Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.900
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7973): 299-302, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558847

RESUMO

The presence of perennially wet surface environments on early Mars is well documented1,2, but little is known about short-term episodicity in the early hydroclimate3. Post-depositional processes driven by such short-term fluctuations may produce distinct structures, yet these are rarely preserved in the sedimentary record4. Incomplete geological constraints have led global models of the early Mars water cycle and climate to produce diverging results5,6. Here we report observations by the Curiosity rover at Gale Crater indicating that high-frequency wet-dry cycling occurred in early Martian surface environments. We observe exhumed centimetric polygonal ridges with sulfate enrichments, joined at Y-junctions, that record cracks formed in fresh mud owing to repeated wet-dry cycles of regular intensity. Instead of sporadic hydrological activity induced by impacts or volcanoes5, our findings point to a sustained, cyclic, possibly seasonal, climate on early Mars. Furthermore, as wet-dry cycling can promote prebiotic polymerization7,8, the Gale evaporitic basin may have been particularly conducive to these processes. The observed polygonal patterns are physically and temporally associated with the transition from smectite clays to sulfate-bearing strata, a globally distributed mineral transition1. This indicates that the Noachian-Hesperian transition (3.8-3.6 billion years ago) may have sustained an Earth-like climate regime and surface environments favourable to prebiotic evolution.


Assuntos
Meio Ambiente Extraterreno , Marte , Ciclo Hidrológico , Água , Argila/química , Meio Ambiente Extraterreno/química , Minerais/análise , Minerais/química , Sulfatos/análise , Sulfatos/química , Umidade , Água/análise , Origem da Vida , Exobiologia
2.
Proc Natl Acad Sci U S A ; 121(7): e2316569121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330016

RESUMO

Clay minerals are implicated in the retention of biomolecules within organic matter in many soil environments. Spectroscopic studies have proposed several mechanisms for biomolecule adsorption on clays. Here, we employ molecular dynamics simulations to investigate these mechanisms in hydrated adsorbate conformations of montmorillonite, a smectite-type clay, with ten biomolecules of varying chemistry and structure, including sugars related to cellulose and hemicellulose, lignin-related phenolic acid, and amino acids with different functional groups. Our molecular modeling captures biomolecule-clay and biomolecule-biomolecule interactions that dictate selectivity and competition in adsorption retention and interlayer nanopore trapping, which we determine experimentally by NMR and X-ray diffraction, respectively. Specific adsorbate structures are important in facilitating the electrostatic attraction and Van der Waals energies underlying the hierarchy in biomolecule adsorption. Stabilized by a network of direct and water-bridged hydrogen bonds, favorable electrostatic interactions drive this hierarchy whereby amino acids with positively charged side chains are preferentially adsorbed on the negatively charged clay surface compared to the sugars and carboxylate-rich aromatics and amino acids. With divalent metal cations, our model adsorbate conformations illustrate hydrated metal cation bridging of carboxylate-containing biomolecules to the clay surface, thus explaining divalent cation-promoted adsorption from our experimental data. Adsorption experiments with a mixture of biomolecules reveal selective inhibition in biomolecule adsorption, which our molecular modeling attributes to electrostatic biomolecule-biomolecule pairing that is more energetically favorable than the biomolecule-clay complex. In sum, our findings highlight chemical and structural features that can inform hypotheses for predicting biomolecule adsorption at water-clay interfaces.


Assuntos
Simulação de Dinâmica Molecular , Água , Argila , Adsorção , Água/química , Eletricidade Estática , Aminoácidos , Açúcares
3.
Proc Natl Acad Sci U S A ; 119(40): e2121821119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161917

RESUMO

Cacao seeds, Theobroma cacao, provide the basis for a ceremonially important Mesoamerican food. Past efforts to identify cacao in ceramics focused on highly decorative vessel forms associated with elite ceremonial contexts, creating assumptions as to how cacao was distributed and who could access it. This study examines 54 archaeological ceramic sherds from El Pilar (Belize/Guatemala) of Late Classic (600 to 900 CE) residential and civic contexts representing a cross-section of ancient Maya inhabitants. Identification of cacao in ancient sherds has depended on the general presence of theobromine; we used the discrete presence of theophylline, a unique key biomarker for cacao in the region. Analysis was done by grinding off all outside surfaces to reduce contamination, pulverizing the inner clay matrix, extracting absorbed molecules, and concentrating the extractions. In order to obtain especially high selectivity and low limits of detection, our study utilized the technique of resonance-enhanced multiphoton ionization coupled with laser-desorption jet-cooling mass spectrometry. This technique isolates molecules in the cold gas phase where they can be selectively ionized through a resonant two-photon process. Of the sherds analyzed, 30 samples (56%) were found to contain significant amounts of theophylline and thus test positive for cacao. Importantly, cacao is present in all contexts, common to all Maya residents near and far from centers.


Assuntos
Cacau , Belize , Cacau/anatomia & histologia , Cacau/história , Argila , Guatemala , História Antiga , Sementes/química , Teobromina/análise , Teobromina/história , Teofilina/análise , Teofilina/história
4.
Nano Lett ; 24(26): 8046-8054, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38912748

RESUMO

Bacteria invasion is the main factor hindering the wound-healing process. However, current antibacterial therapies inevitably face complex challenges, such as the abuse of antibiotics or severe inflammation during treatment. Here, a drug-free bioclay enzyme (Bio-Clayzyme) consisting of Fe2+-tannic acid (TA) network-coated kaolinite nanoclay and glucose oxidase (GOx) was reported to destroy harmful bacteria via bimetal antibacterial therapy. At the wound site, Bio-Clayzyme was found to enhance the generation of toxic hydroxyl radicals for sterilization via cascade catalysis of GOx and Fe2+-mediated peroxidase mimetic activity. Specifically, the acidic characteristics of the infection microenvironment accelerated the release of Al3+ from kaolinite, which further led to bacterial membrane damage and amplified the antibacterial toxicity of Fe2+. Besides, Bio-Clayzyme also performed hemostasis and anti-inflammatory functions inherited from Kaol and TA. By the combination of hemostasis and anti-inflammatory and bimetal synergistic sterilization, Bio-Clayzyme achieves efficient healing of infected wounds, providing a revolutionary approach for infectious wound regeneration.


Assuntos
Antibacterianos , Glucose Oxidase , Cicatrização , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Glucose Oxidase/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Esterilização/métodos , Argila/química , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia , Ferro/química
5.
Biophys J ; 123(4): 451-463, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37924206

RESUMO

One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.


Assuntos
Bentonita , RNA , Corantes de Rosanilina , Bentonita/química , RNA/química , Argila , Silicatos de Alumínio/química , Adsorção , Minerais/química
6.
Environ Microbiol ; 26(3): e16587, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454741

RESUMO

To comprehensively evaluate the impact of agricultural management practices on soil productivity, it is imperative to conduct a thorough analysis of soil bacterial ecology. Deep-banding nutrient-rich amendments is a soil management practice that aims to improve plant growth and soil structure by addressing the plant-growth constraints posed by dense-clay subsoils. However, the response of bacterial communities to deep-banded amendments has not been thoroughly studied. To address this knowledge gap, we conducted a controlled-environment column experiment to examine the effects of different types of soil amendments (poultry litter, wheat straw + chemical fertiliser and chemical fertiliser alone) on bacterial taxonomic composition in simulated dense-clay subsoils. We evaluated the bacterial taxonomic and ecological group composition in soils beside and below the amendment using 16S rRNA amplicon sequencing and robust statistical methods. Our results indicate that deep-banded amendments alter bacterial communities through direct and indirect mechanisms. All amendments directly facilitated a shift in bacterial communities in the absence of growing wheat. However, a combination of amendments with growing wheat led to a more pronounced bacterial community shift which was distinct from and eclipsed the direct impact of the amendments and plants alone. This indirect mechanism was evidenced to be mediated primarily by plant growth and hypothesised to result from an enhancement in wheat root distribution, density and rhizodeposition changes. Therefore, we propose that subsoil amendments regardless of type facilitated an expansion in the rhizosphere which engineered a substantial plant-mediated bacterial community response within the simulated dense-clay subsoils. Overall, our findings highlight the importance of considering the complex and synergistic interactions between soil physicochemical properties, plant growth and bacterial communities when assessing agricultural management strategies for improving soil and plant productivity.


Assuntos
Microbiota , Microbiota/genética , Argila , Rizosfera , Fertilizantes , RNA Ribossômico 16S/genética , Microbiologia do Solo , Solo/química , Plantas/genética , Bactérias , Triticum/microbiologia
7.
BMC Plant Biol ; 24(1): 521, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853259

RESUMO

BACKGROUND: Tomato (Lycopersicon esculentum), a valuable economic crop worldwide, often goes to waste due to improper packaging and handling. In the present study, three types of low-density polyethylene nanocomposite films containing 3% clay (Closite 20A), 3% TiO2 nanoparticles, and their combination were synthesized using melt blending method, and evaluated on the quality parameters of tomato fruit during 42 days of storage at 4 °C. RESULTS: Transmission electron microscopy confirmed the degree of dispersion and exfoliation of the nanoparticles. The TiO2/clay-nanocomposite films exhibited notable enhancements in Young's modulus and tensile strength compared to conventional films. The addition of clay and TiO2 nanoparticles resulted in reduced permeability to CO2, O2, and water vapor. Fruits packed with clay/TiO2 nanocomposite films showed decreased ethylene production, mitigated weight loss, and maintained pH, titratable acidity, total soluble solids, and firmness. Furthermore, clay/TiO2 nanocomposite films enhanced membrane stability, decreased membrane lipid peroxidation, and enhanced catalase and ascorbate peroxidase enzyme activity in fruits. CONCLUSIONS: The relatively good exfoliation of clay nanoparticles and the proper dispersion of TiO2 nanoparticles, which were confirmed by TEM, led to an increase in mechanical and physical properties in the Clay/TiO2 nanocomposite. This film displayed more potential in maintaining the quality properties of tomato fruit during cold storage. Therefore, this film can be considered a practical solution for minimizing pathogen risks and contamination, and enhancing the overall quality of tomato fruit.


Assuntos
Argila , Temperatura Baixa , Embalagem de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Frutas , Solanum lycopersicum , Titânio , Solanum lycopersicum/fisiologia , Titânio/química , Argila/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Nanocompostos/química , Silicatos de Alumínio/química
8.
Small ; 20(2): e2306169, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37670217

RESUMO

Halloysite nanotubes (HNTs) have emerged as a highly regarded choice in biomedical research due to their exceptional attributes, including superior loading capacity, customizable surface characteristics, and excellent biocompatibility. HNTs feature tubular structures comprising alumina and silica layers, endowing them with a large surface area and versatile surface chemistries that facilitate selective modifications. Moreover, their substantial pore volume and wide range of pore sizes enable efficient entrapment of diverse functional molecules. This comprehensive review highlights the broad biomedical application spectrum of HNTs, shedding light on their potential as innovative and effective therapeutic agents across various diseases. It emphasizes the necessity of optimizing drug delivery techniques, developing targeted delivery systems, rigorously evaluating biocompatibility and safety through preclinical and clinical investigations, exploring combination therapies, and advancing scientific understanding. With further advancements, HNTs hold the promise to revolutionize the pharmaceutical industry, opening new avenues for the development of transformative treatments.


Assuntos
Nanotubos , Argila/química , Nanotubos/química , Sistemas de Liberação de Medicamentos/métodos
9.
BMC Microbiol ; 24(1): 296, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123130

RESUMO

BACKGROUND: Subsurface microorganisms contribute to important ecosystem services, yet little is known about how the composition of these communities is affected by small scale heterogeneity such as in preferential flow paths including biopores and fractures. This study aimed to provide a more complete characterization of microbial communities from preferential flow paths and matrix sediments of a clayey till to a depth of 400 cm by using 16S rRNA gene and fungal ITS2 amplicon sequencing of environmental DNA. Moreover, shotgun metagenomics was applied to samples from fractures located 150 cm below ground surface (bgs) to investigate the bacterial genomic adaptations resulting from fluctuating exposure to nutrients, oxygen and water. RESULTS: The microbial communities changed significantly with depth. In addition, the bacterial/archaeal communities in preferential flow paths were significantly different from those in the adjacent matrix sediments, which was not the case for fungal communities. Preferential flow paths contained higher abundances of 16S rRNA and ITS gene copies than the corresponding matrix sediments and more aerobic bacterial taxa than adjacent matrix sediments at 75 and 150 cm bgs. These findings were linked to higher organic carbon and the connectivity of the flow paths to the topsoil as demonstrated by previous dye tracer experiments. Moreover, bacteria, which were differentially more abundant in the fractures than in the matrix sediment at 150 cm bgs, had higher abundances of carbohydrate active enzymes, and a greater potential for mixotrophic growth. CONCLUSIONS: Our results demonstrate that the preferential flow paths in the subsurface are unique niches that are closely connected to water flow and the fluctuating ground water table. Although no difference in fungal communities were observed between these two niches, hydraulically active flow paths contained a significantly higher abundance in fungal, archaeal and bacterial taxa. Metagenomic analysis suggests that bacteria in tectonic fractures have the genetic potential to respond to fluctuating oxygen levels and can degrade organic carbon, which should result in their increased participation in subsurface carbon cycling. This increased microbial abundance and activity needs to be considered in future research and modelling efforts of the soil subsurface.


Assuntos
Archaea , Bactérias , Fungos , Sedimentos Geológicos , Metagenômica , RNA Ribossômico 16S , Microbiologia do Solo , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Archaea/genética , Archaea/classificação , Archaea/metabolismo , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Microbiota/genética , Filogenia , DNA Bacteriano/genética , Argila , Análise de Sequência de DNA , Ecossistema , Solo/química
10.
Electrophoresis ; 45(15-16): 1443-1449, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38234009

RESUMO

The main goal of the work was to find biochemical protein markers specific for grapes and wine in ancient amphorae shards and fermentation pools. Grape-specific proteins are more reliable markers than tartaric acid and other small organic acids (tartaric acid natural source are not only grape but also apple, mango, and other plants). The Yavne winery (located in the Central District of Israel) is stated to be the largest known wine production complex from the Byzantine period (ca. 1500 years ago). The site has been excavated recently, and a number of wine jar have been recovered. We have applied our ethylene vinyl acetate (EVA) (EVA studded with strong cation and anion exchangers) diskettes to the inner surface of a number of jars, thus capturing residual grape proteins therein. Via mass spectrometry analyses, we have been able to identify four grape and three yeast proteins. This has been possible because the EVA films, applied to such surfaces, are able to harvest and concentrate any trace species, rendering them amenable to instrumental analysis. Our analysis makes it possible to propose an explanation for the Holy Grail phenomenon as a dish in which wine or water begins to smell pleasant. We attribute this to the slow release of terpenes, aldehydes, and ketones from the clay walls of pottery. After digital modeling, we identified that "scallop-shaped" niches in winery were used for the condensation of high percentage alcohol by passive evaporation from fermentation tanks.


Assuntos
Argila , Proteínas de Plantas , Vitis , Vinho , Vitis/química , Vinho/análise , Argila/química , Proteínas de Plantas/análise , Silicatos de Alumínio/química , Polivinil/química
11.
Glob Chang Biol ; 30(1): e17053, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273544

RESUMO

Soil is a huge carbon (C) reservoir, but where and how much extra C can be stored is unknown. Current methods to estimate the maximum amount of mineral-associated organic carbon (MAOC) stabilized in the fine fraction (clay + silt, < 20 µm $$ <20\;\upmu \mathrm{m} $$ ) fit through the MAOC versus clay + silt relationship, not their maxima, making their estimates more uncertain and unreliable. We need a function that 'envelopes' that relationship. Here, using 5089 observations, we estimated that the uppermost 30 cm of Australian soil holds 13 Gt (10-18 Gt) of MAOC. We then fitted frontier lines, by soil type, to the relationship between MAOC and the percentage of clay + silt to estimate the maximum amounts of MAOC that Australian soils could store in their current environments, and calculated the MAOC deficit, or C sequestration potential. We propagated the uncertainties from the frontier line fitting and mapped the estimates of these values over Australia using machine learning and kriging with external drift. The maps show regions where the soil is more in MAOC deficit and has greater sequestration potential. The modelling shows that the variation over the whole continent is determined mainly by climate, linked to vegetation and soil mineralogy. We find that the MAOC deficit in Australian soil is 40 Gt (25-60 Gt). The deficit in the vast rangelands is 20.84 Gt (13.97-29.70 Gt) and the deficit in cropping soil is 1.63 Gt (1.12-2.32 Gt). Management could increase C sequestration in these regions if the climate allowed it. Our findings provide new information on the C sequestration potential of Australian soils and highlight priority regions for soil management. Australia could benefit environmentally, socially and economically by unlocking even a tiny portion of its soil's C sequestration potential.


Assuntos
Carbono , Solo , Argila , Carbono/análise , Sequestro de Carbono , Austrália , Minerais
12.
Glob Chang Biol ; 30(1): e17156, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273526

RESUMO

Evidence is emerging that microbial products and residues (necromass) contribute greatly to stable soil organic matter (SOM), which calls for the necessity of separating the microbial necromass from other SOM pools in models. However, the understanding on how microbial necromass stabilizes in soil, especially the mineral protection mechanisms, is still lacking. Here, we incubated 13 C- and 15 N-labelled microbial necromass in a series of artificial soils varying in clay minerals and metal oxides. We found the mineralization, adsorption and desorption rate constants of necromass nitrogen were higher than those of necromass carbon. The accumulation rates of necromass carbon and nitrogen in mineral-associated SOM were positively correlated with the specific surface area of clay minerals. Our results provide direct evidence for the protection role of mineral in microbial necromass stabilization and provide a platform for simulating microbial necromass separately in SOM models.


Assuntos
Carbono , Solo , Solo/química , Nitrogênio , Argila , Minerais/química , Isótopos , Microbiologia do Solo
13.
Glob Chang Biol ; 30(1): e17102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273557

RESUMO

Soil protists, the major predator of bacteria and fungi, shape the taxonomic and functional structure of soil microbiome via trophic regulation. However, how trophic interactions between protists and their prey influence microbially mediated soil organic carbon turnover remains largely unknown. Here, we investigated the protistan communities and microbial trophic interactions across different aggregates-size fractions in agricultural soil with long-term fertilization regimes. Our results showed that aggregate sizes significantly influenced the protistan community and microbial hierarchical interactions. Bacterivores were the predominant protistan functional group and were more abundant in macroaggregates and silt + clay than in microaggregates, while omnivores showed an opposite distribution pattern. Furthermore, partial least square path modeling revealed positive impacts of omnivores on the C-decomposition genes and soil organic matter (SOM) contents, while bacterivores displayed negative impacts. Microbial trophic interactions were intensive in macroaggregates and silt + clay but were restricted in microaggregates, as indicated by the intensity of protistan-bacterial associations and network complexity and connectivity. Cercozoan taxa were consistently identified as the keystone species in SOM degradation-related ecological clusters in macroaggregates and silt + clay, indicating the critical roles of protists in SOM degradation by regulating bacterial and fungal taxa. Chemical fertilization had a positive effect on soil C sequestration through suppressing SOM degradation-related ecological clusters in macroaggregate and silt + clay. Conversely, the associations between the trophic interactions and SOM contents were decoupled in microaggregates, suggesting limited microbial contributions to SOM turnovers. Our study demonstrates the importance of protists-driven trophic interactions on soil C cycling in agricultural ecosystems.


Assuntos
Microbiota , Solo , Solo/química , Argila , Carbono/química , Agricultura , Microbiologia do Solo
14.
Langmuir ; 40(11): 5785-5798, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38446077

RESUMO

In the modern era, water pollution, especially from industries, agricultural farms, and residential areas, is caused by the release of a large scale of heavy metals, organic pollutants, chemicals, etc., into the environment, posing a serious threat to aquatic ecosystems and nature. Moreover, untreated sewage waste discharged directly into nearby water bodies can cause various diseases to mankind due to the high load of fecal coliform bacteria. This work demonstrates the development of a biocompatible, cost-effective, highly robust, efficient, flexible, freestanding, and reusable membrane using naturally formed biocompatible kaolinite clay-doped poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for effective piezodynamic destruction of coliform bacteria. In this study, Escherichia coli (E. coli) and Enterococcus faecalis (E. faecalis) have been used to evaluate the mechanical stimulus-responsive antibacterial efficacy of the nanocomposite membrane. The membrane can effectively eradicate nearly 99% viable E. coli and 97% E. faecalis within a span of 40 min under mechanical stimulation (soft ultrasound ∼15 kHz). To further understand the mechanism, an evaluation of reactive oxygen species and bacterial FESEM was performed. These studies revealed that bacterial cells suffered severe visible cell damage after 40 min of piezocatalysis, elucidating the fact that the synthesized membrane is capable of producing a superior piezodynamic antibacterial effect.


Assuntos
Escherichia coli , Águas Residuárias , Argila , Ecossistema , Antibacterianos/farmacologia , Bactérias
15.
J Microsc ; 294(2): 203-214, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511469

RESUMO

Low-vacuum scanning electron microscopy (low-vacuum SEM) is widely used for different applications, such as the investigation of noncoated specimen or the observation of biological materials, which are not stable to high vacuum. In this study, the combination of mineral building materials (concrete or clay plaster) with a biological composite (fungal mycelium composite) by using low-vacuum SEM was investigated. Fungal biotechnology is increasingly gaining prominence in addressing the challenges of sustainability transformation. The construction industry is one of the biggest contributors to the climate crises and, therefore, can highly profit from applications based on regenerative fungal materials. In this work, a fungal mycelium composite is used as alternative to conventional insulating materials like Styrofoam. However, to adapt bio-based products to the construction industry, investigations, optimisations and adaptations to existing solutions are needed. This paper examines the compatibility between fungal mycelium materials with mineral-based materials to demonstrate basic feasibility. For this purpose, fresh and hardened concrete specimens as well as clay plaster samples are combined with growing mycelium from the tinder fungus Fomes fomentarius. The contact zone between the mycelium composite and the mineral building materials is examined by scanning electron microscopy (SEM). The combination of these materials proves to be feasible in general. The use of hardened concrete or clay with living mycelium composite appears to be the favoured variant, as the hyphae can grow into the surface of the building material and thus a layered structure with a stable connection is formed. In order to work with the combination of low-density organic materials and higher-density inorganic materials simultaneously, low-vacuum SEM offers a suitable method to deliver results with reduced effort in preparation while maintaining high capture and magnification quality. Not only are image recordings possible with SE and BSE, but EDX measurements can also be carried out quickly without the influence of a coating. Depending on the signal used, as well as the magnification, image-recording strategies must be adapted. Especially when using SE, an image-integration method was used to reduce the build-up of point charges from the electron beam, which damages the mycelial hyphae. Additionally using different signals during image capture is recommended to confirm acquired information, avoiding misinterpretations.


Assuntos
Minerais , Micélio , Microscopia Eletrônica de Varredura , Vácuo , Argila , Micélio/química , Minerais/análise , Materiais de Construção
16.
Artigo em Inglês | MEDLINE | ID: mdl-38265435

RESUMO

An anaerobic, Gram-positive, rod-shaped, motile and spore-forming bacterium, designated strain ZCY20-5T, was isolated from pit clay of Chinese strong-aroma type Baijiu (Chinese liquor). Phylogenetic analyses based on 16S rRNA gene and genome sequences showed that strain ZCY20-5T belonged to the genus Caproicibacterium, family Oscillospiracheae, but it showed low similarity to the type species Caproicibacterium amylolyticum LBM18003T (98.00 %) and Caproicibacterium lactatifermentans LBM19010T (95.67 %). In anaerobic yeast extract medium, growth was observed at 20-45 °C (optimum, 35-40 °C), at pH 4.0-9.0 (optimum, pH 6.5-7.0) and with 0.0-2.0 % NaCl (w/v). The predominant fatty acids were C16 : 0, C14 : 0, C13 3-OH and C16 3-OH, and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, three phospholipids of unknown structure containing glucosamine and two unidentified phospholipids. Strain ZCY20-5T exhibited an 81.32 % pairwise average nucleotide identity value, a 78.98 % average amino acid identity value and a 22.30 % digital DNA-DNA hybridization value compared to its closest relative C. amylolyticum LBM18003T. Based on morphological, physiological, biochemical, chemotaxonomic, genotypic and phylogenetic results, strain ZCY20-5T represents a novel species of Caproicibacterium, and the type strain is ZCY20-5T (=MCCC 1A19399T=KCTC 25590T).


Assuntos
Caproatos , Lactobacillales , Argila , Filogenia , Anaerobiose , Composição de Bases , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias Anaeróbias
17.
Environ Sci Technol ; 58(2): 1109-1118, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164899

RESUMO

Hygroscopic growth of adsorbed water films on clay particles underlies a number of environmental science questions, from the air quality and climate impacts of mineral dust aerosols to the hydrology and mechanics of unsaturated soils and sedimentary rocks. Here, we use molecular dynamics (MD) simulations to establish the relation between adsorbed water film thickness (h) and relative humidity (RH) or disjoining pressure (Π), which has long been uncertain due to factors including sensitivity to particle shape, surface roughness, and aqueous chemistry. We present a new MD simulation approach that enables precise quantification of Π in films up to six water monolayers thick. We find that the hygroscopicity of phyllosilicate mineral surfaces increases in the order mica < K-smectite < Na-smectite. The relationship between Π and h on clay surfaces follows a double exponential decay with e-folding lengths of 2.3 and 7.5 Å. The two decay length scales are attributed to hydration repulsion and osmotic phenomena in the electrical double layer (EDL) at the clay-water interface.


Assuntos
Minerais , Silicatos , Água , Argila , Água/química , Molhabilidade
18.
Environ Sci Technol ; 58(16): 7217-7227, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38588505

RESUMO

The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH ∼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.


Assuntos
Argila , Metais Terras Raras , Minerais , Adsorção , Metais Terras Raras/química , Argila/química , Minerais/química , Concentração de Íons de Hidrogênio , Silicatos de Alumínio/química
19.
Environ Sci Technol ; 58(3): 1541-1550, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38199960

RESUMO

Bioreduction of soluble U(VI) to sparingly soluble U(IV) is proposed as an effective approach to remediating uranium contamination. However, the stability of biogenic U(IV) in natural environments remains unclear. We conducted U(IV) reoxidation experiments following U(VI) bioreduction in the presence of ubiquitous clay minerals and organic ligands. Bioreduced Fe-rich nontronite (rNAu-2) and Fe-poor montmorillonite (rSWy-2) enhanced U(IV) oxidation through shuttling electrons between oxygen and U(IV). Ethylenediaminetetraacetic acid (EDTA), citrate, and siderophore desferrioxamine B (DFOB) promoted U(IV) oxidation via complexation with U(IV). In the presence of both rNAu-2 and EDTA, the rate of U(IV) oxidation was between those in the presence of rNAu-2 and EDTA, due to a clay/ligand-induced change of U(IV) speciation. However, the rate of U(IV) oxidation in other combinations of reduced clay and ligands was higher than their individual ones because both promoted U(IV) oxidation. Unexpectedly, the copresence of rNAu-2/rSWy-2 and DFOB inhibited U(IV) oxidation, possibly due to (1) blockage of the electron transport pathway by DFOB, (2) inability of DFOB-complexed Fe(III) to oxidize U(IV), and (3) stability of the U(IV)-DFOB complex in the clay interlayers. These findings provide novel insights into the stability of U(IV) in the environment and have important implications for the remediation of uranium contamination.


Assuntos
Compostos Férricos , Urânio , Argila , Ligantes , Ácido Edético , Minerais , Oxirredução
20.
Environ Sci Technol ; 58(4): 2078-2088, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235676

RESUMO

Lake sediments connection to the biogeochemical cycling of phosphorus (P) and carbon (C) influences streamwater quality. However, it is unclear whether and how the type of sediment controls P and C cycling in water. Here, the adsorption behavior of montmorillonite (Mt) with different interlayer cations (Na+, Ca2+, or Fe3+) on dissolved organic matter (DOM) and P was investigated to understand the role of Mt in regulating the organic carbon-to-phosphate (OC/P) ratio within freshwater systems. The adsorption capacity of Fe-Mt for P was 3.2-fold higher than that of Ca-Mt, while it was 1/3 lower for DOM. This dissimilarity in adsorption led to an increased OC/P in Fe-Mt-dominated water and a decreased OC/P in Ca-Mt-dominated water. Moreover, an in situ atomic force microscope and high-resolution mass spectrometry revealed molecular fractionation mechanisms and adsorptive processes. It was observed that DOM inhibited the nucleation and crystallization processes of P on the Mt surface, and P affected the binding energy of DOM on Mt through competitive adsorption, thereby governing the interfacial P/DOM dynamics on Mt substrates at a molecular level. These findings have important implications for water quality management, by highlighting the role of clay minerals as nutrient sinks and providing new strategies for controlling P and C dynamics in freshwater systems.


Assuntos
Matéria Orgânica Dissolvida , Fósforo , Argila , Adsorção , Minerais/química , Lagos/química , Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA