NER) enzyme. We synthesized a novel cross-linking agent that combines Chl with the G-quadruplex (G4) ligand PDS (PDS-Chl). We demonstrated that PDS-Chl alkylates G4 structures at low µM concentrations, without reactivity toward double- or single-stranded DNA. Since intramolecular G4s arise from a single DNA strand, we reasoned that preferential alkylation of such structures might prevent the generation of ICLs, while favoring intrastrand cross-links. We observed that PDS-Chl selectively impairs growth in cells genetically deficient in NER, but did not show any sensitivity to the repair gene BRCA2, involved in double-stranded break repair. Our findings suggest that G4 targeting of this clinically important alkylating agent alters the overall mechanism of action. These insights may inspire new opportunities for intervention in diseases specifically characterized by genetic impairment of NER, such as skin and testicular cancers.


Assuntos
Clorambucila/farmacologia , Reagentes de Ligações Cruzadas/farmacologia , Quadruplex G/efeitos dos fármacos , Aminoquinolinas/metabolismo , Linhagem Celular , Adutos de DNA/química , Adutos de DNA/metabolismo , Humanos , Ligantes , Ácidos Picolínicos/metabolismo
19.
Plant Cell ; 23(6): 2273-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21653193

RESUMO

Plant Rho family GTPases (ROPs) have been investigated primarily for their functions in polarized cell growth. We previously showed that the maize (Zea mays) Leu-rich repeat receptor-like protein PANGLOSS1 (PAN1) promotes the polarization of asymmetric subsidiary mother cell (SMC) divisions during stomatal development. Here, we show that maize Type I ROPs 2 and 9 function together with PAN1 in this process. Partial loss of ROP2/9 function causes a weak SMC division polarity phenotype and strongly enhances this phenotype in pan1 mutants. Like PAN1, ROPs accumulate in an asymmetric manner in SMCs. Overexpression of yellow fluorescent protein-ROP2 is associated with its delocalization in SMCs and with aberrantly oriented SMC divisions. Polarized localization of ROPs depends on PAN1, but PAN1 localization is insensitive to depletion and depolarization of ROP. Membrane-associated Type I ROPs display increased nonionic detergent solubility in pan1 mutants, suggesting a role for PAN1 in membrane partitioning of ROPs. Finally, endogenous PAN1 and ROP proteins are physically associated with each other in maize tissue extracts, as demonstrated by reciprocal coimmunoprecipitation experiments. This study demonstrates that ROPs play a key role in polarization of plant cell division and cell growth and reveals a role for a receptor-like protein in spatial localization of ROPs.


Assuntos
Divisão Celular/fisiologia , Polaridade Celular , Proteínas de Plantas/metabolismo , Zea mays/citologia , Zea mays/enzimologia , Zea mays/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Aminoquinolinas/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Estômatos de Plantas/citologia , Estômatos de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Pirimidinas/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rho de Ligação ao GTP/genética
20.
Malar J ; 13: 2, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24386891

RESUMO

BACKGROUND: Tafenoquine (TQ) is an 8-aminoquinoline (8AQ) that has been tested in several Phase II and Phase III clinical studies and is currently in late stage development as an anti-malarial prophylactic agent. NPC-1161B is a promising 8AQ in late preclinical development. It has recently been reported that the 8AQ drug primaquine requires metabolic activation by CYP 2D6 for efficacy in humans and in mice, highlighting the importance of pharmacogenomics in the target population when administering primaquine. A logical follow-up study was to determine whether CYP 2D activation is required for other compounds in the 8AQ structural class. METHODS: In the present study, the anti-malarial activities of NPC-1161B and TQ were assessed against luciferase expressing Plasmodium berghei in CYP 2D knock-out mice in comparison with normal C57BL/6 mice (WT) and with humanized/CYP 2D6 knock-in mice by monitoring luminescence with an in vivo imaging system. These experiments were designed to determine the direct effects of CYP 2D metabolic activation on the anti-malarial efficacy of NPC-1161B and TQ. RESULTS: NPC-1161B and TQ exhibited no anti-malarial activity in CYP 2D knock-out mice when dosed at their ED100 values (1 mg/kg and 3 mg/kg, respectively) established in WT mice. TQ anti-malarial activity was partially restored in humanized/CYP 2D6 knock-in mice when tested at two times its ED100. CONCLUSIONS: The results reported here strongly suggest that metabolism of NPC-1161B and TQ by the CYP 2D enzyme class is essential for their anti-malarial activity. Furthermore, these results may provide a possible explanation for therapeutic failures for patients who do not respond to 8AQ treatment for relapsing malaria. Because CYP 2D6 is highly polymorphic, variable expression of this enzyme in humans represents a significant pharmacogenomic liability for 8AQs which require CYP 2D metabolic activation for efficacy, particularly for large-scale prophylaxis and eradication campaigns.


Assuntos
Aminoquinolinas/metabolismo , Antimaláricos/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Succinatos/metabolismo , Animais , Citocromo P-450 CYP2D6/genética , Relação Dose-Resposta a Droga , Malária/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA