Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22.804
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(20): 5679-5697.e23, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39178853

RESUMO

Animals adapt to environmental conditions by modifying the function of their internal organs, including the brain. To be adaptive, alterations in behavior must be coordinated with the functional state of organs throughout the body. Here, we find that thyroid hormone-a regulator of metabolism in many peripheral organs-directly activates cell-type-specific transcriptional programs in the frontal cortex of adult male mice. These programs are enriched for axon-guidance genes in glutamatergic projection neurons, synaptic regulatory genes in both astrocytes and neurons, and pro-myelination factors in oligodendrocytes, suggesting widespread plasticity of cortical circuits. Indeed, whole-cell electrophysiology revealed that thyroid hormone alters excitatory and inhibitory synaptic transmission, an effect that requires thyroid hormone-induced gene regulatory programs in presynaptic neurons. Furthermore, thyroid hormone action in the frontal cortex regulates innate exploratory behaviors and causally promotes exploratory decision-making. Thus, thyroid hormone acts directly on the cerebral cortex in males to coordinate exploratory behaviors with whole-body metabolic state.


Assuntos
Hormônios Tireóideos , Animais , Masculino , Camundongos , Hormônios Tireóideos/metabolismo , Neurônios/metabolismo , Transmissão Sináptica , Córtex Cerebral/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Lobo Frontal/metabolismo , Lobo Frontal/efeitos dos fármacos , Astrócitos/metabolismo , Oligodendroglia/metabolismo
2.
Cell ; 185(13): 2213-2233.e25, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35750033

RESUMO

The impact of apolipoprotein E ε4 (APOE4), the strongest genetic risk factor for Alzheimer's disease (AD), on human brain cellular function remains unclear. Here, we investigated the effects of APOE4 on brain cell types derived from population and isogenic human induced pluripotent stem cells, post-mortem brain, and APOE targeted replacement mice. Population and isogenic models demonstrate that APOE4 local haplotype, rather than a single risk allele, contributes to risk. Global transcriptomic analyses reveal human-specific, APOE4-driven lipid metabolic dysregulation in astrocytes and microglia. APOE4 enhances de novo cholesterol synthesis despite elevated intracellular cholesterol due to lysosomal cholesterol sequestration in astrocytes. Further, matrisome dysregulation is associated with upregulated chemotaxis, glial activation, and lipid biosynthesis in astrocytes co-cultured with neurons, which recapitulates altered astrocyte matrisome signaling in human brain. Thus, APOE4 initiates glia-specific cell and non-cell autonomous dysregulation that may contribute to increased AD risk.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Astrócitos/metabolismo , Colesterol/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Microglia/metabolismo
3.
Cell ; 184(21): 5465-5481.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34582787

RESUMO

In vivo cell fate conversions have emerged as potential regeneration-based therapeutics for injury and disease. Recent studies reported that ectopic expression or knockdown of certain factors can convert resident astrocytes into functional neurons with high efficiency, region specificity, and precise connectivity. However, using stringent lineage tracing in the mouse brain, we show that the presumed astrocyte-converted neurons are actually endogenous neurons. AAV-mediated co-expression of NEUROD1 and a reporter specifically and efficiently induces reporter-labeled neurons. However, these neurons cannot be traced retrospectively to quiescent or reactive astrocytes using lineage-mapping strategies. Instead, through a retrograde labeling approach, our results reveal that endogenous neurons are the source for these viral-reporter-labeled neurons. Similarly, despite efficient knockdown of PTBP1 in vivo, genetically traced resident astrocytes were not converted into neurons. Together, our results highlight the requirement of lineage-tracing strategies, which should be broadly applied to studies of cell fate conversions in vivo.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Linhagem da Célula , Neurônios/citologia , Animais , Astrócitos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Encéfalo/patologia , Lesões Encefálicas/patologia , Linhagem Celular Tumoral , Reprogramação Celular , Dependovirus/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Integrases/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo
4.
Cell ; 184(3): 709-722.e13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33482084

RESUMO

Neural stem cells (NSCs) in the adult brain transit from the quiescent state to proliferation to produce new neurons. The mechanisms regulating this transition in freely behaving animals are, however, poorly understood. We customized in vivo imaging protocols to follow NSCs for several days up to months, observing their activation kinetics in freely behaving mice. Strikingly, NSC division is more frequent during daylight and is inhibited by darkness-induced melatonin signaling. The inhibition of melatonin receptors affected intracellular Ca2+ dynamics and promoted NSC activation. We further discovered a Ca2+ signature of quiescent versus activated NSCs and showed that several microenvironmental signals converge on intracellular Ca2+ pathways to regulate NSC quiescence and activation. In vivo NSC-specific optogenetic modulation of Ca2+ fluxes to mimic quiescent-state-like Ca2+ dynamics in freely behaving mice blocked NSC activation and maintained their quiescence, pointing to the regulatory mechanisms mediating NSC activation in freely behaving animals.


Assuntos
Células-Tronco Adultas/metabolismo , Cálcio/metabolismo , Ritmo Circadiano , Espaço Intracelular/metabolismo , Células-Tronco Neurais/metabolismo , Células-Tronco Adultas/citologia , Células-Tronco Adultas/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Citosol/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Melatonina/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Optogenética , Transdução de Sinais/efeitos dos fármacos , Triptaminas/farmacologia
5.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413299

RESUMO

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Assuntos
Aquaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animais , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervoso Central/metabolismo , Edema/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Trifluoperazina/farmacologia
6.
Cell ; 180(3): 502-520.e19, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31983537

RESUMO

The tumor microenvironment (TME) is critical for tumor progression. However, the establishment and function of the TME remain obscure because of its complex cellular composition. Using a mouse genetic system called mosaic analysis with double markers (MADMs), we delineated TME evolution at single-cell resolution in sonic hedgehog (SHH)-activated medulloblastomas that originate from unipotent granule neuron progenitors in the brain. First, we found that astrocytes within the TME (TuAstrocytes) were trans-differentiated from tumor granule neuron precursors (GNPs), which normally never differentiate into astrocytes. Second, we identified that TME-derived IGF1 promotes tumor progression. Third, we uncovered that insulin-like growth factor 1 (IGF1) is produced by tumor-associated microglia in response to interleukin-4 (IL-4) stimulation. Finally, we found that IL-4 is secreted by TuAstrocytes. Collectively, our studies reveal an evolutionary process that produces a multi-lateral network within the TME of medulloblastoma: a fraction of tumor cells trans-differentiate into TuAstrocytes, which, in turn, produce IL-4 that stimulates microglia to produce IGF1 to promote tumor progression.


Assuntos
Astrócitos/metabolismo , Carcinogênese/metabolismo , Transdiferenciação Celular , Neoplasias Cerebelares/metabolismo , Meduloblastoma/metabolismo , Comunicação Parácrina , Animais , Linhagem da Célula , Neoplasias Cerebelares/patologia , Modelos Animais de Doenças , Feminino , Proteínas Hedgehog/metabolismo , Xenoenxertos , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-4/genética , Interleucina-4/metabolismo , Masculino , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Microambiente Tumoral
7.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33259802

RESUMO

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Glioma/genética , Histonas/genética , Interneurônios/metabolismo , Mutação/genética , Células-Tronco Neurais/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Linhagem da Célula , Reprogramação Celular/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/patologia , Histonas/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Gradação de Tumores , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Prosencéfalo/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transcrição Gênica , Transcriptoma/genética
8.
Cell ; 177(6): 1522-1535.e14, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31130380

RESUMO

Metabolic coordination between neurons and astrocytes is critical for the health of the brain. However, neuron-astrocyte coupling of lipid metabolism, particularly in response to neural activity, remains largely uncharacterized. Here, we demonstrate that toxic fatty acids (FAs) produced in hyperactive neurons are transferred to astrocytic lipid droplets by ApoE-positive lipid particles. Astrocytes consume the FAs stored in lipid droplets via mitochondrial ß-oxidation in response to neuronal activity and turn on a detoxification gene expression program. Our findings reveal that FA metabolism is coupled in neurons and astrocytes to protect neurons from FA toxicity during periods of enhanced activity. This coordinated mechanism for metabolizing FAs could underlie both homeostasis and a variety of disease states of the brain.


Assuntos
Astrócitos/metabolismo , Ácidos Graxos/metabolismo , Neurônios/metabolismo , Animais , Apolipoproteínas E/metabolismo , Apolipoproteínas E/fisiologia , Astrócitos/fisiologia , Encéfalo/metabolismo , Ácidos Graxos/toxicidade , Homeostase , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley
9.
Cell ; 179(7): 1483-1498.e22, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31813625

RESUMO

Metabolism has been shown to control peripheral immunity, but little is known about its role in central nervous system (CNS) inflammation. Through a combination of proteomic, metabolomic, transcriptomic, and perturbation studies, we found that sphingolipid metabolism in astrocytes triggers the interaction of the C2 domain in cytosolic phospholipase A2 (cPLA2) with the CARD domain in mitochondrial antiviral signaling protein (MAVS), boosting NF-κB-driven transcriptional programs that promote CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, multiple sclerosis. cPLA2 recruitment to MAVS also disrupts MAVS-hexokinase 2 (HK2) interactions, decreasing HK enzymatic activity and the production of lactate involved in the metabolic support of neurons. Miglustat, a drug used to treat Gaucher and Niemann-Pick disease, suppresses astrocyte pathogenic activities and ameliorates EAE. Collectively, these findings define a novel immunometabolic mechanism that drives pro-inflammatory astrocyte activities, outlines a new role for MAVS in CNS inflammation, and identifies candidate targets for therapeutic intervention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Fosfolipases A2 Secretórias/metabolismo , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacologia , 1-Desoxinojirimicina/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Células Cultivadas , Encefalomielite Autoimune Experimental/tratamento farmacológico , Feminino , Hexoquinase/metabolismo , Humanos , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosfolipases A2 Secretórias/genética
10.
Cell ; 178(1): 27-43.e19, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31230713

RESUMO

When a behavior repeatedly fails to achieve its goal, animals often give up and become passive, which can be strategic for preserving energy or regrouping between attempts. It is unknown how the brain identifies behavioral failures and mediates this behavioral-state switch. In larval zebrafish swimming in virtual reality, visual feedback can be withheld so that swim attempts fail to trigger expected visual flow. After tens of seconds of such motor futility, animals became passive for similar durations. Whole-brain calcium imaging revealed noradrenergic neurons that responded specifically to failed swim attempts and radial astrocytes whose calcium levels accumulated with increasing numbers of failed attempts. Using cell ablation and optogenetic or chemogenetic activation, we found that noradrenergic neurons progressively activated brainstem radial astrocytes, which then suppressed swimming. Thus, radial astrocytes perform a computation critical for behavior: they accumulate evidence that current actions are ineffective and consequently drive changes in behavioral states. VIDEO ABSTRACT.


Assuntos
Astrócitos/metabolismo , Comportamento Animal/fisiologia , Larva/fisiologia , Peixe-Zebra/fisiologia , Neurônios Adrenérgicos/metabolismo , Animais , Animais Geneticamente Modificados/fisiologia , Astrócitos/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Cálcio/metabolismo , Comunicação Celular/fisiologia , Retroalimentação Sensorial/fisiologia , Neurônios GABAérgicos/metabolismo , Potenciais da Membrana/fisiologia , Optogenética , Natação/fisiologia
11.
Cell ; 176(3): 581-596.e18, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30661753

RESUMO

Genome-wide studies have identified genetic variants linked to neurologic diseases. Environmental factors also play important roles, but no methods are available for their comprehensive investigation. We developed an approach that combines genomic data, screens in a novel zebrafish model, computational modeling, perturbation studies, and multiple sclerosis (MS) patient samples to evaluate the effects of environmental exposure on CNS inflammation. We found that the herbicide linuron amplifies astrocyte pro-inflammatory activities by activating signaling via sigma receptor 1, inositol-requiring enzyme-1α (IRE1α), and X-box binding protein 1 (XBP1). Indeed, astrocyte-specific shRNA- and CRISPR/Cas9-driven gene inactivation combined with RNA-seq, ATAC-seq, ChIP-seq, and study of patient samples suggest that IRE1α-XBP1 signaling promotes CNS inflammation in experimental autoimmune encephalomyelitis (EAE) and, potentially, MS. In summary, these studies define environmental mechanisms that control astrocyte pathogenic activities and establish a multidisciplinary approach for the systematic investigation of the effects of environmental exposure in neurologic disorders.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Animais , Sistema Nervoso Central/imunologia , Biologia Computacional/métodos , Encefalomielite Autoimune Experimental/imunologia , Endorribonucleases/metabolismo , Meio Ambiente , Exposição Ambiental/efeitos adversos , Genoma , Genômica , Humanos , Inflamação/metabolismo , Linurona/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Receptores sigma/efeitos dos fármacos , Receptores sigma/metabolismo , Transdução de Sinais , Proteína 1 de Ligação a X-Box/metabolismo , Peixe-Zebra
12.
Cell ; 177(5): 1280-1292.e20, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031006

RESUMO

Hyperactivity and disturbances of attention are common behavioral disorders whose underlying cellular and neural circuit causes are not understood. We report the discovery that striatal astrocytes drive such phenotypes through a hitherto unknown synaptic mechanism. We found that striatal medium spiny neurons (MSNs) triggered astrocyte signaling via γ-aminobutyric acid B (GABAB) receptors. Selective chemogenetic activation of this pathway in striatal astrocytes in vivo resulted in acute behavioral hyperactivity and disrupted attention. Such responses also resulted in upregulation of the synaptogenic cue thrombospondin-1 (TSP1) in astrocytes, increased excitatory synapses, enhanced corticostriatal synaptic transmission, and increased MSN action potential firing in vivo. All of these changes were reversed by blocking TSP1 effects. Our data identify a form of bidirectional neuron-astrocyte communication and demonstrate that acute reactivation of a single latent astrocyte synaptogenic cue alters striatal circuits controlling behavior, revealing astrocytes and the TSP1 pathway as therapeutic targets in hyperactivity, attention deficit, and related psychiatric disorders.


Assuntos
Astrócitos/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Comportamento Animal , Comunicação Celular , Neurônios/metabolismo , Transdução de Sinais , Sinapses/metabolismo , Animais , Astrócitos/patologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/patologia , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Receptores de GABA-B/genética , Receptores de GABA-B/metabolismo , Sinapses/genética , Trombospondina 1/genética , Trombospondina 1/metabolismo , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
13.
Immunity ; 57(7): 1696-1709.e10, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38878770

RESUMO

Aicardi-Goutières syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)-α production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN-α remain unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN-α in AGS and confirmed the neurotoxicity of intracerebral IFN-α using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN-α-activated receptor (IFNAR) signaling within cerebral endothelial cells caused a distinctive cerebral small vessel disease similar to that observed in individuals with AGS. Magnetic resonance imaging (MRI) and single-molecule ELISA revealed that central and not peripheral IFN-α was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped the development of diffuse brain disease, and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN-α neurotoxicity in AGS, representing an accessible target for therapeutic intervention.


Assuntos
Encéfalo , Interferon-alfa , Microvasos , Malformações do Sistema Nervoso , Receptor de Interferon alfa e beta , Animais , Humanos , Camundongos , Interferon-alfa/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Microvasos/patologia , Malformações do Sistema Nervoso/genética , Doenças Autoimunes do Sistema Nervoso/imunologia , Células Endoteliais/metabolismo , Camundongos Knockout , Masculino , Feminino , Transdução de Sinais , Camundongos Endogâmicos C57BL , Astrócitos/metabolismo , Modelos Animais de Doenças
14.
Cell ; 174(1): 59-71.e14, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29804835

RESUMO

Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments.


Assuntos
Potenciação de Longa Duração , Memória , Neurônios/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Cálcio/metabolismo , Clozapina/análogos & derivados , Clozapina/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hipocampo/citologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Optogenética , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Estresse Psicológico , Potenciais Sinápticos/efeitos dos fármacos
15.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392959

RESUMO

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Assuntos
Adenina/análogos & derivados , Neoplasias Encefálicas/patologia , Metilação de DNA , Glioblastoma/patologia , Adenina/análise , Adenina/química , Adulto , Idoso , Homólogo AlkB 1 da Histona H2a Dioxigenase/antagonistas & inibidores , Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Homólogo AlkB 1 da Histona H2a Dioxigenase/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Hipóxia Celular , Criança , Epigenômica , Feminino , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
16.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37527657

RESUMO

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Assuntos
Astrócitos , Fagocitose , Estresse Psicológico , Animais , Criança , Humanos , Camundongos , Astrócitos/metabolismo , c-Mer Tirosina Quinase/genética , Hormônios/metabolismo , Sinapses/metabolismo , Estresse Psicológico/metabolismo
18.
Mol Cell ; 84(20): 3950-3966.e6, 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39383879

RESUMO

The role of long non-coding RNAs (lncRNAs) in malignant cell transformation remains elusive. We previously identified an enhancer-associated lncRNA, LINC01116 (named HOXDeRNA), as a transformative factor converting human astrocytes into glioma-like cells. Employing a combination of CRISPR editing, chromatin isolation by RNA purification coupled with sequencing (ChIRP-seq), in situ mapping RNA-genome interactions (iMARGI), chromatin immunoprecipitation sequencing (ChIP-seq), HiC, and RNA/DNA FISH, we found that HOXDeRNA directly binds to CpG islands within the promoters of 35 glioma-specific transcription factors (TFs) distributed throughout the genome, including key stem cell TFs SOX2, OLIG2, POU3F2, and ASCL1, liberating them from PRC2 repression. This process requires a distinct RNA quadruplex structure and other segments of HOXDeRNA, interacting with EZH2 and CpGs, respectively. Subsequent transformation activates multiple oncogenes (e.g., EGFR, miR-21, and WEE1), driven by the SOX2- and OLIG2-dependent glioma-specific super enhancers. These results help reconstruct the sequence of events underlying the process of astrocyte transformation, highlighting HOXDeRNA's central genome-wide activity and suggesting a shared RNA-dependent mechanism in otherwise heterogeneous and multifactorial gliomagenesis.


Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Glioma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Astrócitos/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regiões Promotoras Genéticas , Ilhas de CpG , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Linhagem Celular Tumoral , Transcrição Gênica , Sítios de Ligação , Super Intensificadores
19.
Cell ; 164(4): 603-15, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26871627

RESUMO

The amyloid hypothesis for Alzheimer's disease (AD) posits a neuron-centric, linear cascade initiated by Aß and leading to dementia. This direct causality is incompatible with clinical observations. We review evidence supporting a long, complex cellular phase consisting of feedback and feedforward responses of astrocytes, microglia, and vasculature. The field must incorporate this holistic view and take advantage of advances in single-cell approaches to resolve the critical junctures at which perturbations initially amenable to compensatory feedback transform into irreversible, progressive neurodegeneration.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/patologia , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Vias Neurais , Oligodendroglia/patologia , Análise de Célula Única
20.
Cell ; 164(1-2): 183-196, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771491

RESUMO

Proper establishment of synapses is critical for constructing functional circuits. Interactions between presynaptic neurexins and postsynaptic neuroligins coordinate the formation of synaptic adhesions. An isoform code determines the direct interactions of neurexins and neuroligins across the synapse. However, whether extracellular linker proteins can expand such a code is unknown. Using a combination of in vitro and in vivo approaches, we found that hevin, an astrocyte-secreted synaptogenic protein, assembles glutamatergic synapses by bridging neurexin-1alpha and neuroligin-1B, two isoforms that do not interact with each other. Bridging of neurexin-1alpha and neuroligin-1B via hevin is critical for the formation and plasticity of thalamocortical connections in the developing visual cortex. These results show that astrocytes promote the formation of synapses by modulating neurexin/neuroligin adhesions through hevin secretion. Our findings also provide an important mechanistic insight into how mutations in these genes may lead to circuit dysfunction in diseases such as autism.


Assuntos
Astrócitos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Tálamo/metabolismo , Animais , Células COS , Chlorocebus aethiops , Dominância Ocular , Humanos , Camundongos , Camundongos Knockout , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA