Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 681
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 582(7811): 240-245, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499647

RESUMO

Meta-analyses of genome-wide association studies (GWAS) have identified more than 240 loci that are associated with type 2 diabetes (T2D)1,2; however, most of these loci have been identified in analyses of individuals with European ancestry. Here, to examine T2D risk in East Asian individuals, we carried out a meta-analysis of GWAS data from 77,418 individuals with T2D and 356,122 healthy control individuals. In the main analysis, we identified 301 distinct association signals at 183 loci, and across T2D association models with and without consideration of body mass index and sex, we identified 61 loci that are newly implicated in predisposition to T2D. Common variants associated with T2D in both East Asian and European populations exhibited strongly correlated effect sizes. Previously undescribed associations include signals in or near GDAP1, PTF1A, SIX3, ALDH2, a microRNA cluster, and genes that affect the differentiation of muscle and adipose cells3. At another locus, expression quantitative trait loci at two overlapping T2D signals affect two genes-NKX6-3 and ANK1-in different tissues4-6. Association studies in diverse populations identify additional loci and elucidate disease-associated genes, biology, and pathways.


Assuntos
Povo Asiático/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Aldeído-Desidrogenase Mitocondrial/genética , Alelos , Anquirinas/genética , Índice de Massa Corporal , Estudos de Casos e Controles , Europa (Continente)/etnologia , Proteínas do Olho/genética , Ásia Oriental/etnologia , Feminino , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/genética , Humanos , Masculino , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/análise , Fatores de Transcrição/genética , Transcrição Gênica , Proteína Homeobox SIX3
2.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195288

RESUMO

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Assuntos
Segmento Inicial do Axônio , Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Segmento Inicial do Axônio/metabolismo , Anquirinas/genética , Anquirinas/metabolismo , Neurônios/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
3.
Mol Psychiatry ; 28(4): 1747-1769, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36604605

RESUMO

Copy number variations (CNVs) are associated with psychiatric and neurodevelopmental disorders (NDDs), and most, including the recurrent 15q13.3 microdeletion disorder, have unknown disease mechanisms. We used a heterozygous 15q13.3 microdeletion mouse model and patient iPSC-derived neurons to reveal developmental defects in neuronal maturation and network activity. To identify the underlying molecular dysfunction, we developed a neuron-specific proximity-labeling proteomics (BioID2) pipeline, combined with patient mutations, to target the 15q13.3 CNV genetic driver OTUD7A. OTUD7A is an emerging independent NDD risk gene with no known function in the brain, but has putative deubiquitinase function. The OTUD7A protein-protein interaction network included synaptic, axonal, and cytoskeletal proteins and was enriched for ASD and epilepsy risk genes (Ank3, Ank2, SPTAN1, SPTBN1). The interactions between OTUD7A and Ankyrin-G (Ank3) and Ankyrin-B (Ank2) were disrupted by an epilepsy-associated OTUD7A L233F variant. Further investigation of Ankyrin-G in mouse and human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed protein instability, increased polyubiquitination, and decreased levels in the axon initial segment, while structured illumination microscopy identified reduced Ankyrin-G nanodomains in dendritic spines. Functional analysis of human 15q13.3 microdeletion and OTUD7AL233F/L233F models revealed shared and distinct impairments to axonal growth and intrinsic excitability. Importantly, restoring OTUD7A or Ankyrin-G expression in 15q13.3 microdeletion neurons led to a reversal of abnormalities. These data reveal a critical OTUD7A-Ankyrin pathway in neuronal development, which is impaired in the 15q13.3 microdeletion syndrome, leading to neuronal dysfunction. Furthermore, our study highlights the utility of targeting CNV genes using cell type-specific proteomics to identify shared and unexplored disease mechanisms across NDDs.


Assuntos
Anquirinas , Epilepsia , Humanos , Camundongos , Animais , Anquirinas/genética , Variações do Número de Cópias de DNA , Epilepsia/genética , Neurônios
4.
Cereb Cortex ; 33(20): 10634-10648, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642601

RESUMO

Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex mediated by class 3 Semaphorins and the L1 cell adhesion molecules, neuron-glia related cell adhesion molecule, Close Homolog of L1, and L1. L1 cell adhesion molecules bind Ankyrin B, an actin-spectrin adaptor encoded by Ankyrin2, a high-confidence gene for autism spectrum disorder. In a new inducible mouse model (Nex1Cre-ERT2: Ank2flox: RCE), Ankyrin2 deletion in early postnatal pyramidal neurons increased spine density on apical dendrites in prefrontal cortex layer 2/3 of homozygous and heterozygous Ankyrin2-deficient mice. In contrast, Ankyrin2 deletion in adulthood had no effect on spine density. Sema3F-induced spine pruning was impaired in cortical neuron cultures from Ankyrin B-null mice and was rescued by re-expression of the 220 kDa Ankyrin B isoform but not 440 kDa Ankyrin B. Ankyrin B bound to neuron-glia related CAM at a cytoplasmic domain motif (FIGQY1231), and mutation to FIGQH inhibited binding, impairing Sema3F-induced spine pruning in neuronal cultures. Identification of a novel function for Ankyrin B in dendritic spine regulation provides insight into cortical circuit development, as well as potential molecular deficiencies in autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Espinhas Dendríticas , Camundongos , Animais , Espinhas Dendríticas/fisiologia , Anquirinas/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Células Piramidais/fisiologia , Córtex Pré-Frontal/metabolismo , Camundongos Knockout
5.
BMC Psychiatry ; 24(1): 335, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702695

RESUMO

OBJECTIVE: Alcohol withdrawal syndrome (AWS) is a complex condition associated with alcohol use disorder (AUD), characterized by significant variations in symptom severity among patients. The psychological and emotional symptoms accompanying AWS significantly contribute to withdrawal distress and relapse risk. Despite the importance of neural adaptation processes in AWS, limited genetic investigations have been conducted. This study primarily focuses on exploring the single and interaction effects of single-nucleotide polymorphisms in the ANK3 and ZNF804A genes on anxiety and aggression severity manifested in AWS. By examining genetic associations with withdrawal-related psychopathology, we ultimately aim to advance understanding the genetic underpinnings that modulate AWS severity. METHODS: The study involved 449 male patients diagnosed with alcohol use disorder. The Self-Rating Anxiety Scale (SAS) and Buss-Perry Aggression Questionnaire (BPAQ) were used to assess emotional and behavioral symptoms related to AWS. Genomic DNA was extracted from peripheral blood, and genotyping was performed using PCR. RESULTS: Single-gene analysis revealed that naturally occurring allelic variants in ANK3 rs10994336 (CC homozygous vs. T allele carriers) were associated with mood and behavioral symptoms related to AWS. Furthermore, the interaction between ANK3 and ZNF804A was significantly associated with the severity of psychiatric symptoms related to AWS, as indicated by MANOVA. Two-way ANOVA further demonstrated a significant interaction effect between ANK3 rs10994336 and ZNF804A rs7597593 on anxiety, physical aggression, verbal aggression, anger, and hostility. Hierarchical regression analyses confirmed these findings. Additionally, simple effects analysis and multiple comparisons revealed that carriers of the ANK3 rs10994336 T allele experienced more severe AWS, while the ZNF804A rs7597593 T allele appeared to provide protection against the risk associated with the ANK3 rs10994336 mutation. CONCLUSION: This study highlights the gene-gene interaction between ANK3 and ZNF804A, which plays a crucial role in modulating emotional and behavioral symptoms related to AWS. The ANK3 rs10994336 T allele is identified as a risk allele, while the ZNF804A rs7597593 T allele offers protection against the risk associated with the ANK3 rs10994336 mutation. These findings provide initial support for gene-gene interactions as an explanation for psychiatric risk, offering valuable insights into the pathophysiological mechanisms involved in AWS.


Assuntos
Anquirinas , Fatores de Transcrição Kruppel-Like , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Anquirinas/genética , Adulto , Fatores de Transcrição Kruppel-Like/genética , Pessoa de Meia-Idade , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/psicologia , Alcoolismo/genética , Alcoolismo/psicologia , Agressão/psicologia , Agressão/fisiologia , Ansiedade/genética , Ansiedade/psicologia , Epistasia Genética , Sintomas Comportamentais/genética , Predisposição Genética para Doença/genética , Alelos
6.
PLoS Genet ; 17(6): e1009594, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34097698

RESUMO

The number of grains per panicle is an important yield-related trait in cereals which depends in part on panicle branching complexity. One component of this complexity is the number of secondary branches per panicle. Previously, a GWAS site associated with secondary branch and spikelet numbers per panicle in rice was identified. Here we combined gene capture, bi-parental genetic population analysis, expression profiling and transgenic approaches in order to investigate the functional significance of a cluster of 6 ANK and ANK-TPR genes within the QTL. Four of the ANK and ANK-TPR genes present a differential expression associated with panicle secondary branch number in contrasted accessions. These differential expression patterns correlate in the different alleles of these genes with specific deletions of potential cis-regulatory sequences in their promoters. Two of these genes were confirmed through functional analysis as playing a role in the control of panicle architecture. Our findings indicate that secondary branching diversity in the rice panicle is governed in part by differentially expressed genes within this cluster encoding ANK and ANK-TPR domain proteins that may act as positive or negative regulators of panicle meristem's identity transition from indeterminate to determinate state.


Assuntos
Anquirinas/genética , Oryza/genética , Sequências Repetitivas de Ácido Nucleico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Locos de Características Quantitativas
7.
BMC Genomics ; 24(1): 304, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280519

RESUMO

BACKGROUND: Hereditary spherocytosis (HS) is a common inherited hemolytic anemia, caused by mutations in five genes that encode erythrocyte membrane skeleton proteins. The red blood cell (RBC) lifespan could directly reflect the degree of hemolysis. In the present cohort of 23 patients with HS, we performed next-generation sequencing (NGS) and Levitt's carbon monoxide (CO) breath test to investigate the potential genotype-degree of hemolysis correlation. RESULTS: In the present cohort, we identified 8 ANK1,9 SPTB,5 SLC4A1 and 1 SPTA1 mutations in 23 patients with HS, and the median RBC lifespan was 14(8-48) days. The median RBC lifespan of patients with ANK1, SPTB and SLC4A1 mutations was 13 (8-23), 13 (8-48) and 14 (12-39) days, respectively, with no statistically significant difference (P = 0.618). The median RBC lifespan of patients with missense, splice and nonsense/insertion/deletion mutations was 16.5 (8-48), 14 (11-40) and 13 (8-20) days, respectively, with no significant difference (P = 0.514). Similarly, we found no significant difference in the RBC lifespan of patients with mutations located in the spectrin-binding domain and the nonspectrin-binding domain [14 (8-18) vs. 12.5 (8-48) days, P = 0.959]. In terms of the composition of mutated genes, 25% of patients with mild hemolysis carried ANK1 or SPTA1 mutations, while 75% of patients with mild hemolysis carried SPTB or SLC4A1 mutations. In contrast, 46.7% of patients with severe hemolysis had ANK1 or SPTA1 mutations and 53.3% of patients with severe hemolysis had SPTB or SLC4A1 mutations. However, there was no statistically significant difference in the distribution of mutated genes between the two groups (P = 0.400). CONCLUSION: The present study is the first to investigate the potential association between genotype and degree of hemolysis in HS. The present findings indicated that there is no significant correlation between genotype and degree of hemolysis in HS.


Assuntos
Hemólise , Esferocitose Hereditária , Humanos , Anquirinas/genética , Anquirinas/metabolismo , Espectrina/genética , Espectrina/metabolismo , Esferocitose Hereditária/genética , Esferocitose Hereditária/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Mutação , Genótipo
8.
Mol Genet Genomics ; 298(2): 427-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36598564

RESUMO

Hereditary Spherocytosis (HS) is a common cause of hemolytic anemia varying from mild to severe hemolysis due to defects in red cell membrane protein genes, namely ANK1, SPTB, SPTA1, SLC4A1, and EPB42. These genes are considerably very large spaning 40-50 exons making gene-by-gene analysis costly and laborious by conventional methods. In this study, we explored 26 HS patients harboring 21 ANK1 variants identified by next-generation sequencing (NGS), characteristics and spectrum of the detected ANK1variants were analyzed in this study. Clinically, all the HS patients showed moderate to severe transfusion-dependent hemolytic anemia, some requiring splenectomy. We identified 13 novel and 8 reported variants, mainly 9 frameshifts, 2 missense, 6 nonsense, and 4 splice site ANK1 variants, using NGS technology. Frameshifts were remarkably the most common variant type seen in Indian HS patients with ANK1 gene defects. We have also explored expression levels of red cell membrane ankyrin protein by flow cytometry in 14 HS patients with ANK1 gene defects and a significant reduction in ankyrin protein expression has been found. This report mainly illustrates the molecular and phenotypic heterogeneity of ANK1 variants causing HS in Indian patients. Ankyrin-1 mutations are a significant cause of loss of function in dominant HS in the Indian population. Comprehensive genetic and phenotypic evaluation assists in implementing the knowledge of genetic patterns and spectrum of ANK1 gene variants, providing molecular support for HS diagnosis.


Assuntos
Anquirinas , Esferocitose Hereditária , Humanos , Anquirinas/genética , Anquirinas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana/genética , Mutação , Esferocitose Hereditária/genética , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/metabolismo
9.
Clin Genet ; 104(3): 384-386, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37088467

RESUMO

Interestingly, disease-causing mutations in the ANK2 gene have been identified in patients with autism since 2012, though with no full clinical description. In this Research Letter, for the first time, we describe the detailed characteristics of a patient with autism caused by a new mutation in this gene. Our report is a first step to better understanding ANK2-related autism and will contribute to facilitating its further diagnosis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Mutação , Fenótipo , Transtorno do Espectro Autista/genética , Anquirinas/genética
10.
Cell ; 135(7): 1189-200, 2008 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-19109891

RESUMO

beta-dystroglycan (DG) and the dystrophin-glycoprotein complex (DGC) are localized at costameres and neuromuscular junctions in the sarcolemma of skeletal muscle. We present evidence for an ankyrin-based mechanism for sarcolemmal localization of dystrophin and beta-DG. Dystrophin binds ankyrin-B and ankyrin-G, while beta-DG binds ankyrin-G. Dystrophin and beta-DG require ankyrin-G for retention at costameres but not delivery to the sarcolemma. Dystrophin and beta-DG remain intracellular in ankyrin-B-depleted muscle, where beta-DG accumulates in a juxta-TGN compartment. The neuromuscular junction requires ankyrin-B for localization of dystrophin/utrophin and beta-DG and for maintenance of its postnatal morphology. A Becker muscular dystrophy mutation reduces ankyrin binding and impairs sarcolemmal localization of dystrophin-Dp71. Ankyrin-B also binds to dynactin-4, a dynactin subunit. Dynactin-4 and a subset of microtubules disappear from sarcolemmal sites in ankyrin-B-depleted muscle. Ankyrin-B thus is an adaptor required for sarcolemmal localization of dystrophin, as well as dynactin-4.


Assuntos
Anquirinas/metabolismo , Costâmeros/metabolismo , Distroglicanas/metabolismo , Distrofina/metabolismo , Junção Neuromuscular/metabolismo , Sequência de Aminoácidos , Animais , Anquirinas/química , Anquirinas/genética , Complexo Dinactina , Distrofina/genética , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Sarcolema/metabolismo , Alinhamento de Sequência
11.
BMC Pediatr ; 23(1): 23, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647015

RESUMO

BACKGROUND AND AIMS: Hereditary spherocytosis (HS) is one of the most common hereditary haemolytic disorders. Here, two unrelated families with the probands displaying typical manifestations of HS were enrolled. Our study aimed to characterize the effect of two novel variants in HS patients on gene splicing to help minimize the rate of misdiagnosis of HS and enhance clinicians' understanding of the disease. PARTICIPANTS AND METHODS: A retrospective review was conducted. Peripheral blood samples were collected from all the family members, and genomic DNA was extracted for genetic diagnostics. First, high-throughput sequencing technology was used for the preliminary screening of candidate causative variants. Thereafter, the variants were verified via Sanger sequencing. Furthermore, a pathogenicity analysis of the detected variants was performed including in silico prediction and in vitro experiments. We constructed matched wild-type and mutant-type minigene plasmid of ANK1 based on HEK293T cells to address the effects of variants on mRNA splicing. RESULTS: The c.1305 + 2 T > A (family1) and c.1305 + 2del (family2) variants were detected in the ANK1 gene. These two de novo mutations described by us which have not been reported prior to this study. Moreover, the validation results of splicing reporter systems revealed that the intronic mutations resulted in abnormal pre-mRNA splicing. Specifically, the minigene plasmid expressing the c.1305 + 2 T > A variant transcribed the two aberrant transcripts: r.1305_1306ins1305 + 1_1305 + 229 and r.1305_1306ins1305 + 1_1305 + 552. The minigene plasmid expressing c.1305 + 2del transcribed the two aberrant transcripts: r.1305_1306ins1305 + 1_1305 + 228 and r.1305_1306ins1305 + 1_1305 + 551. CONCLUSION: The two de novo variants identified in the ANK1 gene were the genetic etiology of the probands with HS in our study. Our findings further enrich the HS genotype database and provide a basis for genetic counselling and molecular diagnosis.


Assuntos
Precursores de RNA , Esferocitose Hereditária , Criança , Humanos , Anquirinas/genética , População do Leste Asiático , Células HEK293 , Mutação , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética
12.
BMC Pediatr ; 23(1): 267, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246216

RESUMO

BACKGROUND: Due to the heterogeneity of the phenotype of Hereditary spherocytosis (HS) patients, some patients may have rare clinical complications such as biliary obstruction and ultra-high bilirubinemia. CASE PRESENTATION: A 8-y-old boy presented to the emergency with complaints of anemia for 6 years and worsened abdominal pain and scleral yellowing of the skin for 2 days. Physical examination showed tenderness in the middle and upper abdomen and splenomegaly. Abdominal CT revealed biliary obstruction. Genetic analysis revealed a de novo mutation in the gene ANK1, HS with biliary obstruction was diagnosed. The surgery of bile duct exploration and T-tube drainage, and splenectomy were performed successively. This patient was followed up for 13 months after splenectomy, and his condition was stable. CONCLUSION: The diagnosis of HS is not clinically difficult, and once a patient with HS is diagnosed, regular follow-up management and standardized treatment are required. Genetic testing is also needed to screen for other genetic disorders that may co-exist in patients with HS who do not have a good efficacy or who have a long-term chronic onset of jaundice.


Assuntos
Colestase , Esferocitose Hereditária , Humanos , Criança , Mutação , Anquirinas/genética , Esferocitose Hereditária/complicações , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Fenótipo
13.
Genes Dev ; 29(22): 2377-90, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26588990

RESUMO

Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/crescimento & desenvolvimento , Fosfoproteínas Fosfatases/metabolismo , Animais , Anquirinas/genética , Anquirinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Mutação , Neurônios/enzimologia , Fosfoproteínas Fosfatases/genética , Poliadenilação , Ligação Proteica
14.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069343

RESUMO

Congenital defects of the erythrocyte membrane are common in northern Europe and all over the world. The resulting diseases, for example, hereditary spherocytosis (HS), are often underdiagnosed, partly due to their sometimes mild and asymptomatic courses. In addition to a broad clinical spectrum, this is also due to the occasionally complex diagnostics that are not available to every patient. To test whether next-generation sequencing (NGS) could replace time-consuming spherocytosis-specific functional tests, 22 consecutive patients with suspected red cell membranopathy underwent functional blood tests. We were able to identify the causative genetic defect in all patients with suspected HS who underwent genetic testing (n = 17). The sensitivity of the NGS approach, which tests five genes (ANK1 (gene product: ankyrin1), EPB42 (erythrocyte membrane protein band4.2), SLC4A1 (band3), SPTA1 (α-spectrin), and SPTB (ß-spectrin)), was 100% (95% confidence interval: 81.5-100.0%). The major advantage of genetic testing in the paediatric setting is the small amount of blood required (<200 µL), and compared to functional assays, sample stability is not an issue. The combination of medical history, basic laboratory parameters, and an NGS panel with five genes is sufficient for diagnosis in most cases. Only in rare cases, a more comprehensive functional screening is required.


Assuntos
Anquirinas , Esferocitose Hereditária , Humanos , Criança , Anquirinas/genética , Anquirinas/metabolismo , Mutação , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Espectrina/genética , Espectrina/metabolismo , Proteínas do Citoesqueleto/genética , Sequenciamento de Nucleotídeos em Larga Escala
15.
Biochem Biophys Res Commun ; 605: 45-50, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313230

RESUMO

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by altered social communication, restricted interests, and stereotypic behaviors. Although the molecular and cellular pathogeneses of ASD remain elusive, impaired neural stem cell differentiation and neuronal migration during cortical development are suggested to be critically involved in ASD. ANK2, which encodes for a cytoskeletal scaffolding protein involved in recruiting membrane proteins into specialized membrane domains, has been identified as a high-confidence ASD risk gene. However, the role of ANK2 in early neural development remains unclear. In this study, we analyzed the role of ANK2 in the cerebral cortex of developing mouse using in utero electroporation. We provide evidence suggesting that ANK2 regulates neural stem cell differentiation and neuronal migration in the embryonic cerebral cortex, where Ank2 is highly expressed. We also demonstrated that Ank2 knockdown alters the expression of genes involved in neural development. Taken together, these results support the view that ANK2 haploinsufficiency in patients may impair neural development, resulting in an increased risk of ASD. Our study findings provide new insights into the molecular and cellular pathogenesis of ASD, given that among high-confidence ASD genes, ANK2 is rare in that it encodes for a scaffolding protein for the membrane protein complex required for neuronal functions.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Células-Tronco Neurais , Animais , Anquirinas/genética , Anquirinas/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/metabolismo
16.
Genet Med ; 24(5): 1073-1084, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35034853

RESUMO

PURPOSE: Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. METHODS: Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. RESULTS: Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. CONCLUSION: We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis.


Assuntos
Coloboma , Microftalmia , Animais , Anquirinas/genética , Anquirinas/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Coloboma/genética , Testes Genéticos , Humanos , Camundongos , Microftalmia/genética , Fenótipo , Peixe-Zebra/genética
17.
Clin Genet ; 102(6): 474-482, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36071563

RESUMO

Hereditary spherocytosis (HS) is a prevalent inherited hemolytic disorder primarily reported in Caucasians. Recently, next-generation sequencing (NGS) techniques have shown tremendous potential in the diagnosis of HS. HS commonly originates from variants in ANK1, SPTB, SLC4A1, SPTA1, and EPB42. This review is focused on 13 previous clinical studies on genotype-phenotype correlation, which might promote the role of causative variants in the diagnosis and prognosis of HS. Most studies have focused on the pediatric population and Asian countries. The occurrence of novel variants was common in each cohort, and variants with a high frequency of causative genes were demonstrated. In conclusion, patients with variants in SPTA1 and SLC4A1 were reported to have more severe and milder anemia, respectively. ANK1 and SPTB are the most common variants in patients with HS, and no significant difference in phenotypes was observed between patients with variants in ANK1 versus SPTB. The types and locations of variants might influence the phenotype of each genotype, whereas the roles of concomitant pathogenic genes and the source of variants deserve further investigation.


Assuntos
Anquirinas , Esferocitose Hereditária , Criança , Humanos , Anquirinas/genética , Mutação , Esferocitose Hereditária/diagnóstico , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas do Citoesqueleto/genética
18.
Acta Haematol ; 145(6): 575-581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817016

RESUMO

Hereditary spherocytosis (HS) is a congenital disease in which erythrocyte membranes are abnormal, with ANK1 defects as the main cause. The diagnosis of neonatal HS is difficult due to poor phenotypic specificity. Therefore, a detailed inquiry into family history may be helpful for diagnosis. Here, we describe a familial case of HS caused by a novel mutation in ANK1. The proband is a premature infant of Chinese Han ethnicity characterized by progressive aggravation of anemia and jaundice. The disease was caused by a frameshift mutation (c.3392delT/p.Leu1131Argfs*15) of ANK1 that was identified by genetic testing. In vitro functional experiments showed that this variant may seriously affect the protein expression and further expanded the mutation spectrum of ANK1-HS. In this case, we emphasize the diagnostic value of early-intervention genetic testing for neonatal hemolytic anemia with a family history.


Assuntos
Anquirinas , Esferocitose Hereditária , Lactente , Recém-Nascido , Humanos , Anquirinas/genética , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Mutação , Povo Asiático , Testes Genéticos
19.
Ann Noninvasive Electrocardiol ; 27(4): e12933, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35224819

RESUMO

Inherited cardiac arrhythmias (ICA) have become one of the leading causes of sudden cardiac death in people under 40 years old. Variants in the ankyrin-B or ankyrin-2 genes will result in several cardiac arrhythmias ranging from sinus node dysfunction to life-threatening arrhythmias. In this case study, we report a typical ankyrin-2 variant, in which ventricular tachyarrhythmias might be reproduced through exercise or stress tests.


Assuntos
Anquirinas , Eletrocardiografia , Adulto , Anquirinas/genética , Arritmias Cardíacas , Morte Súbita Cardíaca/etiologia , Humanos
20.
BMC Pulm Med ; 22(1): 483, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539782

RESUMO

BACKGROUND: Immune checkpoint inhibitors (ICIs) have been shown to significantly improve the survival of patients with advanced lung adenocarcinoma (LUAD). However, only limited proportion of patients could benefit from ICIs. Novel biomarkers with strong predictability are needed for clinicians to maximize the efficacy of ICIs. Our study aimed to identify potential biomarkers predicting ICIs efficacy in LUAD. METHODS: The Cancer Genome Atlas (TCGA) PanCancer Atlas studies in cBioportal were used to evaluate the mutation frequency of ANK2 across multiple cancers. Clinical and mutational data for LUAD from ICIs-treated cohorts (Hellmann et al. and Rizvi et al.) were collected to explore the correlation between ANK2 mutation and clinical outcomes. In addition, the relationship between ANK2 expression and clinical outcomes was analyzed using LUAD data from TCGA and Gene Expression Omnibus. Furthermore, the impact of ANK2 mutation and expression on the tumor immune microenvironment of LUAD was analyzed using TCGA and TISIDB databases. RESULTS: Patients with ANK2 mutation benefited more from ICIs. In ICIs-treated cohort, prolonged progression-free survival (PFS) (median PFS: NR (not reached) vs. 5.42 months, HR (hazard ratio) 0.31, 95% CI 0.18-0.54; P = 0.0037), improved complete response rate (17.65% vs. 1.85%, P = 0.0402), and improved objective response rate (64.71% vs. 24.07%, P = 0.0033) were observed in LUAD patients with ANK2 mutation compared to their wild-type counterparts. Regarding ANK2 expression, it was observed that ANK2 expression was decreased in LUAD (P < 0.05) and a higher level of ANK2 expression was associated with longer overall survival (HR 0.69, 95% CI 0.52-0.92; P = 0.012) in TCGA LUAD cohort. Moreover, ANK2 mutation or higher ANK2 expression correlated with enhanced antitumor immunity and "hot" tumor microenvironment in LUAD, which could be potential mechanisms that ANK2 mutation facilitated ICIs therapy and patients with higher ANK2 expression survived longer. CONCLUSION: Our findings suggest that ANK2 mutation or increased ANK2 expression may serve as a favorable biomarker for the efficacy of ICIs in patients with LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Biomarcadores , Bases de Dados Factuais , Mutação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Microambiente Tumoral , Anquirinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA