Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35608283

RESUMO

Emerging research organisms enable the study of biology that cannot be addressed using classical 'model' organisms. New data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-seq to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis and limb development. In addition, we use short- and long-read RNA-seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Cromatina , Desenvolvimento Embrionário , Evolução Molecular , Genoma , Sequências Reguladoras de Ácido Nucleico/genética
2.
PLoS Pathog ; 19(8): e1011560, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37603557

RESUMO

The microsporidian genus Nosema is primarily known to infect insects of economic importance stimulating high research interest, while other hosts remain understudied. Nosema granulosis is one of the formally described Nosema species infecting amphipod crustaceans, being known to infect only two host species. Our first aim was to characterize Nosema spp. infections in different amphipod species from various European localities using the small subunit ribosomal DNA (SSU) marker. Second, we aimed to assess the phylogenetic diversity, host specificity and to explore the evolutionary history that may explain the diversity of gammarid-infecting Nosema lineages by performing a phylogenetic reconstruction based on RNA polymerase II subunit B1 (RPB1) gene sequences. For the host species Gammarus balcanicus, we also analyzed whether parasites were in excess in females to test for sex ratio distortion in relation with Nosema infection. We identified Nosema spp. in 316 individuals from nine amphipod species being widespread in Europe. The RPB1-based phylogenetic reconstruction using newly reported sequences and available data from other invertebrates identified 39 haplogroups being associated with amphipods. These haplogroups clustered into five clades (A-E) that did not form a single amphipod-infecting monophyletic group. Closely related sister clades C and D correspond to Nosema granulosis. Clades A, B and E might represent unknown Nosema species infecting amphipods. Host specificity seemed to be variable with some clades being restricted to single hosts, and some that could be found in several host species. We show that Nosema parasite richness in gammarid hosts is much higher than expected, illustrating the advantage of the use of RPB1 marker over SSU. Finally, we found no hint of sex ratio distortion in Nosema clade A infecting G. balcanicus. This study shows that Nosema spp. are abundant, widespread and diverse in European gammarids. Thus, Nosema is as diverse in aquatic as in terrestrial hosts.


Assuntos
Anfípodes , Nosema , Humanos , Feminino , Animais , Nosema/genética , Anfípodes/genética , Filogenia , Água Doce
3.
Proc Natl Acad Sci U S A ; 119(27): e2119297119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776546

RESUMO

Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean Parhyale hawaiensis. We find that leg development in the embryo shows stereotypic temporal patterns of gene expression. In contrast, the dynamics of gene expression during leg regeneration show a higher degree of variation related to the physiology of individual animals. A major driver of this variation is the molting cycle. We dissect the transcriptional signals of individual physiology and regeneration to obtain clearer temporal signals marking distinct phases of leg regeneration. Comparing the transcriptional dynamics of development and regeneration we find that, although the two processes use similar sets of genes, the temporal patterns in which these genes are deployed are different and cannot be systematically aligned.


Assuntos
Anfípodes , Extremidades , Regeneração , Anfípodes/embriologia , Anfípodes/genética , Animais , Embrião não Mamífero , Extremidades/embriologia , Expressão Gênica , Regeneração/genética
4.
BMC Genomics ; 25(1): 298, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509489

RESUMO

Mitochondrial genomes play important roles in studying genome evolution, phylogenetic analyses, and species identification. Amphipods (Class Malacostraca, Order Amphipoda) are one of the most ecologically diverse crustacean groups occurring in a diverse array of aquatic and terrestrial environments globally, from freshwater streams and lakes to groundwater aquifers and the deep sea, but we have a limited understanding of how habitat influences the molecular evolution of mitochondrial energy metabolism. Subterranean amphipods likely experience different evolutionary pressures on energy management compared to surface-dwelling taxa that generally encounter higher levels of predation and energy resources and live in more variable environments. In this study, we compared the mitogenomes, including the 13 protein-coding genes involved in the oxidative phosphorylation (OXPHOS) pathway, of surface and subterranean amphipods to uncover potentially different molecular signals of energy metabolism between surface and subterranean environments in this diverse crustacean group. We compared base composition, codon usage, gene order rearrangement, conducted comparative mitogenomic and phylogenomic analyses, and examined evolutionary signals of 35 amphipod mitogenomes representing 13 families, with an emphasis on Crangonyctidae. Mitogenome size, AT content, GC-skew, gene order, uncommon start codons, location of putative control region (CR), length of rrnL and intergenic spacers differed between surface and subterranean amphipods. Among crangonyctid amphipods, the spring-dwelling Crangonyx forbesi exhibited a unique gene order, a long nad5 locus, longer rrnL and rrnS loci, and unconventional start codons. Evidence of directional selection was detected in several protein-encoding genes of the OXPHOS pathway in the mitogenomes of surface amphipods, while a signal of purifying selection was more prominent in subterranean species, which is consistent with the hypothesis that the mitogenome of surface-adapted species has evolved in response to a more energy demanding environment compared to subterranean amphipods. Overall, gene order, locations of non-coding regions, and base-substitution rates points to habitat as an important factor influencing the evolution of amphipod mitogenomes.


Assuntos
Anfípodes , Genoma Mitocondrial , Humanos , Animais , Anfípodes/genética , Filogenia , Códon de Iniciação , Evolução Molecular
5.
J Invertebr Pathol ; 204: 108096, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38494086

RESUMO

The Mininucleoviridae are crustacean-infecting viruses thought to drive mortality across aquatic biomes. Three have been characterised from Carcinus maenas, Panulirus argus, and Dikerogammarus haemobaphes. We screened 202 SRA datasets (NCBI) for novel mininucleoviruses from 44 amphipod species. Three metatranscriptome datasets from Gammarus lacustris contained sequences with similarity to Dikerogammarus haemobaphes mininucleovirus. Assembly resulted in 19 transcripts, 16 were putatively polycistronic. The putative Gammarus lacustris mininucleovirus shares 46 homologues with other mininucleoviruses (similarity range: 24.07 - 78.2 %). The transcripts from this putative virus highlight its likely association with the Mininucleoviridae.


Assuntos
Anfípodes , Vírus de DNA , Transcriptoma , Animais , Vírus de DNA/genética , Anfípodes/virologia , Anfípodes/genética , Filogenia , Genoma Viral
6.
Mol Ecol ; 32(9): 2206-2218, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36808786

RESUMO

The examination of genetic structure in the deep-ocean hadal zone has focused on divergence between tectonic trenches to understand how environment and geography may drive species divergence and promote endemism. There has been little attempt to examine localized genetic structure within trenches, partly because of logistical challenges associated with sampling at an appropriate scale, and the large effective population sizes of species that can be sampled adequately may mask underlying genetic structure. Here we examine genetic structure in the superabundant amphipod Hirondellea gigas in the Mariana Trench at depths of 8126-10,545 m. RAD sequencing was used to identify 3182 loci containing 43,408 single nucleotide polymorphisms (SNPs) across individuals after stringent pruning of loci to prevent paralogous multicopy genomic regions being erroneously merged. Principal components analysis of SNP genotypes resolved no genetic structure between sampling locations, consistent with a signature of panmixia. However, discriminant analysis of principal components identified divergence between all sites driven by 301 outlier SNPs in 169 loci and significantly associated with latitude and depth. Functional annotation of loci identified differences between singleton loci used in analysis and paralogous loci pruned from the data set and also between outlier and nonoutlier loci, all consistent with hypotheses explaining the role of transposable elements driving genome dynamics. This study challenges the traditional perspective that highly abundant amphipods within a trench form a single panmictic population. We discuss the findings in relation to eco-evolutionary and ontogenetic processes operating in the deep sea, and highlight key challenges associated with population genetic analysis in nonmodel systems with inherent large effective population sizes and genomes.


Assuntos
Anfípodes , Ecossistema , Animais , Humanos , Anfípodes/genética , Genética Populacional , Densidade Demográfica
7.
Mol Ecol ; 32(18): 5028-5041, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37540037

RESUMO

Manipulation of host phenotypes by parasites is hypothesized to be an adaptive strategy enhancing parasite transmission across hosts and generations. Characterizing the molecular mechanisms of manipulation is important to advance our understanding of host-parasite coevolution. The trematode (Levinseniella byrdi) is known to alter the colour and behaviour of its amphipod host (Orchestia grillus) presumably increasing predation of amphipods which enhances trematode transmission through its life cycle. We sampled 24 infected and 24 uninfected amphipods from a salt marsh in Massachusetts to perform differential gene expression analysis. In addition, we constructed novel genomic tools for O. grillus including a de novo genome and transcriptome. We discovered that trematode infection results in upregulation of amphipod transcripts associated with pigmentation and detection of external stimuli, and downregulation of multiple amphipod transcripts implicated in invertebrate immune responses, such as vacuolar ATPase genes. We hypothesize that suppression of immune genes and the altered expression of genes associated with coloration and behaviour may allow the trematode to persist in the amphipod and engage in further biochemical manipulation that promotes transmission. The genomic tools and transcriptomic analyses reported provide new opportunities to discover how parasites alter diverse pathways underlying host phenotypic changes in natural populations.


Assuntos
Anfípodes , Parasitos , Trematódeos , Animais , Anfípodes/genética , Interações Hospedeiro-Parasita/genética , Trematódeos/genética , Fenótipo
8.
Cladistics ; 39(2): 129-143, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36576962

RESUMO

DNA sequence information has revealed many morphologically cryptic species worldwide. For animals, DNA-based assessments of species diversity usually rely on the mitochondrial cytochrome c oxidase subunit I (COI) gene. However, a growing amount of evidence indicate that mitochondrial markers alone can lead to misleading species diversity estimates due to mito-nuclear discordance. Therefore, reports of putative species based solely on mitochondrial DNA should be verified by other methods, especially in cases where COI sequences are identical for different morphospecies or where divergence within the same morphospecies is high. Freshwater amphipods are particularly interesting in this context because numerous putative cryptic species have been reported. Here, we investigated the species status of the numerous mitochondrial molecular operational taxonomic units (MOTUs) found within Echinogammarus sicilianus. We used an integrative approach combining DNA barcoding with mate selection observations, detailed morphometrics and genome-wide double digest restriction site-associated DNA sequencing (ddRAD-seq). Within a relatively small sampling area, we detected twelve COI MOTUs (divergence = 1.8-20.3%), co-occurring in syntopy at two-thirds of the investigated sites. We found that pair formation was random and there was extensive nuclear gene flow among the ten MOTUs co-occurring within the same river stretch. The four most common MOTUs were also indistinguishable with respect to functional morphology. Therefore, the evidence best fits the hypothesis of a single, yet genetically diverse, species within the main river system. The only two MOTUs sampled outside the focal area were genetically distinct at the nuclear level and may represent distinct species. Our study reveals that COI-based species delimitation can significantly overestimate species diversity, highlighting the importance of integrative taxonomy for species validation, especially in hyperdiverse complexes with syntopically occurring mitochondrial MOTUs.


Assuntos
Anfípodes , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Preferência de Acasalamento Animal , Animais , Anfípodes/genética , DNA Mitocondrial/genética , Água Doce , Polimorfismo de Nucleotídeo Único , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Preferência de Acasalamento Animal/fisiologia
9.
Mol Ecol ; 31(1): 343-355, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657344

RESUMO

Volcano-tectonic processes have been viewed as primary drivers in the formation of present-day diversity. Volcanos associated with mountain uplifts drive allopatric speciation through vicariance and may impact the surrounding areas like species pump or species attractor. However, the application of these hypotheses to aquatic fauna has rarely been tested explicitly. We tested these hypotheses in the Changbai Mountains (Mts), which are one of the most typical, active volcanic ranges in Northeast (NE) Asia with a long and turbulent geological history. The Gammarus nekkensis species complex of amphipod crustaceans, widely distributed throughout NE Asia with poor dispersal abilities and a long evolutionary history, is a suitable model for testing hypotheses of species pump or species attractor. Phylogenetic and ancestral range reconstructions demonstrated that the studied amphipod originated from the Changbai Mts ~27 Ma and diverged into eastern (Clade I) and western (Clade II) clades, which corresponds well with the initial volcanic eruption of the Changbai Mts in the Late Oligocene. The subsequent diversifications of subclades CI-3, CII-1a and CII-2a were probably driven by second and third eruptions of the Changbai Mts during the Miocene. In particular, the Changbai lineages had spread to the Russian Far East multiple times since the Early Miocene, and widely colonized the region during the Pleistocene. Our discoveries suggest that the ancient volcanos of the Changbai Mts act as species pumps in NE Asia, resulted in burst of diversification around the Changbai Mts and subsequent dispersals into adjacent regions.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Ásia , Água Doce , Filogenia , Filogeografia
10.
Mol Phylogenet Evol ; 171: 107464, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358695

RESUMO

The evolutionary origins of modern taxa are best understood as arising from the interplay of vicariance and dispersal. Vicariant events have long been considered responsible for Gondwanan distributions; such species are relics of the eponymic supercontinent on which they were thought to have originated. One such set of taxa are the freshwater members of the amphipod superfamily Hyaloidea, which due to their marine relatives and current distributions serve as an excellent model for testing vicariance and dispersal hypotheses. We investigated the evolutionary and biogeographic histories of the Hyaloidea using a molecular phylogenetic approach. Maximum likelihood analyses and Bayesian inference, using two nuclear genes and one mitochondrial gene, reveal the freshwater amphipods within the superfamily (Hyalellidae/Chiltoniidae) as a monophyletic group diverging from their extant marine ancestors during the Mesozoic. This is suggestive of the group entering freshwater relatively early, instead of geologically recent marine invasions as have been previously hypothesized. Despite the group's apparent monophyly, it is likely that marine hyaloids exploited shallow water marine/brackish habitats created following the breakup of Gondwana to invade continental freshwaters. Given the divergence times recorded and shallow cladogenetic events observed, it is possible that this occurred through multiple invasions by closely related taxa. Mesozoic invasions by the Hyaloidea suggest that freshwater members represent a much older lineage than previously considered, occupying continental freshwaters prior to the gammarids in the Cenozoic and contemporaneouslywith the crangonyctids in the Mesozoic. Our results highlight the Gondwanan origin of taxa with enigmatic distributions and the utility of amphipods for testing biogeographic hypotheses that infer the origin of freshwater taxa.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Teorema de Bayes , Água Doce , Especiação Genética , Filogenia
11.
Heredity (Edinb) ; 128(5): 325-337, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35318433

RESUMO

Understanding variation in population genetic structure, even across small distances and for species with extremely limited ranges, is critical for conservation planning and the development of effective management strategies for imperiled species. Organisms that occupy the same geographic extent can maintain different population structures, ranging from highly diverged to panmictic. Such differences can result from differences in biological characteristics such as dispersal ability or demographic history. We used microsatellite loci to evaluate population genetic structure and variation of four desert spring invertebrates having high to low dispersal ability: the lung snail Physa acuta, two species of gilled snails (Juturnia kosteri and Pyrgulopsis roswellensis; family Hydrobiidae) and the amphipod Gammarus desperatus. The study location represents entire species ranges for the micro-endemic hydrobiids and G. desperatus, while P. acuta is ubiquitous throughout much of North America. We found little evidence of significant population genetic structure for P. acuta and J. kosteri, but much more for P. roswellensis and G. desperatus. Our results demonstrate differences in habitat preference and/or dispersal ability between the species. This information provides insight into how gene flow shapes varying population genetic structure between species across small spatial scales (<100 km2). Most importantly, our results suggest that conservation agencies should not consider these micro-endemic species to be composed of single populations, but rather, that management plans for such species should account for population genetic variation across the species' ranges.


Assuntos
Anfípodes , Genética Populacional , Anfípodes/genética , Animais , Ecossistema , Fluxo Gênico , Variação Genética , Repetições de Microssatélites
12.
Microb Ecol ; 84(2): 627-637, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34545412

RESUMO

Amphipods are the dominant scavenging metazoan species in the hadal trenches at water depths below 6,000 m. The gut microbiota have been considered to be contribution to the adaptation of deep-sea organisms; however, few comparative analyses of animal gut microbiota between different isolated hadal environments have been done so far. Here, we employed high-throughput 16S rRNA sequencing to compare the gut microbial taxonomic composition and functional potential diversity of three hadal amphipod species, Hirondellea gigas, Bathycallisoma schellenbergi, and Alicella gigantea, collected from the Mariana Trench, Marceau Trench, and New Britain Trench in the Pacific Ocean, respectively. Results showed that different community compositions were detected across all the amphipod specimens based on the analyses of alpha-diversity, hierarchical cluster tree, and PCoA (principal coordinate analysis). Moreover, almost no correlation was observed between genera overrepresented in different amphipods by microbe-microbe correlations analysis, which suggested that the colonization of symbionts were host-specific. At genus level, Psychromonas was dominant in H. gigas, and Candidatus Hepatoplasma was overall dominant in A. gigantea and B. schellenbergi. Comparison of the functional potential showed that, though three hadal amphipod species shared the same predominant functional pathways, the abundances of those most shared pathways showed distinct differences across all the specimens. These findings pointed to the enrichment of particular functional pathways in the gut microbiota of the different isolated trench amphipods. Moreover, in terms of species relative abundance, alpha-diversity and beta-diversity, there was high similarity of gut microbiota between the two A. gigantea populations, which dwelled in two different localities of the same hadal trench. Altogether, this study provides an initial investigation into the gut-microbial interactions and evolution at the hadal depths within amphipod. Each of these three amphipod species would be a model taxa for future studies investigating the influence habitat difference and geography on gut-microbial communities.


Assuntos
Anfípodes , Microbioma Gastrointestinal , Microbiota , Anfípodes/genética , Animais , Oceano Pacífico , RNA Ribossômico 16S/genética
13.
Environ Sci Technol ; 56(20): 14649-14659, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36201633

RESUMO

Resistance alleles within the voltage-gated sodium channel (vgsc) have been correlated with pyrethroid resistance in wild populations of the nontarget amphipod, Hyalella azteca from California (CA), U.S.A. In the present study, we expand upon the relationship between land use and the evolution of pesticide resistance in H. azteca to develop a quantitative methodology to target and screen novel populations for resistance allele genotypes in a previously uninvestigated region of the U.S. (New England: NE). By incorporating urban land development and toxicity-normalized agricultural pesticide use indices into our site selection, we successfully identified three amino acid substitutions associated with pyrethroid resistance. One of the resistance mutations has been described in H. azteca from CA (L925I). We present the remaining two (vgsc I936F and I936V) as novel pyrethroid-resistance alleles in H. azteca based on previous work in insects and elevated cyfluthrin resistance in one NE population. Our results suggest that urban pesticide use is a strong driver in the evolution of resistance alleles in H. azteca. Furthermore, our method for resistance allele screening provides an applied framework for detecting ecosystem impairment on a nationwide scale that can be incorporated into ecological risk assessment decisions.


Assuntos
Anfípodes , Inseticidas , Praguicidas , Piretrinas , Canais de Sódio Disparados por Voltagem , Poluentes Químicos da Água , Agricultura , Anfípodes/genética , Animais , Ecossistema , Inseticidas/análise , Poluentes Químicos da Água/análise
14.
Zoolog Sci ; 39(5): 489-499, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36205370

RESUMO

The subterranean amphipod genus Pseudocrangonyx is diverse in Far East Asia, including the Japanese Archipelago. However, Pseudocrangonyx species have not been recorded from the Ryukyu Islands, which extend southwest of the Japanese Archipelago. This study describes a new species of Pseudocrangonyx, Pseudocrangonyx dunan sp. nov., from Yonaguni Island, Ryukyu Islands, Japan. Phylogenetic analyses revealed that P. dunan sp. nov. is a sister species to Pseudocrangonyx sp. 4 from Honshu Island, Japan. In addition, three monophyletic groups were found in Pseudocrangonyx, although the phylogenetic positions of several species remain unknown. Our divergence dating indicates that the differentiation of major lineages of Pseudocrangonyx, which contains species from both the Asian continent and the Japanese Archipelago, is concentrated around 20 MYA. These results suggest that the opening of the Sea of Japan is one of the major factors promoting the speciation of Pseudocrangonyx endemic to the archipelago.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Ásia , Ásia Oriental , Ilhas , Japão , Filogenia
15.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142769

RESUMO

Ancient lakes are known speciation hotspots. One of the most speciose groups in the ancient Lake Baikal are gammaroid amphipods (Crustacea: Amphipoda: Gammaroidea). There are over 350 morphological species and subspecies of amphipods in Baikal, but the extent of cryptic variation is still unclear. One of the most common species in the littoral zone of the lake, Eulimnogammarus verrucosus (Gerstfeldt, 1858), was recently found to comprise at least three (pseudo)cryptic species based on molecular data. Here, we further explored these species by analyzing their mitogenome-based phylogeny, genome sizes with flow cytometry, and their reproductive compatibility. We found divergent times of millions of years and different genome sizes in the three species (6.1, 6.9 and 8 pg), further confirming their genetic separation. Experimental crossing of the western and southern species, which are morphologically indistinguishable and have adjacent ranges, showed their separation with a post-zygotic reproductive barrier, as hybrid embryos stopped developing roughly at the onset of gastrulation. Thus, the previously applied barcoding approach effectively indicated the separate biological species within E. verrucosus. These results provide new data for investigating genome evolution and highlight the need for precise tracking of the sample origin in any studies in this morphospecies.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Crustáceos , Lagos , Filogenia , Isolamento Reprodutivo
16.
Mol Ecol ; 30(22): 5735-5751, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480774

RESUMO

Species of littoral freshwater environments in regions with continental climate experience pronounced seasonal temperature changes. Coping with long cold winters and hot summers requires specific physiological and behavioural adaptations. Endemic amphipods of Lake Baikal, Eulimnogammarus verrucosus and Eulimnogammarus cyaneus, show high metabolic activity throughout the year; E. verrucosus even reproduces in winter. In contrast, the widespread Holarctic amphipod Gammarus lacustris overwinters in torpor. This study investigated the transcriptomic hallmarks of E. verrucosus, E. cyaneus and G. lacustris exposed to low water temperatures. Amphipods were exposed to 1.5°C and 12°C (corresponding to the mean winter and summer water temperatures, respectively, in the Baikal littoral) for one month. At 1.5°C, G. lacustris showed upregulation of ribosome biogenesis and mRNA processing genes, as well as downregulation of genes related to growth, reproduction and locomotor activity, indicating enhanced energy allocation to somatic maintenance. Our results suggest that the mitogen-activated protein kinase (MAPK) signalling pathway is involved in the preparation for hibernation; downregulation of the actin cytoskeleton pathway genes could relate to the observed low locomotor activity of G. lacustris at 1.5°C. The differences between the transcriptomes of E. verrucosus and E. cyaneus from the 1.5°C and 12°C exposures were considerably smaller than for G. lacustris. In E. verrucosus, cold-exposure triggered reproductive activity was indicated by upregulation of respective genes, whereas in E. cyaneus, genes related to mitochondria functioning were upregulated, indicating cold compensation in this species. Our data elucidate the molecular characteristics behind the different adaptations of amphipod species from the Lake Baikal area to winter conditions.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Temperatura Baixa , Lagos , Especificidade da Espécie , Transcriptoma
17.
Mol Ecol ; 30(24): 6551-6565, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597440

RESUMO

Theory predicts that the distribution of genetic diversity in a landscape is strongly dependent on the connectivity of the metapopulation and the dispersal of individuals between patches. However, the influence of explicit spatial configurations such as dendritic landscapes on the genetic diversity of metapopulations is still understudied, and theoretical corroborations of empirical patterns are largely lacking. Here, we used microsatellite data and stochastic simulations of two metapopulations of freshwater amphipods in a 28,000 km2 riverine network to study the influence of spatial connectivity and dispersal strategies on the spatial distribution of their genetic diversity. We found a significant imprint of the effects of riverine network connectivity on the local and global genetic diversity of both amphipod species. Data from 95 sites showed that allelic richness significantly increased towards more central nodes of the network. This was also seen for observed heterozygosity, yet not for expected heterozygosity. Genetic differentiation increased with instream distance. In simulation models, depending on the mutational model assumed, upstream movement probability and dispersal rate, respectively, emerged as key factors explaining the empirically observed distribution of local genetic diversity and genetic differentiation. Surprisingly, the role of site-specific carrying capacities, for example by assuming a direct dependency of population size on local river size, was less clear cut: while our best fitting model scenario included this feature, over all simulations, scaling of carrying capacities did not increase data-model fit. This highlights the importance of dispersal behaviour along spatial networks in shaping population genetic diversity.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Ecossistema , Água Doce , Variação Genética , Humanos , Repetições de Microssatélites/genética
18.
J Evol Biol ; 34(10): 1653-1661, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34424594

RESUMO

Sex allocation theory predicts that the proportion of daughters to sons will evolve in response to ecological conditions that determine the costs and benefits of producing each sex. All else being equal, the adult sex ratio (ASR) should also vary with ecological conditions. Many studies of subterranean species reported female-biased ASR, but no systematic study has yet been conducted. We test the hypothesis that the ASR becomes more female-biased with increased isolation from the surface. We compiled a data set of ASRs of 35 species in the subterranean amphipod Niphargus, each living in one of three distinct habitats (surface-subterranean boundary, cave streams, phreatic lakes) representing an environmental gradient of increased isolation underground. The ASR was female-biased in 27 of 35 species; the bias was statistically significant in 12 species. We found a significant difference in the ASR among habitats after correction for phylogeny. It is most weakly female-biased at the surface-subterranean boundary and most strongly female-biased in phreatic lakes. Additional modelling suggests that the ASR has evolved towards a single value for both surface-subterranean boundary and cave stream-dwelling species, and another value for 9 of 11 phreatic lake dwellers. We suggest that a history of inbreeding in subterranean populations might lower inbreeding depression such that kin selection favours mating with siblings. This could select for a female-biased offspring sex ratio due to local mate competition among brothers. The observed patterns in sex ratios in subterranean species make them a group worthy of more attention from those interested in sex allocation theory.


Assuntos
Anfípodes , Anfípodes/genética , Animais , Cavernas , Ecossistema , Feminino , Masculino , Filogenia , Razão de Masculinidade
19.
Environ Sci Technol ; 55(9): 6087-6096, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33852288

RESUMO

Anthropogenic micropollutants alter chemical and ecological conditions of freshwater ecosystems and impact aquatic species that live along the pollution gradient of a river. Species sensitivity to micropollutants depends on the site-specific exposure; however, it remains unclear to what degree this sensitivity relates to the species' genetic structure. Here, we explored the relationship between the toxic sensitivity and genetic structure of the amphipod species Gammarus pulex (Linnaeus, 1758) along an organic micropollutant gradient in the Holtemme River in central Germany. We determined the river's site-specific micropollutant patterns and analyzed the genetic structure of G. pulex using nuclear and mitochondrial genetic markers. Furthermore, we examined the exposure sensitivities and bioaccumulation of the commonly detected insecticide imidacloprid in G. pulex from different sites. Our results show that throughout the Holtemme River, G. pulex forms a well-connected and homogeneous population with no observable pollution-related differences in the genetic structure. However, G. pulex from polluted sites responded more sensitively to imidacloprid; survival times for half of the amphipods were up to 54% shorter, the percentage of immobile individuals increased up to 65%, and the modeled imidacloprid depuration rate was lower in comparison to amphipods from non-polluted sites. Altogether, these results suggest that the level of sensitivity of G. pulex amphipods to micropollutants in the river depends on the degree of pollution: amphipods may thrive in food-rich but polluted habitats; yet, their sensitivity is increased when chronically exposed to organic micropollutants.


Assuntos
Anfípodes , Poluentes Químicos da Água , Anfípodes/genética , Animais , Ecossistema , Água Doce , Alemanha , Humanos , Rios , Poluentes Químicos da Água/toxicidade
20.
Mar Drugs ; 19(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923820

RESUMO

Long-chain (C20-24) polyunsaturated fatty acids (LC-PUFAs) are essential nutrients that are mostly produced in marine ecosystems. Previous studies suggested that gammarids have some capacity to endogenously produce LC-PUFAs. This study aimed to investigate the repertoire and functions of elongation of very long-chain fatty acid (Elovl) proteins in gammarids. Our results show that gammarids have, at least, three distinct elovl genes with putative roles in LC-PUFA biosynthesis. Phylogenetics allowed us to classify two elongases as Elovl4 and Elovl6, as they were bona fide orthologues of vertebrate Elovl4 and Elovl6. Moreover, a third elongase was named as "Elovl1/7-like" since it grouped closely to the Elovl1 and Elovl7 found in vertebrates. Molecular analysis of the deduced protein sequences indicated that the gammarid Elovl4 and Elovl1/7-like were indeed polyunsaturated fatty acid (PUFA) elongases, whereas Elovl6 had molecular features typically found in non-PUFA elongases. This was partly confirmed in the functional assays performed on the marine gammarid Echinogammarus marinus Elovl, which showed that both Elovl4 and Elovl1/7-like elongated PUFA substrates ranging from C18 to C22. E. marinus Elovl6 was only able to elongate C18 PUFA substrates, suggesting that this enzyme does not play major roles in the LC-PUFA biosynthesis of gammarids.


Assuntos
Anfípodes/enzimologia , Clonagem Molecular , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados/biossíntese , Anfípodes/genética , Animais , Evolução Molecular , Elongases de Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica , Filogenia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA