Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.515
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8006): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448586

RESUMO

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Metabolômica , Feminino , Humanos , Gravidez , Acetona/sangue , Acetona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
2.
Am J Hum Genet ; 111(8): 1736-1749, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39053459

RESUMO

Mendelian randomization (MR) provides valuable assessments of the causal effect of exposure on outcome, yet the application of conventional MR methods for mapping risk genes encounters new challenges. One of the issues is the limited availability of expression quantitative trait loci (eQTLs) as instrumental variables (IVs), hampering the estimation of sparse causal effects. Additionally, the often context- or tissue-specific eQTL effects challenge the MR assumption of consistent IV effects across eQTL and GWAS data. To address these challenges, we propose a multi-context multivariable integrative MR framework, mintMR, for mapping expression and molecular traits as joint exposures. It models the effects of molecular exposures across multiple tissues in each gene region, while simultaneously estimating across multiple gene regions. It uses eQTLs with consistent effects across more than one tissue type as IVs, improving IV consistency. A major innovation of mintMR involves employing multi-view learning methods to collectively model latent indicators of disease relevance across multiple tissues, molecular traits, and gene regions. The multi-view learning captures the major patterns of disease relevance and uses these patterns to update the estimated tissue relevance probabilities. The proposed mintMR iterates between performing a multi-tissue MR for each gene region and joint learning the disease-relevant tissue probabilities across gene regions, improving the estimation of sparse effects across genes. We apply mintMR to evaluate the causal effects of gene expression and DNA methylation for 35 complex traits using multi-tissue QTLs as IVs. The proposed mintMR controls genome-wide inflation and offers insights into disease mechanisms.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Locos de Características Quantitativas , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla/métodos , Especificidade de Órgãos/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único
3.
Am J Hum Genet ; 111(8): 1717-1735, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39059387

RESUMO

Mendelian randomization (MR), which utilizes genetic variants as instrumental variables (IVs), has gained popularity as a method for causal inference between phenotypes using genetic data. While efforts have been made to relax IV assumptions and develop new methods for causal inference in the presence of invalid IVs due to confounding, the reliability of MR methods in real-world applications remains uncertain. Instead of using simulated datasets, we conducted a benchmark study evaluating 16 two-sample summary-level MR methods using real-world genetic datasets to provide guidelines for the best practices. Our study focused on the following crucial aspects: type I error control in the presence of various confounding scenarios (e.g., population stratification, pleiotropy, and family-level confounders like assortative mating), the accuracy of causal effect estimates, replicability, and power. By comprehensively evaluating the performance of compared methods over one thousand exposure-outcome trait pairs, our study not only provides valuable insights into the performance and limitations of the compared methods but also offers practical guidance for researchers to choose appropriate MR methods for causal inference.


Assuntos
Benchmarking , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Análise da Randomização Mendeliana/métodos , Humanos , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Variação Genética , Causalidade , Polimorfismo de Nucleotídeo Único , Modelos Genéticos
4.
Am J Hum Genet ; 111(1): 165-180, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181732

RESUMO

Mendelian randomization uses genetic variants as instrumental variables to make causal inferences on the effect of an exposure on an outcome. Due to the recent abundance of high-powered genome-wide association studies, many putative causal exposures of interest have large numbers of independent genetic variants with which they associate, each representing a potential instrument for use in a Mendelian randomization analysis. Such polygenic analyses increase the power of the study design to detect causal effects; however, they also increase the potential for bias due to instrument invalidity. Recent attention has been given to dealing with bias caused by correlated pleiotropy, which results from violation of the "instrument strength independent of direct effect" assumption. Although methods have been proposed that can account for this bias, a number of restrictive conditions remain in many commonly used techniques. In this paper, we propose a Bayesian framework for Mendelian randomization that provides valid causal inference under very general settings. We propose the methods MR-Horse and MVMR-Horse, which can be performed without access to individual-level data, using only summary statistics of the type commonly published by genome-wide association studies, and can account for both correlated and uncorrelated pleiotropy. In simulation studies, we show that the approach retains type I error rates below nominal levels even in high-pleiotropy scenarios. We demonstrate the proposed approaches in applied examples in both univariable and multivariable settings, some with very weak instruments.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Animais , Cavalos , Teorema de Bayes , Simulação por Computador , Herança Multifatorial
5.
Am J Hum Genet ; 111(6): 1035-1046, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38754426

RESUMO

Obesity is a major risk factor for a myriad of diseases, affecting >600 million people worldwide. Genome-wide association studies (GWASs) have identified hundreds of genetic variants that influence body mass index (BMI), a commonly used metric to assess obesity risk. Most variants are non-coding and likely act through regulating genes nearby. Here, we apply multiple computational methods to prioritize the likely causal gene(s) within each of the 536 previously reported GWAS-identified BMI-associated loci. We performed summary-data-based Mendelian randomization (SMR), FINEMAP, DEPICT, MAGMA, transcriptome-wide association studies (TWASs), mutation significance cutoff (MSC), polygenic priority score (PoPS), and the nearest gene strategy. Results of each method were weighted based on their success in identifying genes known to be implicated in obesity, ranking all prioritized genes according to a confidence score (minimum: 0; max: 28). We identified 292 high-scoring genes (≥11) in 264 loci, including genes known to play a role in body weight regulation (e.g., DGKI, ANKRD26, MC4R, LEPR, BDNF, GIPR, AKT3, KAT8, MTOR) and genes related to comorbidities (e.g., FGFR1, ISL1, TFAP2B, PARK2, TCF7L2, GSK3B). For most of the high-scoring genes, however, we found limited or no evidence for a role in obesity, including the top-scoring gene BPTF. Many of the top-scoring genes seem to act through a neuronal regulation of body weight, whereas others affect peripheral pathways, including circadian rhythm, insulin secretion, and glucose and carbohydrate homeostasis. The characterization of these likely causal genes can increase our understanding of the underlying biology and offer avenues to develop therapeutics for weight loss.


Assuntos
Índice de Massa Corporal , Estudo de Associação Genômica Ampla , Obesidade , Humanos , Obesidade/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Herança Multifatorial/genética , Loci Gênicos , Análise da Randomização Mendeliana
6.
Am J Hum Genet ; 111(8): 1782-1795, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39053457

RESUMO

In Mendelian randomization, two single SNP-trait correlation-based methods have been developed to infer the causal direction between an exposure (e.g., a gene) and an outcome (e.g., a trait), called MR Steiger's method and its recent extension called Causal Direction-Ratio (CD-Ratio). Here we propose an approach based on R2, the coefficient of determination, to combine information from multiple (possibly correlated) SNPs to simultaneously infer the presence and direction of a causal relationship between an exposure and an outcome. Our proposed method generalizes Steiger's method from using a single SNP to multiple SNPs as IVs. It is especially useful in transcriptome-wide association studies (TWASs) (and similar applications) with typically small sample sizes for gene expression (or another molecular trait) data, providing a more flexible and powerful approach to inferring causal directions. It can be applied to GWAS summary data with a reference panel. We also discuss the influence of invalid IVs and introduce a new approach called R2S to select and remove invalid IVs (if any) to enhance the robustness. We compared the performance of the proposed method with existing methods in simulations to demonstrate its advantages. We applied the methods to identify causal genes for high/low-density lipoprotein cholesterol (HDL/LDL) using the individual-level GTEx gene expression data and UK Biobank GWAS data. The proposed method was able to confirm some well-known causal genes while identifying some novel ones. Additionally, we illustrated an application of the proposed method to GWAS summary to infer causal relationships between HDL/LDL and stroke/coronary artery disease (CAD).


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Transcriptoma , Humanos , Estudo de Associação Genômica Ampla/métodos , Transcriptoma/genética , Análise da Randomização Mendeliana/métodos , Modelos Genéticos , LDL-Colesterol/genética , LDL-Colesterol/sangue , Fenótipo
7.
Am J Hum Genet ; 111(9): 1834-1847, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39106865

RESUMO

Mendelian randomization (MR) utilizes genome-wide association study (GWAS) summary data to infer causal relationships between exposures and outcomes, offering a valuable tool for identifying disease risk factors. Multivariable MR (MVMR) estimates the direct effects of multiple exposures on an outcome. This study tackles the issue of highly correlated exposures commonly observed in metabolomic data, a situation where existing MVMR methods often face reduced statistical power due to multicollinearity. We propose a robust extension of the MVMR framework that leverages constrained maximum likelihood (cML) and employs a Bayesian approach for identifying independent clusters of exposure signals. Applying our method to the UK Biobank metabolomic data for the largest Alzheimer disease (AD) cohort through a two-sample MR approach, we identified two independent signal clusters for AD: glutamine and lipids, with posterior inclusion probabilities (PIPs) of 95.0% and 81.5%, respectively. Our findings corroborate the hypothesized roles of glutamate and lipids in AD, providing quantitative support for their potential involvement.


Assuntos
Doença de Alzheimer , Teorema de Bayes , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Metabolômica , Humanos , Doença de Alzheimer/genética , Metabolômica/métodos , Polimorfismo de Nucleotídeo Único , Glutamina/metabolismo , Glutamina/genética , Lipídeos/sangue , Lipídeos/genética
8.
Am J Hum Genet ; 111(7): 1481-1493, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38897203

RESUMO

Type 2 diabetes (T2D) is a major risk factor for heart failure (HF) and has elevated incidence among individuals with HF. Since genetics and HF can independently influence T2D, collider bias may occur when T2D (i.e., collider) is controlled for by design or analysis. Thus, we conducted a genome-wide association study (GWAS) of diabetes-related HF with correction for collider bias. We first performed a GWAS of HF to identify genetic instrumental variables (GIVs) for HF and to enable bidirectional Mendelian randomization (MR) analysis between T2D and HF. We identified 61 genomic loci, significantly associated with all-cause HF in 114,275 individuals with HF and over 1.5 million controls of European ancestry. Using a two-sample bidirectional MR approach with 59 and 82 GIVs for HF and T2D, respectively, we estimated that T2D increased HF risk (odds ratio [OR] 1.07, 95% confidence interval [CI] 1.04-1.10), while HF also increased T2D risk (OR 1.60, 95% CI 1.36-1.88). Then we performed a GWAS of diabetes-related HF corrected for collider bias due to the study design of index cases. After removing the spurious association of TCF7L2 locus due to collider bias, we identified two genome-wide significant loci close to PITX2 (chromosome 4) and CDKN2B-AS1 (chromosome 9) associated with diabetes-related HF in the Million Veteran Program and replicated the associations in the UK Biobank. Our MR findings provide strong evidence that HF increases T2D risk. As a result, collider bias leads to spurious genetic associations of diabetes-related HF, which can be effectively corrected to identify true positive loci.


Assuntos
Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Insuficiência Cardíaca , Análise da Randomização Mendeliana , Humanos , Insuficiência Cardíaca/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Masculino , Feminino , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença , Pessoa de Meia-Idade , Fatores de Risco , Idoso , Inibidor de Quinase Dependente de Ciclina p15/genética , População Branca/genética , Viés , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética
9.
Am J Hum Genet ; 111(1): 150-164, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181731

RESUMO

Treatments for neurodegenerative disorders remain rare, but recent FDA approvals, such as lecanemab and aducanumab for Alzheimer disease (MIM: 607822), highlight the importance of the underlying biological mechanisms in driving discovery and creating disease modifying therapies. The global population is aging, driving an urgent need for therapeutics that stop disease progression and eliminate symptoms. In this study, we create an open framework and resource for evidence-based identification of therapeutic targets for neurodegenerative disease. We use summary-data-based Mendelian randomization to identify genetic targets for drug discovery and repurposing. In parallel, we provide mechanistic insights into disease processes and potential network-level consequences of gene-based therapeutics. We identify 116 Alzheimer disease, 3 amyotrophic lateral sclerosis (MIM: 105400), 5 Lewy body dementia (MIM: 127750), 46 Parkinson disease (MIM: 605909), and 9 progressive supranuclear palsy (MIM: 601104) target genes passing multiple test corrections (pSMR_multi < 2.95 × 10-6 and pHEIDI > 0.01). We created a therapeutic scheme to classify our identified target genes into strata based on druggability and approved therapeutics, classifying 41 novel targets, 3 known targets, and 115 difficult targets (of these, 69.8% are expressed in the disease-relevant cell type from single-nucleus experiments). Our novel class of genes provides a springboard for new opportunities in drug discovery, development, and repurposing in the pre-competitive space. In addition, looking at drug-gene interaction networks, we identify previous trials that may require further follow-up such as riluzole in Alzheimer disease. We also provide a user-friendly web platform to help users explore potential therapeutic targets for neurodegenerative diseases, decreasing activation energy for the community.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Recursos Comunitários , Multiômica , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/genética , Análise da Randomização Mendeliana
10.
Genome Res ; 34(8): 1121-1129, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39152035

RESUMO

Natural selection acts ubiquitously on complex human traits, predominantly constraining the occurrence of extreme phenotypes (stabilizing selection). These constraints propagate to DNA sequence variants associated with traits under selection. The genetic signatures of such evolutionary events can thus be detected via combining effect size estimates from genetic association studies and the corresponding allele frequencies. Although this approach has been successfully applied to high-level traits, the prevalence and mode of selection acting on molecular traits remain poorly understood. Here, we estimate the action of natural selection on genetic variants associated with metabolite levels, an important layer of molecular traits. By leveraging summary statistics of published genome-wide association studies with large sample sizes, we find strong evidence of stabilizing selection for 15 out of 97 plasma metabolites, with nonessential amino acids displaying especially strong selection signatures. Mendelian randomization analysis reveals that metabolites under stronger stabilizing selection display larger effects on a range of clinically relevant complex traits, suggesting that maintaining a disease-free profile may be an important source of selective constraints on the metabolome. Metabolites under strong stabilizing selection in humans are also more conserved in their concentrations among diverse mammalian species, suggesting shared selective forces across micro- and macroevolutionary timescales. Overall, this study demonstrates that variation in metabolite levels among humans is frequently shaped by natural selection and this may act through their causal impact on disease susceptibility.


Assuntos
Estudo de Associação Genômica Ampla , Seleção Genética , Humanos , Estudo de Associação Genômica Ampla/métodos , Metaboloma , Fenótipo , Evolução Molecular , Frequência do Gene , Animais , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único
11.
Genome Res ; 34(9): 1276-1285, 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39332904

RESUMO

Accurate predictive models of future disease onset are crucial for effective preventive healthcare, yet longitudinal data sets linking early risk factors to subsequent health outcomes are limited. To overcome this challenge, we introduce a novel framework, Predictive Risk modeling using Mendelian Randomization (PRiMeR), which utilizes genetic effects as supervisory signals to learn disease risk predictors without relying on longitudinal data. To do so, PRiMeR leverages risk factors and genetic data from a healthy cohort, along with results from genome-wide association studies of diseases of interest. After training, the learned predictor can be used to assess risk for new patients solely based on risk factors. We validate PRiMeR through comprehensive simulations and in future type 2 diabetes predictions in UK Biobank participants without diabetes, using follow-up onset labels for validation. Moreover, we apply PRiMeR to predict future Alzheimer's disease onset from brain imaging biomarkers and future Parkinson's disease onset from accelerometer-derived traits. Overall, with PRiMeR we offer a new perspective in predictive modeling, showing it is possible to learn risk predictors leveraging genetics rather than longitudinal data.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Diabetes Mellitus Tipo 2/genética , Estudo de Associação Genômica Ampla/métodos , Doença de Alzheimer/genética , Fatores de Risco , Predisposição Genética para Doença , Doença de Parkinson/genética , Medição de Risco/métodos , Polimorfismo de Nucleotídeo Único
12.
PLoS Genet ; 20(9): e1011391, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39241053

RESUMO

Mendelian Randomization (MR) is a widely embraced approach to assess causality in epidemiological studies. Two-stage least squares (2SLS) method is a predominant technique in MR analysis. However, it can lead to biased estimates when instrumental variables (IVs) are weak. Moreover, the issue of the winner's curse could emerge when utilizing the same dataset for both IV selection and causal effect estimation, leading to biased estimates of causal effects and high false positives. Focusing on one-sample MR analysis, this paper introduces a novel method termed Mendelian Randomization with adaptive Sample-sPLitting with cross-fitting InstrumenTs (MR-SPLIT), designed to address bias issues due to IV selection and weak IVs, under the 2SLS IV regression framework. We show that the MR-SPLIT estimator is more efficient than its counterpart cross-fitting MR (CFMR) estimator. Additionally, we introduce a multiple sample-splitting technique to enhance the robustness of the method. We conduct extensive simulation studies to compare the performance of our method with its counterparts. The results underscored its superiority in bias reduction, effective type I error control, and increased power. We further demonstrate its utility through the application of a real-world dataset. Our study underscores the importance of addressing bias issues due to IV selection and weak IVs in one-sample MR analyses and provides a robust solution to the challenge.


Assuntos
Análise da Randomização Mendeliana , Análise da Randomização Mendeliana/métodos , Humanos , Viés , Simulação por Computador , Causalidade
13.
PLoS Genet ; 20(4): e1011246, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648211

RESUMO

Genome-wide association studies (GWAS) have identified many genetic loci associated with complex traits and diseases in the past 20 years. Multiple heritable covariates may be added into GWAS regression models to estimate direct effects of genetic variants on a focal trait, or to improve the power by accounting for environmental effects and other sources of trait variations. When one or more covariates are causally affected by both genetic variants and hidden confounders, adjusting for them in GWAS will produce biased estimation of SNP effects, known as collider bias. Several approaches have been developed to correct collider bias through estimating the bias by Mendelian randomization (MR). However, these methods work for only one covariate, some of which utilize MR methods with relatively strong assumptions, both of which may not hold in practice. In this paper, we extend the bias-correction approaches in two aspects: first we derive an analytical expression for the collider bias in the presence of multiple covariates, then we propose estimating the bias using a robust multivariable MR (MVMR) method based on constrained maximum likelihood (called MVMR-cML), allowing the presence of invalid instrumental variables (IVs) and correlated pleiotropy. We also established the estimation consistency and asymptotic normality of the new bias-corrected estimator. We conducted simulations to show that all methods mitigated collider bias under various scenarios. In real data analyses, we applied the methods to two GWAS examples, the first a GWAS of waist-hip ratio with adjustment for only one covariate, body-mass index (BMI), and the second a GWAS of BMI adjusting metabolomic principle components as multiple covariates, illustrating the effectiveness of bias correction.


Assuntos
Viés , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Análise da Randomização Mendeliana/métodos , Humanos , Modelos Genéticos , Índice de Massa Corporal
14.
PLoS Genet ; 20(5): e1011268, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38701081

RESUMO

Age at first sexual intercourse (AFS) and lifetime number of sexual partners (NSP) may influence the pathogenesis of uterine leiomyoma (UL) through their associations with hormonal concentrations and uterine infections. Leveraging summary statistics from large-scale genome-wide association studies conducted in European ancestry for each trait (NAFS = 214,547; NNSP = 370,711; NUL = 302,979), we observed a significant negative genomic correlation for UL with AFS (rg = -0.11, P = 7.83×10-4), but not with NSP (rg = 0.01, P = 0.62). Four specific genomic regions were identified as contributing significant local genetic correlations to AFS and UL, including one genomic region further identified for NSP and UL. Partitioning SNP-heritability with cell-type-specific annotations, a close clustering of UL with both AFS and NSP was identified in immune and blood-related components. Cross-trait meta-analysis revealed 15 loci shared between AFS/NSP and UL, including 7 novel SNPs. Univariable two-sample Mendelian randomization (MR) analysis suggested no evidence for a causal association between genetically predicted AFS/NSP and risk of UL, nor vice versa. Multivariable MR adjusting for age at menarche or/and age at natural menopause revealed a significant causal effect of genetically predicted higher AFS on a lower risk of UL. Such effect attenuated to null when age at first birth was further included. Utilizing participant-level data from the UK Biobank, one-sample MR based on genetic risk scores yielded consistent null findings among both pre-menopausal and post-menopausal females. From a genetic perspective, our study demonstrates an intrinsic link underlying sexual factors (AFS and NSP) and UL, highlighting shared biological mechanisms rather than direct causal effects. Future studies are needed to elucidate the specific mechanisms involved in the shared genetic influences and their potential impact on UL development.


Assuntos
Estudo de Associação Genômica Ampla , Leiomioma , Polimorfismo de Nucleotídeo Único , Neoplasias Uterinas , Humanos , Leiomioma/genética , Feminino , Neoplasias Uterinas/genética , Coito , Parceiros Sexuais , Adulto , Análise da Randomização Mendeliana , Predisposição Genética para Doença , Pessoa de Meia-Idade , Comportamento Sexual
15.
PLoS Genet ; 20(2): e1011157, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335242

RESUMO

The detrimental health effects of smoking are well-known, but the impact of regular nicotine use without exposure to the other constituents of tobacco is less clear. Given the increasing daily use of alternative nicotine delivery systems, such as e-cigarettes, it is increasingly important to understand and separate the effects of nicotine use from the impact of tobacco smoke exposure. Using a multivariable Mendelian randomisation framework, we explored the direct effects of nicotine compared with the non-nicotine constituents of tobacco smoke on health outcomes (lung cancer, chronic obstructive pulmonary disease [COPD], forced expiratory volume in one second [FEV-1], forced vital capacity [FVC], coronary heart disease [CHD], and heart rate [HR]). We used Genome-Wide Association Study (GWAS) summary statistics from Buchwald and colleagues, the GWAS and Sequencing Consortium of Alcohol and Nicotine, the International Lung Cancer Consortium, and UK Biobank. Increased nicotine metabolism increased the risk of COPD, lung cancer, and lung function in the univariable analysis. However, when accounting for smoking heaviness in the multivariable analysis, we found that increased nicotine metabolite ratio (indicative of decreased nicotine exposure per cigarette smoked) decreases heart rate (b = -0.30, 95% CI -0.50 to -0.10) and lung function (b = -33.33, 95% CI -41.76 to -24.90). There was no clear evidence of an effect on the remaining outcomes. The results suggest that these smoking-related outcomes are not due to nicotine exposure but are caused by the other components of tobacco smoke; however, there are multiple potential sources of bias, and the results should be triangulated using evidence from a range of methodologies.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Poluição por Fumaça de Tabaco , Humanos , Estudo de Associação Genômica Ampla , Neoplasias Pulmonares/genética , Nicotina/efeitos adversos , Nicotina/análise , Doença Pulmonar Obstrutiva Crônica/genética , Fumar/efeitos adversos , Fumar/genética , Produtos do Tabaco , Análise da Randomização Mendeliana
16.
Hum Mol Genet ; 33(2): 198-210, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-37802914

RESUMO

CYP2A6, a genetically variable enzyme, inactivates nicotine, activates carcinogens, and metabolizes many pharmaceuticals. Variation in CYP2A6 influences smoking behaviors and tobacco-related disease risk. This phenome-wide association study examined associations between a reconstructed version of our weighted genetic risk score (wGRS) for CYP2A6 activity with diseases in the UK Biobank (N = 395 887). Causal effects of phenotypic CYP2A6 activity (measured as the nicotine metabolite ratio: 3'-hydroxycotinine/cotinine) on the phenome-wide significant (PWS) signals were then estimated in two-sample Mendelian Randomization using the wGRS as the instrument. Time-to-diagnosis age was compared between faster versus slower CYP2A6 metabolizers for the PWS signals in survival analyses. In the total sample, six PWS signals were identified: two lung cancers and four obstructive respiratory diseases PheCodes, where faster CYP2A6 activity was associated with greater disease risk (Ps < 1 × 10-6). A significant CYP2A6-by-smoking status interaction was found (Psinteraction < 0.05); in current smokers, the same six PWS signals were found as identified in the total group, whereas no PWS signals were found in former or never smokers. In the total sample and current smokers, CYP2A6 activity causal estimates on the six PWS signals were significant in Mendelian Randomization (Ps < 5 × 10-5). Additionally, faster CYP2A6 metabolizer status was associated with younger age of disease diagnosis for the six PWS signals (Ps < 5 × 10-4, in current smokers). These findings support a role for faster CYP2A6 activity as a causal risk factor for lung cancers and obstructive respiratory diseases among current smokers, and a younger onset of these diseases. This research utilized the UK Biobank Resource.


Assuntos
Neoplasias Pulmonares , Doenças Respiratórias , Humanos , Nicotina/genética , Análise da Randomização Mendeliana , Fumar/efeitos adversos , Fumar/genética , Neoplasias Pulmonares/genética , Doenças Respiratórias/complicações , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo
17.
Hum Mol Genet ; 33(14): 1241-1249, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38664229

RESUMO

PURPOSE: Pathogenesis and the associated risk factors of cataracts, glaucoma, and age-related macular degeneration (AMD) remain unclear. We aimed to investigate causal relationships between circulating cytokine levels and the development of these diseases. PATIENTS AND METHODS: Genetic instrumental variables for circulating cytokines were derived from a genome-wide association study of 8293 European participants. Summary-level data for AMD, glaucoma, and senile cataract were obtained from the FinnGen database. The inverse variance weighted (IVW) was the main Mendelian randomization (MR) analysis method. The Cochran's Q, MR-Egger regression, and MR pleiotropy residual sum and outlier test were used for sensitivity analysis. RESULTS: Based on the IVW method, MR analysis demonstrated five circulating cytokines suggestively associated with AMD (SCGF-ß, 1.099 [95%CI, 1.037-1.166], P = 0.002; SCF, 1.155 [95%CI, 1.015-1.315], P = 0.029; MCP-1, 1.103 [95%CI, 1.012-1.202], P = 0.026; IL-10, 1.102 [95%CI, 1.012-1.200], P = 0.025; eotaxin, 1.086 [95%CI, 1.002-1.176], P = 0.044), five suggestively linked with glaucoma (MCP-1, 0.945 [95%CI, 0.894-0.999], P = 0.047; IL1ra, 0.886 [95%CI, 0.809-0.969], P = 0.008; IL-1ß, 0.866 [95%CI, 0.762-0.983], P = 0.027; IL-9, 0.908 [95%CI, 0.841-0.980], P = 0.014; IL2ra, 1.065 [95%CI, 1.004-1.130], P = 0.035), and four suggestively associated with senile cataract (TRAIL, 1.043 [95%CI, 1.009-1.077], P = 0.011; IL-16, 1.032 [95%CI, 1.001-1.064], P = 0.046; IL1ra, 0.942 [95%CI, 0.887-0.999], P = 0.047; FGF-basic, 1.144 [95%CI, 1.052-1.244], P = 0.002). Furthermore, sensitivity analysis results supported the above associations. CONCLUSION: This study highlights the involvement of several circulating cytokines in the development ophthalmic diseases and holds potential as viable pharmacological targets for these diseases.


Assuntos
Catarata , Citocinas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glaucoma , Degeneração Macular , Análise da Randomização Mendeliana , Humanos , Citocinas/sangue , Citocinas/genética , Catarata/sangue , Catarata/genética , Degeneração Macular/genética , Degeneração Macular/sangue , Glaucoma/genética , Glaucoma/sangue , Fatores de Risco , Polimorfismo de Nucleotídeo Único , Masculino , Feminino , Oftalmopatias/genética , Oftalmopatias/sangue
18.
Hum Mol Genet ; 33(19): 1688-1696, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39011643

RESUMO

Unlike other cancers with widespread screening (breast, colorectal, cervical, prostate, and skin), lung nodule biopsies for positive screenings have higher morbidity with clinical complications. Development of non-invasive diagnostic biomarkers could thereby significantly enhance lung cancer management for at-risk patients. Here, we leverage Mendelian Randomization (MR) to investigate the plasma proteome and metabolome for potential biomarkers relevant to lung cancer. Utilizing bidirectional MR and co-localization analyses, we identify novel associations, highlighting inverse relationships between plasma proteins SFTPB and KDELC2 in lung adenocarcinoma (LUAD) and positive associations of TCL1A with lung squamous cell carcinoma (LUSC) and CNTN1 with small cell lung cancer (SCLC). Additionally, our work reveals significant negative correlations between metabolites such as theobromine and paraxanthine, along with paraxanthine-related ratios, in both LUAD and LUSC. Conversely, positive correlations are found in caffeine/paraxanthine and arachidonate (20:4n6)/paraxanthine ratios with these cancer types. Through single-cell sequencing data of normal lung tissue, we further explore the role of lung tissue-specific protein SFTPB in carcinogenesis. These findings offer new insights into lung cancer etiology, potentially guiding the development of diagnostic biomarkers and therapeutic approaches.


Assuntos
Biomarcadores Tumorais , Neoplasias Pulmonares , Análise da Randomização Mendeliana , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Proteoma/genética , Proteoma/metabolismo , Metaboloma/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/sangue , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/sangue , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/patologia , Metabolômica/métodos
19.
Am J Hum Genet ; 110(2): 195-214, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736292

RESUMO

Evidence on the validity of drug targets from randomized trials is reliable but typically expensive and slow to obtain. In contrast, evidence from conventional observational epidemiological studies is less reliable because of the potential for bias from confounding and reverse causation. Mendelian randomization is a quasi-experimental approach analogous to a randomized trial that exploits naturally occurring randomization in the transmission of genetic variants. In Mendelian randomization, genetic variants that can be regarded as proxies for an intervention on the proposed drug target are leveraged as instrumental variables to investigate potential effects on biomarkers and disease outcomes in large-scale observational datasets. This approach can be implemented rapidly for a range of drug targets to provide evidence on their effects and thus inform on their priority for further investigation. In this review, we present statistical methods and their applications to showcase the diverse opportunities for applying Mendelian randomization in guiding clinical development efforts, thus enabling interventions to target the right mechanism in the right population group at the right time. These methods can inform investigators on the mechanisms underlying drug effects, their related biomarkers, implications for the timing of interventions, and the population subgroups that stand to gain the most benefit. Most methods can be implemented with publicly available data on summarized genetic associations with traits and diseases, meaning that the only major limitations to their usage are the availability of appropriately powered studies for the exposure and outcome and the existence of a suitable genetic proxy for the proposed intervention.


Assuntos
Descoberta de Drogas , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Causalidade , Biomarcadores , Viés
20.
Am J Hum Genet ; 110(4): 592-605, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36948188

RESUMO

Mendelian randomization (MR) is a powerful tool for causal inference with observational genome-wide association study (GWAS) summary data. Compared to the more commonly used univariable MR (UVMR), multivariable MR (MVMR) not only is more robust to the notorious problem of genetic (horizontal) pleiotropy but also estimates the direct effect of each exposure on the outcome after accounting for possible mediating effects of other exposures. Despite promising applications, there is a lack of studies on MVMR's theoretical properties and robustness in applications. In this work, we propose an efficient and robust MVMR method based on constrained maximum likelihood (cML), called MVMR-cML, with strong theoretical support. Extensive simulations demonstrate that MVMR-cML performs better than other existing MVMR methods while possessing the above two advantages over its univariable counterpart. An application to several large-scale GWAS summary datasets to infer causal relationships between eight cardiometabolic risk factors and coronary artery disease (CAD) highlights the usefulness and some advantages of the proposed method. For example, after accounting for possible pleiotropic and mediating effects, triglyceride (TG), low-density lipoprotein cholesterol (LDL), and systolic blood pressure (SBP) had direct effects on CAD; in contrast, the effects of high-density lipoprotein cholesterol (HDL), diastolic blood pressure (DBP), and body height diminished after accounting for other risk factors.


Assuntos
Doença da Artéria Coronariana , Análise da Randomização Mendeliana , Humanos , Análise da Randomização Mendeliana/métodos , Estudo de Associação Genômica Ampla , Fatores de Risco , Causalidade , Doença da Artéria Coronariana/genética , HDL-Colesterol/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA