Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 226
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genes Dev ; 31(15): 1588-1600, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28887412

RESUMO

The Spt-Ada-Gcn5-acetyltransferase (SAGA) chromatin-modifying complex is a transcriptional coactivator that contains four different modules of subunits. The intact SAGA complex has been well characterized for its function in transcription regulation and development. However, little is known about the roles of individual modules within SAGA and whether they have any SAGA-independent functions. Here we demonstrate that the two enzymatic modules of Drosophila SAGA are differently required in oogenesis. Loss of the histone acetyltransferase (HAT) activity blocks oogenesis, while loss of the H2B deubiquitinase (DUB) activity does not. However, the DUB module regulates a subset of genes in early embryogenesis, and loss of the DUB subunits causes defects in embryogenesis. ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) analysis revealed that both the DUB and HAT modules bind most SAGA target genes even though many of these targets do not require the DUB module for expression. Furthermore, we found that the DUB module can bind to chromatin and regulate transcription independently of the HAT module. Our results suggest that the DUB module has functions within SAGA and independent functions.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona Acetiltransferases/metabolismo , Oogênese/genética , Animais , Ataxina-7/genética , Cromatina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteínas de Drosophila/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Histona Acetiltransferases/genética , Histonas/metabolismo , Microscopia Confocal , Ovário/crescimento & desenvolvimento , Ligação Proteica , Zigoto/fisiologia
2.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673939

RESUMO

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Assuntos
Ataxina-7 , Dependovirus , Modelos Animais de Doenças , Peptídeos , Fenótipo , RNA Interferente Pequeno , Ataxias Espinocerebelares , Expansão das Repetições de Trinucleotídeos , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxias Espinocerebelares/metabolismo , Peptídeos/genética , Dependovirus/genética , Camundongos , Ataxina-7/genética , Ataxina-7/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , RNA Interferente Pequeno/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Camundongos Transgênicos , Cerebelo/metabolismo , Cerebelo/patologia , Humanos , Terapia Genética/métodos , Alelos
3.
Neurol Neurochir Pol ; 57(3): 310-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37283503

RESUMO

INTRODUCTION: We present the first two Polish families diagnosed with spinocerebellar ataxia type 7 (SCA7) and draw attention to cardiac involvement as a new potential manifestation of this disease. MATERIAL AND METHODS: Two well-documented kindreds are presented. RESULTS: The proband from Family 1 presented aged 54 years with vision worsening followed by progressive imbalance. Brain MRI demonstrated cerebellar atrophy. Genetic testing confirmed CAG repeat expansion (42/10) in ATXN7 gene. The proband from Family 2 developed imbalance at age 20, followed by progressive deterioration of vision. Brain MRI revealed cerebellar atrophy. Additionally, she developed chronic congestive heart failure and, at age 38, had cardiomyopathy with an ejection fraction of 20% and significant mitral and tricuspid regurgitation. Genetic analysis found abnormal CAG expansion in the ATXN7 (46/10). CONCLUSIONS AND CLINICAL IMPLICATIONS: Vision loss due to pigmentary retinal degeneration is the distinguishing feature of SCA7 and often the initial manifestation. Although SCA7 is one of the most common SCAs in Sweden, it has never been reported in neighbouring Poland. Until now, cardiac abnormalities have only been described in infantile-onset SCA7 with large CAG repeats. The observed cardiac involvement in Family 2 may be coincidental, albeit a new possible manifestation of SCA7 cannot be excluded.


Assuntos
Ataxias Espinocerebelares , Feminino , Humanos , Adulto Jovem , Adulto , Polônia , Ataxina-7/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Testes Genéticos , Atrofia
4.
Anticancer Drugs ; 33(1): e700-e710, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34845164

RESUMO

Breast cancer is a frequent tumor threatening the health of women. Circular RNAs (circRNAs) play vital roles in cancer progression and chemoresistance. Herein, we mainly investigate the role and potential mechanism of circRNA ataxin 7 (circATXN7; circ_0066436) in breast cancer. RNA expression levels were detected via quantitative real-time PCR (qPCR), western blot and immunohistochemistry. Cell viability and half inhibitory concentration (IC50) of doxorubicin were assessed by cell counting kit-8 (CCK-8) method. Cell proliferation, migration and invasion were determined by CCK-8, 5-ethynyl-2'-deoxyuridine, colony formation and transwell assays. The binding relationship between microRNA-149-5p (miR-149-5p) and circATXN7 or homeobox A11 (HOXA11) was validated via dual-luciferase reporter assay and RNA immunoprecipitation assay. Xenograft assay was conducted to analyze the effect of circATXN7 on doxorubicin resistance of breast cancer. CircATXN7 and HOXA11 levels were enhanced, whereas miR-149-5p level was declined in breast cancer tissues and cells. CircATXN7 silencing suppressed breast cancer development and doxorubicin resistance. Additionally, circATXN7 upregulated HOXA11 via absorbing miR-149-5p, thereby inducing breast cancer cell progression and reducing doxorubicin sensitivity. Besides, depletion of circATXN7 enhanced doxorubicin sensitivity in vivo. Interference of circATXN7 inhibited breast cancer progression and doxorubicin resistance via mediating miR-149-5p/HOXA11 axis, which might provide a possible biomarker for breast cancer therapy.


Assuntos
Ataxina-7/farmacologia , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Homeodomínio/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , RNA Circular/farmacologia , Animais , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Ligação Proteica/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Mol Cell Neurosci ; 110: 103584, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33338633

RESUMO

Polyglutamine (polyQ) diseases, such as Spinocerebellar ataxia type 7 (SCA7), are caused by expansions of polyQ repeats in disease specific proteins. The sequestration of vital proteins into aggregates formed by polyQ proteins is believed to be a common pathological mechanism in these disorders. The RNA-binding protein FUS has been observed in polyQ aggregates, though if disruption of this protein plays a role in the neuronal dysfunction in SCA7 or other polyQ diseases remains unclear. We therefore analysed FUS localisation and function in a stable inducible PC12 cell model expressing the SCA7 polyQ protein ATXN7. We found that there was a high degree of FUS sequestration, which was associated with a more cytoplasmic FUS localisation, as well as a decreased expression of FUS regulated mRNAs. In contrast, the role of FUS in the formation of γH2AX positive DNA damage foci was unaffected. In fact, a statistical increase in the number of γH2AX foci, as well as an increased trend of single and double strand DNA breaks, detected by comet assay, could be observed in mutant ATXN7 cells. These results were further corroborated by a clear trend towards increased DNA damage in SCA7 patient fibroblasts. Our findings suggest that both alterations in the RNA regulatory functions of FUS, and increased DNA damage, may contribute to the pathology of SCA7.


Assuntos
Ataxina-7/genética , Dano ao DNA , Proteína FUS de Ligação a RNA/metabolismo , Ataxias Espinocerebelares/metabolismo , Animais , Ataxina-7/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Células PC12 , Peptídeos/química , Peptídeos/genética , Transporte Proteico , Ratos , Ataxias Espinocerebelares/genética
6.
Genes Dev ; 28(3): 259-72, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24493646

RESUMO

The Spt-Ada-Gcn5-acetyltransferase (SAGA) chromatin-modifying complex possesses acetyltransferase and deubiquitinase activities. Within this modular complex, Ataxin-7 anchors the deubiquitinase activity to the larger complex. Here we identified and characterized Drosophila Ataxin-7 and found that reduction of Ataxin-7 protein results in loss of components from the SAGA complex. In contrast to yeast, where loss of Ataxin-7 inactivates the deubiquitinase and results in increased H2B ubiquitination, loss of Ataxin-7 results in decreased H2B ubiquitination and H3K9 acetylation without affecting other histone marks. Interestingly, the effect on ubiquitination was conserved in human cells, suggesting a novel mechanism regulating histone deubiquitination in higher organisms. Consistent with this mechanism in vivo, we found that a recombinant deubiquitinase module is active in the absence of Ataxin-7 in vitro. When we examined the consequences of reduced Ataxin-7 in vivo, we found that flies exhibited pronounced neural and retinal degeneration, impaired movement, and early lethality.


Assuntos
Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Retina/patologia , Sequência de Aminoácidos , Animais , Ataxina-7 , Drosophila melanogaster/enzimologia , Células HeLa , Histonas/metabolismo , Humanos , Longevidade/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Regiões Promotoras Genéticas/genética , Estrutura Quaternária de Proteína , Alinhamento de Sequência , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Ubiquitinação
7.
Hum Mol Genet ; 28(6): 912-927, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30445451

RESUMO

Polyglutamine (polyQ) expansion in Ataxin-7 (ATXN7) results in spinocerebellar ataxia type 7 (SCA7) and causes visual impairment. SCA7 photoreceptors progressively lose their outer segments (OSs), a structure essential for their visual function. ATXN7 is a subunit of the transcriptional coactivator Spt-Ada-Gcn5 Acetyltransferase complex, implicated in the development of the visual system in flies. To determine the function of ATXN7 in the vertebrate eye, we have inactivated ATXN7 in zebrafish. While ATXN7 depletion in flies led to gross retinal degeneration, in zebrafish, it primarily results in ocular coloboma, a structural malformation responsible for pediatric visual impairment in humans. ATXN7 inactivation leads to elevated Hedgehog signaling in the forebrain, causing an alteration of proximo-distal patterning of the optic vesicle during early eye development and coloboma. At later developmental stages, malformations of photoreceptors due to incomplete formation of their OSs are observed and correlate with altered expression of crx, a key transcription factor involved in the formation of photoreceptor OS. Therefore, we propose that a primary toxic effect of polyQ expansion is the alteration of ATXN7 function in the daily renewal of OS in SCA7. Together, our data indicate that ATXN7 plays an essential role in vertebrate eye morphogenesis and photoreceptor differentiation, and its loss of function may contribute to the development of human coloboma.


Assuntos
Ataxina-7/deficiência , Coloboma/etiologia , Coloboma/metabolismo , Predisposição Genética para Doença , Células Fotorreceptoras/metabolismo , Subunidades Proteicas/deficiência , Transativadores/genética , Animais , Animais Geneticamente Modificados , Biomarcadores , Padronização Corporal/genética , Diferenciação Celular , Coloboma/patologia , Modelos Animais de Doenças , Edição de Genes , Regulação da Expressão Gênica , Histonas/metabolismo , Imuno-Histoquímica , Modelos Biológicos , Nervo Óptico/embriologia , Nervo Óptico/metabolismo , Organogênese/genética , Fenótipo , Células Fotorreceptoras/patologia , Processamento de Proteína Pós-Traducional , Transativadores/química , Transativadores/metabolismo , Peixe-Zebra
8.
Mol Vis ; 27: 221-232, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012225

RESUMO

Purpose: To evaluate the retinal phenotype and genetic features of Chinese patients with spinocerebellar ataxia type 7 (SCA7). Methods: Detailed ophthalmic examinations, including electroretinograms, fundus photography, fundus autofluorescence and optical coherence tomography, were performed to analyse the retinal lesions of patients with SCA7. A molecular genetic analysis was completed to confirm the number of CAG repeats in ATXN7 gene on the patients and their family members. Results: Eight patients from three families with SCA7 were included in this study. Trinucleotide repeat was expanded from 43 to 113 in the affected patients. The affected patients were characterized by different degrees of cone-rod dystrophy, which is positively related to the number of CAG repeats and age. All patients complained of progressive bilateral visual loss, and most cases reported visual disturbance earlier than gait movement or dysarthria. A coarse granular appearance of the macular region on scanning laser ophthalmoscopy, hypofluorescence in the macula on autofluorescence, retinal atrophy on optic coherence tomography, depression of multifocal electroretinograms and prominent abnormalities in cone-mediated responses on electrograms are the general features of SCA7-related retinopathy. Hyperreflective dots in the outer retinal layers and choroidal vessel layers are a common sign in optic coherence tomography in the advanced stage. Conclusions: SCA7 shows a cone-rod dystrophy phenotype. The multimodal imaging of the retina is beneficial to detect the early lesions of cone-rod dystrophy related to SCA7.


Assuntos
Ataxina-7/genética , Distrofias de Cones e Bastonetes/diagnóstico , Distrofias de Cones e Bastonetes/genética , Adolescente , Adulto , Povo Asiático/genética , Pré-Escolar , China/epidemiologia , Eletrorretinografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Diagnóstico Molecular , Oftalmoscopia , Imagem Óptica , Linhagem , Tomografia de Coerência Óptica , Repetições de Trinucleotídeos
9.
J Neurogenet ; 35(4): 370-380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34159894

RESUMO

Spinocerebellar Ataxia (SCA) is a heterogeneous adult-onset disorder with an autosomal dominant inheritance pattern mainly caused by triplet repeat expansions. Clinical diagnosis of SCA is based on phenotypic features followed by confirmation through molecular diagnosis. To identify status of repeat range in Indian SCA cases and provide extended family screening, we enrolled 70 clinical SCA suspects. For molecular diagnosis, multiplex PCR (M-PCR) was used for common Indian SCA subtypes 1, 2, 3, 6, 7, 10, 12 and 17. TP-PCR was further used in SCA2, 7 and 10 to identify larger expansions. Eighteen out of 70 SCA suspects (25%) were found to be positive for various SCA subtypes- (5 SCA1 (28%), 6 SAC2 (34%), 2 SCA3 (12%), 3 SCA7 (16%) and one each for SCA6 (1%) and SCA17 (1%) subtypes). Genetic counselling and extended family screening were offered to all positive cases and yielded additional nine cases. We have established M-PCR and TP-PCR to detect the CAG repeat expansion in SCA suspects. This method can confirm SCA subtypes in a reliable, rapid and cost-effective way. Genetic characterization of SCA-related genes has great clinical relevance, as it could provide additional information and guidance to clinicians and family members regarding prognosis.


Assuntos
Aconselhamento Genético , Ataxias Espinocerebelares , Adulto , Ataxina-7 , Ataxinas , Humanos , Proteínas do Tecido Nervoso , Ataxias Espinocerebelares/genética
10.
Cerebellum ; 20(3): 384-391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33196954

RESUMO

The aim of this study is to propose a classification system for the spinocerebellar ataxia type 7 retinal degeneration (SCA7-RD). Twenty patients with molecularly confirmed SCA7 underwent slit lamp examination, fundus photography, and optical coherence tomography (Spectralis®). Scale for the Assessment and Rating of Ataxia (SARA) and International Cooperative Ataxia Rating Scale (ICARS) were applied, and age, sex, age at symptom onset, and number of CAG expansions were recorded. After analyzing the ophthalmological findings in each participant, a panel of retinal disease experts created a qualitative classification system for SCA7-RD comprising four stages. We assessed the correlations of retinal degeneration severity with SARA and ICARS scores, number of CAG repeats in ATXN7 allele, and age at symptom onset. We graded retinal degeneration as stage 1 in nine participants, as stage 2 in five, and as stage 3 in six. No differences in age and visual symptoms duration were found between groups. SARA and ICARS scores correlated with the severity of SCA7-RD on the classification system (p = 0.024 and p = 0.014, respectively). After adjusting for disease duration, retinal disease stage association with SARA and ICARS scores remained significant (ANCOVA, p < 0.05). The classification system for SCA7-RD was able to characterize different disease stages representing the landmarks in the cone-rod dystrophy natural history. Neurodegeneration appears to occur in parallel in the cerebellum and in the visual pathway. We conclude that retinal degeneration in SCA7 is a potential biomarker of the neurological phenotype severity.


Assuntos
Degeneração Retiniana/classificação , Degeneração Retiniana/etiologia , Ataxias Espinocerebelares/complicações , Adulto , Idade de Início , Envelhecimento , Ataxina-7/genética , Cerebelo/diagnóstico por imagem , Feminino , Fundo de Olho , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/diagnóstico por imagem , Células Fotorreceptoras Retinianas Bastonetes , Ataxias Espinocerebelares/diagnóstico por imagem , Tomografia de Coerência Óptica , Repetições de Trinucleotídeos , Testes Visuais , Vias Visuais/diagnóstico por imagem , Adulto Jovem
11.
Eur J Neurol ; 27(11): 2267-2276, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32558018

RESUMO

BACKGROUND AND PURPOSE: Childhood-onset autosomal dominant cerebellar ataxia type 7 (SCA7) is a severe disease which leads to premature loss of ambulation and death. Early diagnosis of SCA7 is of major importance for genetic counselling and still relies on specific genetic testing, driven by clinical expertise. However, the precise phenotype and natural history of paediatric SCA7 has not yet been fully described. Our aims were to describe the natural history of SCA7 in a large multicentric series of children of all ages, and to find correlates to variables defining this natural history. METHODS: We collected and analysed clinical data from 28 children with proven SCA7. All had clinical manifestations of SCA7 and either a definite number of CAG repeats in ATXN7 or a long expansion > 100 CAG. RESULTS: We identified four clinical presentation patterns related to age at onset. Children of all age groups had cerebellar atrophy and retinal dystrophy. Our data, combined with those in the literature, suggest that definite ranges of CAG repeats determine paediatric SCA7 subtypes. The number of CAG repeats inversely correlated to all variables of the natural history. Age at gait ataxia onset correlated accurately to age at loss of walking ability and to age at death. CONCLUSION: SCA7 in children has four presentation patterns that are roughly correlated to the number of CAG repeats. Our depiction of the natural history of SCA7 in children may help in monitoring the effect of future therapeutic trials.


Assuntos
Ataxias Espinocerebelares , Ataxina-7 , Criança , Testes Genéticos , Humanos , Fenótipo , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética
12.
Bioorg Med Chem ; 28(1): 115175, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767406

RESUMO

Polyglutamine diseases are a class of neurodegenerative diseases associated with the accumulation of aggregated mutant proteins. We previously developed a class of degradation-inducing agents targeting the ß-sheet-rich structure typical of such aggregates, and we showed that these agents dose-, time-, and proteasome-dependently decrease the intracellular level of mutant huntingtin with an extended polyglutamine tract, which correlates well with the severity of Huntington's disease. Here, we demonstrate that the same agents also deplete other polyglutamine disease-related proteins: mutant ataxin-3 and ataxin-7 in cells from spino-cerebellar ataxia patients, and mutant atrophin-1 in cells from dentatorubral-pallidoluysian atrophy patients. Targeting cross-ß-sheet structure could be an effective design strategy to develop therapeutic agents for multiple neurodegenerative diseases.


Assuntos
Ataxina-3/antagonistas & inibidores , Ataxina-7/antagonistas & inibidores , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Ataxina-3/genética , Ataxina-7/genética , Células Cultivadas , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Humanos , Estrutura Molecular , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Proteínas Repressoras/genética , Relação Estrutura-Atividade
13.
Proc Natl Acad Sci U S A ; 114(25): E4951-E4960, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28584132

RESUMO

Oncogenic RAS mutations are present in 15-30% of thyroid carcinomas. Endogenous expression of mutant Ras is insufficient to initiate thyroid tumorigenesis in murine models, indicating that additional genetic alterations are required. We used Sleeping Beauty (SB) transposon mutagenesis to identify events that cooperate with HrasG12V in thyroid tumor development. Random genomic integration of SB transposons primarily generated loss-of-function events that significantly increased thyroid tumor penetrance in Tpo-Cre/homozygous FR-HrasG12V mice. The thyroid tumors closely phenocopied the histological features of human RAS-driven, poorly differentiated thyroid cancers. Characterization of transposon insertion sites in the SB-induced tumors identified 45 recurrently mutated candidate cancer genes. These mutation profiles were remarkably concordant with mutated cancer genes identified in a large series of human poorly differentiated and anaplastic thyroid cancers screened by next-generation sequencing using the MSK-IMPACT panel of cancer genes, which we modified to include all SB candidates. The disrupted genes primarily clustered in chromatin remodeling functional nodes and in the PI3K pathway. ATXN7, a component of a multiprotein complex with histone acetylase activity, scored as a significant SB hit. It was recurrently mutated in advanced human cancers and significantly co-occurred with RAS or NF1 mutations. Expression of ATXN7 mutants cooperated with oncogenic RAS to induce thyroid cell proliferation, pointing to ATXN7 as a previously unrecognized cancer gene.


Assuntos
Ataxina-7/genética , Carcinogênese/genética , Cromatina/genética , Elementos de DNA Transponíveis/genética , Genes ras/genética , Mutagênese/genética , Glândula Tireoide/patologia , Animais , Humanos , Camundongos , Camundongos Transgênicos , Mutação/genética , Oncogenes/genética , Fosfatidilinositol 3-Quinases/genética , Carcinoma Anaplásico da Tireoide/genética
14.
Cerebellum ; 18(3): 388-396, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30637674

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a polyglutamine disease that progressively affects the cerebellum, brainstem, and retina. SCA7 is quite rare, and insights into biomarkers and pre-clinical phases are still missing. We aimed to describe neurologic and ophthalmological findings observed in symptomatic and pre-symptomatic SCA7 subjects. Several neurologic scales, visual acuity, visual fields obtained by computer perimetry, and macular thickness in optical coherence tomography (mOCT) were measured in symptomatic carriers and at risk relatives. Molecular analysis of the ATXN7 was done blindly in individuals at risk. Thirteen symptomatic carriers, 3 pre-symptomatic subjects, and 5 related controls were enrolled. Symptomatic carriers presented scores significantly different from those of controls in most neurologic and ophthalmological scores. Gradual changes from controls to pre-symptomatic and then to symptomatic carriers were seen in mean (SD) of visual fields - 1.34 (1.15), - 2.81 (1.66). and - 9.56 (7.26); mOCT - 1.11 (2.6), - 3.48 (3.54), and - 7.73 (2.56) Z scores; and "Spinocerebellar Ataxia Functional Index (SCAFI)" - 1.16 (0.28), 0.65 (0.56), and - 0.61 (0.44), respectively. Visual fields and SCAFI were significantly correlated with time to disease onset (pre-symptomatic)/disease duration (symptomatic carriers). Visual fields, mOCT, and SCAFI stood out as candidates for state biomarkers for SCA7 since pre-symptomatic stages of disease.


Assuntos
Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico , Transtornos da Visão/genética , Adulto , Ataxina-7/genética , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ataxias Espinocerebelares/genética , Transtornos da Visão/diagnóstico
15.
Nucleic Acids Res ; 45(13): 7870-7885, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28575281

RESUMO

We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.


Assuntos
Terapia Genética/métodos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/terapia , Ataxina-7/antagonistas & inibidores , Ataxina-7/genética , Linhagem Celular , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Íntrons , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Genéticos , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Splicing de RNA , Ataxias Espinocerebelares/metabolismo , Transfecção
16.
Hum Mol Genet ; 24(14): 3908-17, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25859008

RESUMO

The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression. To determine whether caspase cleavage is a critical event in SCA7 disease pathogenesis, we generated transgenic mice expressing polyQ-expanded ataxin-7 with a second-site mutation (D266N) to prevent caspase-7 proteolysis. When we compared SCA7-D266N mice with SCA7 mice lacking the D266N mutation, we found that SCA7-D266N mice exhibited improved motor performance, reduced neurodegeneration and substantial lifespan extension. Our findings indicate that proteolysis at the D266 caspase-7 cleavage site is an important mediator of ataxin-7 neurotoxicity, suggesting that inhibition of caspase-7 cleavage of polyQ-ataxin-7 may be a promising therapeutic strategy for this untreatable disorder.


Assuntos
Ataxina-7/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/metabolismo , Regiões Promotoras Genéticas , Proteólise , Degeneração Retiniana/genética , Animais , Ácido Aspártico/metabolismo , Ataxina-7/genética , Caspase 7/genética , Caspase 7/metabolismo , Modelos Animais de Doenças , Terapia Genética , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/terapia , Fenótipo , Células de Purkinje/metabolismo , Degeneração Retiniana/terapia
17.
Ann Hum Genet ; 81(5): 197-204, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28597910

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a rare neurogenetic disorder caused by highly unstable CAG repeat expansion mutation in coding region of SCA7. We aimed to understand the effect of diverse ATXN7 cis-element in correlation with CAG expansion mutation of SCA7. We initially performed an analysis to identify the haplotype background of CAG expanded alleles using eight bi-allelic single nucleotide polymorphisms (SNPs) flanking an ATXN7-CAG expansion in 32 individuals from nine unrelated Indian SCA7 families and 88 healthy controls. Subsequent validation of the findings was performed in 89 ATXN7-CAG mutation carriers and in 119 unrelated healthy controls of Mexican ancestry. The haplotype analyses showed a shared haplotype background and C allele of SNP rs6798742 (approximately 6 kb from the 3'-end of CAG repeats) is in complete association with expanded, premutation, intermediate, and the majority of large normal (≥12) CAG allele. The C allele (ancestral/chimp allele) association was validated in SCA7 subjects and healthy controls from Mexico, suggesting its substantial association with CAG expanded and expansion-prone chromosomes. Analysis of rs6798742 and other neighboring functional SNPs within 6 kb in experimental datasets (Encyclopedia of DNA Elements; ENCODE) shows functional marks that could affect transcription as well as histone methylation. An allelic association of the CAG region to an intronic SNP in two different ethnic and geographical populations suggests a -cis factor-dependent mechanism in ATXN7 CAG-region expansion.


Assuntos
Ataxina-7/genética , Expansão das Repetições de DNA , Polimorfismo de Nucleotídeo Único , Ataxias Espinocerebelares/genética , Estudos de Associação Genética , Haplótipos , Humanos , Índia , México
18.
J Biol Chem ; 290(36): 21996-2004, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26195632

RESUMO

Human ataxin 7 (Atx7) is a component of the deubiquitination module (DUBm) in the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex for transcriptional regulation, and expansion of its polyglutamine (polyQ) tract leads to spinocerebellar ataxia type 7. However, how polyQ expansion of Atx7 affects DUBm function remains elusive. We investigated the effects of polyQ-expanded Atx7 on ubiquitin-specific protease (USP22), an interacting partner of Atx7 functioning in deubiquitination of histone H2B. The results showed that the inclusions or aggregates formed by polyQ-expanded Atx7 specifically sequester USP22 through their interactions mediated by the N-terminal zinc finger domain of Atx7. The mutation of the zinc finger domain in Atx7 that disrupts its interaction with USP22 dramatically abolishes sequestration of USP22. Moreover, polyQ expansion of Atx7 decreases the deubiquitinating activity of USP22 and, consequently, increases the level of monoubiquitinated H2B. Therefore, we propose that polyQ-expanded Atx7 forms insoluble aggregates that sequester USP22 into a catalytically inactive state, and then the impaired DUBm loses the function to deubiquitinate monoubiquitinated histone H2B or H2A. This may result in dysfunction of the SAGA complex and transcriptional dysregulation in spinocerebellar ataxia type 7 disease.


Assuntos
Ataxina-7/metabolismo , Histona Acetiltransferases/metabolismo , Complexos Multienzimáticos/metabolismo , Tioléster Hidrolases/metabolismo , Ataxina-7/genética , Sítios de Ligação/genética , Western Blotting , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Microscopia de Fluorescência , Mutação , Peptídeos/genética , Agregados Proteicos , Ligação Proteica , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Tioléster Hidrolases/genética , Expansão das Repetições de Trinucleotídeos/genética , Ubiquitina Tiolesterase , Ubiquitinação , Dedos de Zinco/genética
19.
Biochim Biophys Acta ; 1847(4-5): 418-428, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25647692

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is one of the nine neurodegenerative disorders caused by expanded polyglutamine (polyQ) domains. Common pathogenic mechanisms, including bioenergetics defects, have been suggested for these so called polyQ diseases. However, the exact molecular mechanism(s) behind the metabolic dysfunction is still unclear. In this study we identified a previously unreported mechanism, involving disruption of p53 and NADPH oxidase 1 (NOX1) activity, by which the expanded SCA7 disease protein ATXN7 causes metabolic dysregulation. The NOX1 protein is known to promote glycolytic activity, whereas the transcription factor p53 inhibits this process and instead promotes mitochondrial respiration. In a stable inducible PC12 model of SCA7, p53 and mutant ATXN7 co-aggregated and the transcriptional activity of p53 was reduced, resulting in a 50% decrease of key p53 target proteins, like AIF and TIGAR. In contrast, the expression of NOX1 was increased approximately 2 times in SCA7 cells. Together these alterations resulted in a decreased respiratory capacity, an increased reliance on glycolysis for energy production and a subsequent 20% reduction of ATP in SCA7 cells. Restoring p53 function, or suppressing NOX1 activity, both reversed the metabolic dysfunction and ameliorated mutant ATXN7 toxicity. These results hence not only enhance the understanding of the mechanisms causing metabolic dysfunction in SCA7 disease, but also identify NOX1 as a novel potential therapeutic target in SCA7 and possibly other polyQ diseases.


Assuntos
Modelos Animais de Doenças , NADH NADPH Oxirredutases/metabolismo , Proteínas do Tecido Nervoso/deficiência , Peptídeos/genética , Ataxias Espinocerebelares/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Proteínas Reguladoras de Apoptose , Ataxina-7 , Western Blotting , Metabolismo Energético , Glucose , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ácido Láctico , Potencial da Membrana Mitocondrial , Mutação/genética , NADH NADPH Oxirredutases/genética , NADPH Oxidase 1 , Consumo de Oxigênio , Células PC12 , Monoéster Fosfórico Hidrolases , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia , Proteína Supressora de Tumor p53/genética
20.
Mol Cancer ; 15(1): 47, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27296891

RESUMO

BACKGROUND: Fusion proteins have unique oncogenic properties and their identification can be useful either as diagnostic or therapeutic targets. Next generation sequencing data have previously shown a fusion gene formed between Rad51C and ATXN7 genes in the MCF7 breast cancer cell line. However, the existence of this fusion gene in colorectal patient tumor tissues is largely still unknown. METHODS: We evaluated for the presence of Rad51C-ATXN7 fusion gene in colorectal tumors and cells by RT-PCR, PCR, Topo TA cloning, Real time PCR, immunoprecipitation and immunoblotting techniques. RESULTS: We identified two forms of fusion mRNAs between Rad51C and ATXN7 in the colorectal tumors, including a Variant 1 (fusion transcript between Rad51C exons 1-7 and ATXN7 exons 6-13), and a Variant 2 (between Rad51C exons 1-6 and ATXN7 exons 6-13). In silico analysis showed that the Variant 1 produces a truncated protein, whereas the Variant 2 was predicted to produce a fusion protein with molecular weight of 110 KDa. Immunoprecipitation and Western blot analysis further showed a 110 KDa protein in colorectal tumors. 5-Azacytidine treatment of LS-174 T cells caused a 3.51-fold increase in expression of the fusion gene (Variant 2) as compared to no treatment controls evaluated by real time PCR. CONCLUSION: In conclusion we found a fusion gene between DNA repair gene Rad51C and neuro-cerebral ataxia Ataxin-7 gene in colorectal tumors. The in-frame fusion transcript of Variant 2 results in a fusion protein with molecular weight of 110 KDa. In addition, we found that expression of fusion gene is associated with functional impairment of Fanconi Anemia (FA) DNA repair pathway in colorectal tumors. The expression of Rad51C-ATXN7 in tumors warrants further investigation, as it suggests the potential of the fusion gene in treatment and predictive value in colorectal cancers.


Assuntos
Ataxina-7/genética , Clonagem Molecular/métodos , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/genética , Proteínas de Fusão Oncogênica/genética , Ataxina-7/metabolismo , Azacitidina/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Simulação por Computador , Metilação de DNA/efeitos dos fármacos , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Variação Genética , Humanos , Peso Molecular , Proteínas de Fusão Oncogênica/efeitos dos fármacos , Proteínas de Fusão Oncogênica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA