RESUMO
Enzymatic methylation of cytosine to 5-methylcytosine in DNA is a fundamental epigenetic mechanism involved in mammalian development and disease. DNA methylation is brought about by collective action of three AdoMet-dependent DNA methyltransferases, whose catalytic interactions and temporal interplay are poorly understood. We used structure-guided engineering of the Dnmt1 methyltransferase to enable catalytic transfer of azide tags onto DNA from a synthetic cofactor analog, Ado-6-azide, in vitro. We then CRISPR-edited the Dnmt1 locus in mouse embryonic stem cells to install the engineered codon, which, following pulse internalization of the Ado-6-azide cofactor by electroporation, permitted selective azide tagging of Dnmt1-specific genomic targets in cellulo. The deposited covalent tags were exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. The proposed approach, Dnmt-TOP-seq, enables high-resolution temporal tracking of the Dnmt1 catalysis in mammalian cells, paving the way to selective studies of other methylation pathways in eukaryotic systems.
Assuntos
Azidas , DNA (Citosina-5-)-Metiltransferases , 5-Metilcitosina , Animais , Azidas/metabolismo , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Metilases de Modificação do DNA/genética , Mamíferos/metabolismo , CamundongosRESUMO
Inhibition of overexpressed enzymes is among the most promising approaches for targeted cancer treatment. However, many cancer-expressed enzymes are "nonlethal," in that the inhibition of the enzymes' activity is insufficient to kill cancer cells. Conventional antibody-based therapeutics can mediate efficient treatment by targeting extracellular nonlethal targets but can hardly target intracellular enzymes. Herein, we report a cancer targeting and treatment strategy to utilize intracellular nonlethal enzymes through a combination of selective cancer stem-like cell (CSC) labeling and Click chemistry-mediated drug delivery. A de novo designed compound, AAMCHO [N-(3,4,6-triacetyl- N-azidoacetylmannosamine)-cis-2-ethyl-3-formylacrylamideglycoside], selectively labeled cancer CSCs in vitro and in vivo through enzymatic oxidation by intracellular aldehyde dehydrogenase 1A1. Notably, azide labeling is more efficient in identifying tumorigenic cell populations than endogenous markers such as CD44. A dibenzocyclooctyne (DBCO)-toxin conjugate, DBCO-MMAE (Monomethylauristatin E), could next target the labeled CSCs in vivo via bioorthogonal Click reaction to achieve excellent anticancer efficacy against a series of tumor models, including orthotopic xenograft, drug-resistant tumor, and lung metastasis with low toxicity. A 5/7 complete remission was observed after single-cycle treatment of an advanced triple-negative breast cancer xenograft (~500 mm3).
Assuntos
Aldeído Desidrogenase , Anticorpos , Humanos , Azidas , Carcinogênese , Química Click , Família Aldeído Desidrogenase 1 , Retinal DesidrogenaseRESUMO
Antimicrobial susceptibility testing plays a pivotal role in the discovery of new antibiotics. However, the development of simple, sensitive, and rapid assessment approaches remains challenging. Herein, we report an activated alkyne-based cascade signal amplification strategy for ultrafast and high-throughput antibiotic screening. First of all, a novel water-soluble aggregation-induced emission (AIE) luminogen is synthesized, which contains an activated alkyne group to enable fluorescence turn-on and metal-free click bioconjugation under physiological conditions. Taking advantage of the in-house established method for bacterial lysis, a number of clickable biological substances (i.e., bacterial solutes and debris) are released from the bacterial bodies, which remarkably increases the quantity of analytes. By means of the activated alkyne-mediated turn-on click bioconjugation, the system fluorescence signal is significantly amplified due to the increased labeling sites as well as the AIE effect. Such a cascade signal amplification strategy efficiently improves the detection sensitivity and thus enables ultrafast antimicrobial susceptibility assessment. By integration with a microplate reader, this approach is further applied to high-throughput antibiotic screening.
Assuntos
Alcinos , Antibacterianos , Antibacterianos/farmacologia , Fluorescência , Química Click/métodos , AzidasRESUMO
Bromodomain-PHD finger protein 1 (BRPF1) belongs to the BRPF family of bromodomain-containing proteins. Bromodomains are exclusive reader modules that recognize and bind acetylated histones and non-histone transcription factors to regulate gene expression. The biological functions of acetylated histone recognition by BRPF1 bromodomain are well characterized; however, the function of BRPF1 regulation via non-histone acetylation is still unexplored. Therefore, identifying the non-histone interactome of BRPF1 is pivotal in deciphering its role in diverse cellular processes, including its misregulation in diseases like cancer. Herein, we identified the non-histone interacting partners of BRPF1 utilizing a protein engineering-based approach. We site-specifically introduced the unnatural photo-cross-linkable amino acid 4-azido-L-phenylalanine into the bromodomain of BRPF1 without altering its ability to recognize acetylated histone proteins. Upon photoirradiation, the engineered BRPF1 generates a reactive nitrene species, cross-linking interacting partners with spatio-temporal precision. We demonstrated the robust cross-linking efficiency of the engineered variant with reported histone ligands of BRPF1 and further used the variant reader to cross-link its interactome. We also characterized novel interacting partners by proteomics, suggesting roles for BRPF1 in diverse cellular processes. BRPF1 interaction with interleukin enhancer-binding factor 3, one of these novel interacting partners, was further validated by isothermal titration calorimetry and co-IP. Lastly, we used publicly available ChIP-seq and RNA-seq datasets to understand the colocalization of BRPF1 and interleukin enhancer-binding factor 3 in regulating gene expression in the context of hepatocellular carcinoma. Together, these results will be crucial for full understanding of the roles of BRPF1 in transcriptional regulation and in the design of small-molecule inhibitors for cancer treatment.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Azidas , Proteínas que Contêm Bromodomínio , Proteínas de Ligação a DNA , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Azidas/metabolismo , Histonas/metabolismo , Interleucinas/metabolismo , Ligação Proteica , Humanos , Proteínas que Contêm Bromodomínio/metabolismo , Proteínas de Ligação a DNA/metabolismoRESUMO
SURF1 deficiency (OMIM # 220110) causes Leigh syndrome (LS, OMIM # 256000), a mitochondrial disorder typified by stress-induced metabolic strokes, neurodevelopmental regression and progressive multisystem dysfunction. Here, we describe two novel surf1-/- zebrafish knockout models generated by CRISPR/Cas9 technology. While gross larval morphology, fertility, and survival into adulthood appeared unaffected, surf1-/- mutants manifested adult-onset ocular anomalies and decreased swimming activity, as well as classical biochemical hallmarks of human SURF1 disease, including reduced complex IV expression and enzymatic activity and increased tissue lactate. surf1-/- larvae also demonstrated oxidative stress and stressor hypersensitivity to the complex IV inhibitor, azide, which exacerbated their complex IV deficiency, reduced supercomplex formation, and induced acute neurodegeneration typical of LS including brain death, impaired neuromuscular responses, reduced swimming activity, and absent heartrate. Remarkably, prophylactic treatment of surf1-/- larvae with either cysteamine bitartrate or N-acetylcysteine, but not other antioxidants, significantly improved animal resiliency to stressor-induced brain death, swimming and neuromuscular dysfunction, and loss of heartbeat. Mechanistic analyses demonstrated cysteamine bitartrate pretreatment did not improve complex IV deficiency, ATP deficiency, or increased tissue lactate but did reduce oxidative stress and restore glutathione balance in surf1-/- animals. Overall, two novel surf1-/- zebrafish models recapitulate the gross neurodegenerative and biochemical hallmarks of LS, including azide stressor hypersensitivity that was associated with glutathione deficiency and ameliorated by cysteamine bitartrate or N-acetylcysteine therapy.
Assuntos
Deficiência de Citocromo-c Oxidase , Doença de Leigh , Animais , Adulto , Humanos , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Doença de Leigh/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Acetilcisteína , Cisteamina/farmacologia , Azidas/metabolismo , Morte Encefálica , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glutationa/metabolismo , LactatosRESUMO
We have devised a single pot, low-cost method to add azide groups to unmodified nucleic acids without the need for enzymes or chemically modified nucleoside triphosphates. This involves reacting an azide-containing sulfinate salt with the nucleic acid, leading to replacement of C-H bonds on the nucleobase aromatic rings with C-R, where R is the azide-containing linker derived from the original sulfinate salt. With the addition of azide functional groups, the modified nucleic acid can easily be reacted with any alkyne-labeled compound of interest, including fluorescent dyes as shown in this work. This methodology enables the fluorescent labeling of a wide variety of nucleic acids, including natively folded RNAs, under mild conditions with minimal effects upon biochemical function and ribozyme catalysis. To demonstrate this, we show that a pair of labeled complementary ssDNA oligonucleotides (oligos) can hybridize to form dsDNA, even when labeled with multiple fluorophores per oligo. In addition, we also demonstrate that two different group II introns can splice when prelabeled internally with fluorophores, using our method. Broadly, this demonstrates that sulfinate modification of RNA is compatible with ribozyme function and Watson-Crick pairing, while preserving the labile backbone.
Assuntos
Ácidos Nucleicos , RNA Catalítico , RNA/química , Azidas/química , DNA/química , Corantes Fluorescentes/químicaRESUMO
New protein synthesis is regulated both at the level of mRNA transcription and translation. RNA-Seq is effective at measuring levels of mRNA expression, but techniques to monitor mRNA translation are much more limited. Previously, we reported results from O-propargyl-puromycin (OPP) labeling of proteins undergoing active translation in a 2-h time frame, followed by biotinylation using click chemistry, affinity purification, and on-bead digestion to identify nascent proteins by mass spectrometry (OPP-ID). As with any on-bead digestion protocol, the problem of nonspecific binders complicated the rigorous categorization of nascent proteins by OPP-ID. Here, we incorporate a chemically cleavable linker, Dde biotin-azide, into the protocol (OPP-IDCL) to provide specific release of modified proteins from the streptavidin beads. Following capture, the Dde moiety is readily cleaved with 2% hydrazine, releasing nascent polypeptides bearing OPP plus a residual C3H8N4 tag. When results are compared side by side with the original OPP-ID method, change to a cleavable linker led to a dramatic reduction in the number of background proteins detected in controls and a concomitant increase in the number of proteins that could be characterized as newly synthesized. We evaluated the method's ability to detect nascent proteins at various submilligram protein input levels and showed that, when starting with only 100 µg of protein, â¼1500 nascent proteins could be identified with low background. Upon treatment of K562 cells with MLN128, a potent inhibitor of the mammalian target of rapamycin, prior to OPP treatment, we identified 1915 nascent proteins, the majority of which were downregulated upon inhibitor treatment. Repressed proteins with log2 FC <-1 revealed a complex network of functionally interacting proteins, with the largest cluster associated with translational initiation. Overall, incorporation of the Dde biotin-azide cleavable linker into our protocol has increased the depth and accuracy of profiling of nascent protein networks.
Assuntos
Azidas , Biotina , Proteínas/química , Peptídeos , RNA MensageiroRESUMO
The elucidation of protein interaction networks is critical to understanding fundamental biology as well as developing new therapeutics. Proximity labeling platforms (PLPs) are state-of-the-art technologies that enable the discovery and delineation of biomolecular networks through the identification of protein-protein interactions. These platforms work via catalytic generation of reactive probes at a biological region of interest; these probes then diffuse through solution and covalently "tag" proximal biomolecules. The physical distance that the probes diffuse determines the effective labeling radius of the PLP and is a critical parameter that influences the scale and resolution of interactome mapping. As such, by expanding the degrees of labeling resolution offered by PLPs, it is possible to better capture the various size scales of interactomes. At present, however, there is little quantitative understanding of the labeling radii of different PLPs. Here, we report the development of a superresolution microscopy-based assay for the direct quantification of PLP labeling radii. Using this assay, we provide direct extracellular measurements of the labeling radii of state-of-the-art antibody-targeted PLPs, including the peroxidase-based phenoxy radical platform (269 ± 41 nm) and the high-resolution iridium-catalyzed µMap technology (54 ± 12 nm). Last, we apply these insights to the development of a molecular diffusion-based approach to tuning PLP resolution and introduce a new aryl-azide-based µMap platform with an intermediate labeling radius (80 ± 28 nm).
Assuntos
Microscopia , Mapas de Interação de Proteínas , Azidas/química , CatáliseRESUMO
In situ drug synthesis using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction has attracted considerable attention in tumor therapy because of its satisfactory effectiveness and reduced side-effects. However, the exogenous addition of copper catalysts can cause cytotoxicity and has hampered biomedical applications in vivo. Here, we design and synthesize a metal-organic framework (MOF) to mimic copper chaperone, which can selectively modulate copper trafficking for bioorthogonal synthesis with no need of exogenous addition of copper catalysts. Like copper chaperones, the prepared ZIF-8 copper chaperone mimics specifically bind copper ions through the formation of coordination bonds. Moreover, the copper is unloaded under the acidic environment due to the dissipation of the coordination interactions between metal ions and ligands. In this way, the cancer cell-targeted copper chaperone mimics can selectively transport copper ions into cells. Regulation of intracellular copper trafficking may inspire constructing bioorthogonal catalysis system with reduced metal cytotoxicity in live cells.
Assuntos
Alcinos , Cobre , Cobre/farmacologia , Cobre/química , Alcinos/química , Azidas/química , Reação de Cicloadição , Catálise , ÍonsRESUMO
MicroRNAs (MiRNAs) are valuable biomarkers for the diagnosis and prognosis of diseases. The development of reliable assays is an urgent pursuit. We herein fabricate a novel electrochemical sensing strategy based on the conformation transitions of DNA nanostructures and click chemistry. Duplex-specific nuclease (DSN)-catalyzed reaction is first used for the disintegration of the DNA triangular pyramid frustum (DNA TPF). A DNA triangle is formed, which in turn assists strain-promoted alkyne-azide cycloaddition (SPAAC) to localize single-stranded DNA probes (P1). After SPAAC ligation, multiple DNA hairpins are spontaneously folded, and the labeled electrochemical species are dragged near the electrode interface. By recording and analyzing the responses, a highly sensitive electrochemical biosensor is established, which exhibits high sensitivity and reproducibility. Clinical applications have been verified with good stability. This sensing strategy relies on the integration of DNA nanostructures and click chemistry, which may inspire further designs for the development of DNA nanotechnology and applications in clinical chemistry.
Assuntos
Técnicas Biossensoriais , Química Click , DNA , Técnicas Eletroquímicas , Nanoestruturas , Técnicas Biossensoriais/métodos , Nanoestruturas/química , Técnicas Eletroquímicas/métodos , DNA/química , Humanos , Reação de Cicloadição , MicroRNAs/análise , Alcinos/química , Azidas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , Sondas de DNA/químicaRESUMO
Thoracic aortic aneurysm/dissection (TAAD) is a lethal vascular disease, and several pathological factors participate in aortic medial degeneration. We previously discovered that the complement C3a-C3aR axis in smooth muscle cells promotes the development of thoracic aortic dissection (TAD) through regulation of matrix metalloproteinase 2. However, discerning the specific complement pathway that is activated and elucidating how inflammation of the aortic wall is initiated remain unknown. We ascertained that the plasma levels of C3a and C5a were significantly elevated in patients with TAD and that the levels of C3a, C4a, and C5a were higher in acute TAD than in chronic TAD. We also confirmed the activation of the complement in a TAD mouse model. Subsequently, knocking out Cfb (Cfb) or C4 in mice with TAD revealed that the alternative pathway and Cfb played a significant role in the TAD process. Activation of the alternative pathway led to generation of the anaphylatoxins C3a and C5a, and knocking out their receptors reduced the recruitment of inflammatory cells to the aortic wall. Moreover, we used serum from wild-type mice or recombinant mice Cfb as an exogenous source of Cfb to treat Cfb KO mice and observed that it exacerbated the onset and rupture of TAD. Finally, we knocked out Cfb in the FBN1C1041G/+ Marfan-syndrome mice and showed that the occurrence of TAA was reduced. In summary, the alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.NEW & NOTEWORTHY The alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.
Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Azidas , Desoxiglucose/análogos & derivados , Humanos , Camundongos , Animais , Via Alternativa do Complemento , Metaloproteinase 2 da Matriz , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Dissecção Aórtica/genética , InflamaçãoRESUMO
N-Acetyl muramic acid (NAM) probes containing alkyne or azide groups are commonly used to investigate aspects of cell wall synthesis because of their small size and ability to incorporate into bacterial peptidoglycan (PG). However, copper-catalyzed alkyne-azide cycloaddition (CuAAC) reactions are not compatible with live cells, and strain-promoted alkyne-azide cycloaddition (SPAAC) reaction rates are modest and, therefore, not as desirable for tracking the temporal alterations of bacterial cell growth, remodeling, and division. Alternatively, the tetrazine-trans-cyclooctene ligation (Tz-TCO), which is the fastest known bioorthogonal reaction and not cytotoxic, allows for rapid live-cell labeling of PG at biologically relevant time scales and concentrations. Previous work to increase reaction kinetics on the PG surface by using tetrazine probes was limited because of low incorporation of the probe. Described here are new approaches to construct a minimalist tetrazine (Tz)-NAM probe utilizing recent advancements in asymmetric tetrazine synthesis. This minimalist Tz-NAM probe was successfully incorporated into pathogenic and commensal bacterial PG where fixed and rapid live-cell, no-wash labeling was successful in both free bacterial cultures and in coculture with human macrophages. Overall, this probe allows for expeditious labeling of bacterial PG, thereby making it an exceptional tool for monitoring PG biosynthesis for the development of new antibiotic screens. The versatility and selectivity of this probe will allow for real-time interrogation of the interactions of bacterial pathogens in a human host and will serve a broader utility for studying glycans in multiple complex biological systems.
Assuntos
Compostos Heterocíclicos , Peptidoglicano , Humanos , Azidas , Ácidos Murâmicos , Reação de Cicloadição , AlcinosRESUMO
We report here a Cu-catalyzed azide-alkyne-thiol reaction forming thiotriazoles as the major byproduct under widely used bio-orthogonal protein labeling "click" conditions. The development of Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) had a tremendous impact on many biological discoveries. However, the considered chemoselectivity of CuAAC is hampered by the high reactivity of cysteine free thiols, yielding thiotriazole protein conjugates. The reaction byproducts generate false-positive protein hits in functional proteomic studies. The reported detail investigation of conjugates between chemical probes containing terminal alkynes, azide tags, and cell lysates reveals the formation of thiotriazoles, which can be readily detected by in-gel fluorescence scanning or after peptide and protein enrichment by mass spectrometry-based proteomics. In protein level identification and quantification experiments, the produced fluorescent bands or enriched proteins may not result from the important enzymatically driven reaction and can be falsely assigned as hits. This study provides a complete list of the most common background proteins. The knowledge of this previously overlooked reactivity now leads to the introduction of modified CuAAC conditions, which avoids the undesired product formation, diminishes the background, and hence improves the signal-to-noise ratio.
Assuntos
Azidas , Compostos de Sulfidrila , Alcinos , Proteômica , Proteínas , Catálise , Reação de Cicloadição , Cobre , Química ClickRESUMO
Nanotechnology has revolutionized the fabrication of hybrid species with tailored functionalities. A milestone in this field is the deoxyribonucleic acid (DNA) conjugation of nanoparticles, introduced almost 30 years ago, which typically exploits the affinity between thiol groups and metallic surfaces. Over the last decades, developments in colloidal research have enabled the synthesis of an assortment of nonmetallic structures, such as high-index dielectric nanoparticles, with unique properties not previously accessible with traditional metallic nanoparticles. However, to stabilize, integrate, and provide further functionality to nonmetallic nanoparticles, reliable techniques for their functionalization with DNA will be crucial. Here, we combine well-established dibenzylcyclooctyne-azide click-chemistry with a simple freeze-thaw method to achieve the functionalization of silica and silicon nanoparticles, which form exceptionally stable colloids with a high DNA surface density of â¼0.2 molecules/nm2. Furthermore, we demonstrate that these functionalized colloids can be self-assembled into high-index dielectric dimers with a yield of over 50% via the use of DNA origami. Finally, we extend this method to functionalize other important nanomaterials, including oxides, polymers, core-shell, and metal nanostructures. Our results indicate that the method presented herein serves as a crucial complement to conventional thiol functionalization chemistry and thus greatly expands the toolbox of DNA-functionalized nanoparticles currently available.
Assuntos
Química Click , DNA , Nanopartículas , Dióxido de Silício , DNA/química , Nanopartículas/química , Dióxido de Silício/química , Silício/química , Azidas/química , Propriedades de SuperfícieRESUMO
Phototriggered release of various cargos, including soluble protein factors and small molecules, has the potential to correct aberrant biological events by offering spatiotemporal control over local therapeutic levels. However, the poor penetration depth of light historically limits implementation to subdermal regions, necessitating alternative methods of light delivery to achieve the full potential of photodynamic therapeutic release. Here, we introduce a strategy exploiting bioluminescence resonance energy transfer (BRET)-an energy transfer process between light-emitting Nanoluciferase (NLuc) and a photosensitive acceptor molecule-to drive biomolecule release from hydrogel biomaterials. Through a facile, one-pot, and high-yielding synthesis (60-70%), we synthesized a heterobifunctional ruthenium cross-linker bearing an aldehyde and an azide (CHO-Ru-N3), a compound that we demonstrate undergoes predictable exchange of the azide-bearing ligand under blue-green light irradiation (>550 nm). Following site-specific conjugation to NLuc via sortase-tag enhanced protein ligation (STEPL), the modified protein was covalently attached to a poly(ethylene glycol) (PEG)-based hydrogel via strain-promoted azide-alkyne cycloaddition (SPAAC). Leveraging the high photosensitivity of Ru compounds, we demonstrate rapid and equivalent release of epidermal growth factor (EGF) via either direct illumination or via BRET-based bioluminolysis. As NLuc-originated luminescence can be controlled equivalently throughout the body, we anticipate that this unique protein release strategy will find use for locally triggered drug delivery following systemic administration of a small molecule.
Assuntos
Materiais Biocompatíveis , Materiais Biocompatíveis/química , Azidas/química , Rutênio/química , Processos Fotoquímicos , Hidrogéis/química , Hidrogéis/síntese química , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Luciferases/metabolismo , Luciferases/química , Luz , Polietilenoglicóis/químicaRESUMO
Lactobacillus is an important member of the probiotic bacterial family for regulating human intestinal microflora and preserving its normalcy, and it has been widely used in infant formula. An appropriate and feasible method to quantify viable Lactobacilli cells is urgently required to evaluate the quality of probiotic-fortified infant formula. This study presents a rapid and accurate method to count viable Lactobacilli cells in infant formula using flow cytometry (FCM). First, Lactobacillus cells were specifically and rapidly stained by oligonucleotide probes based on a signal-enhanced fluorescence in situ hybridization (SEFISH) technique. A DNA-binding fluorescent probe, propidium monoazide (PMA), was then used to accurately recognize viable Lactobacillus cells. The entire process of this newly developed PMA-SEFISH-FCM method was accomplished within 2.5 h, which included pretreatment, dual staining, and FCM analysis; thus, this method showed considerably shorter time-to-results than other rapid methods. This method also demonstrated a good linear correlation (R2 = 0.9994) with the traditional plate-based method with a bacterial recovery rate of 91.24%. To the best of our knowledge, the present study is the first report of FCM combined with PMA and FISH for the specific detection of viable bacterial cells.
Assuntos
Fórmulas Infantis , Lactobacillus , Propídio/análogos & derivados , Humanos , Lactobacillus/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Citometria de Fluxo/métodos , Hibridização in Situ Fluorescente , Azidas , Bactérias , Viabilidade MicrobianaRESUMO
GPI-anchored proteins (GPI-APs) are ubiquitous and essential but exist in low abundances on the cell surface, making their analysis and investigation especially challenging. To tackle the problem, a new method to detect and study GPI-APs based upon GPI metabolic engineering and DNA-facilitated fluorescence signal amplification was developed. In this context, cell surface GPI-APs were metabolically engineered using azido-inositol derivatives to introduce an azido group. This allowed GPI-AP coupling with alkyne-functionalized multifluorophore DNA assemblies generated by hybridization chain reaction (HCR). It was demonstrated that this approach could significantly improve the detection limit and sensitivity of GPI-APs, thereby enabling various biological studies, including the investigation of live cells. This new, enhanced GPI-AP detection method has been utilized to successfully explore GPI-AP engineering, analyze GPI-APs, and profile GPI-AP expression in different cells.
Assuntos
DNA , Hibridização de Ácido Nucleico , Animais , Humanos , Azidas/química , DNA/química , Corantes Fluorescentes/química , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/química , Proteínas Ligadas por GPI/análise , Proteínas Ligadas por GPI/metabolismoRESUMO
Lipopolysaccharide (LPS) presents a significant threat to human health. Herein, a novel method for detecting LPS was developed by coupling hybridization chain reaction (HCR), gold nanoparticles (AuNPs) agglutination (AA) triggered by a Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry (CuAAC), and electrokinetic accumulation (EA) in a microfluidic chip, termed the HCR-AA-EA method. Thereinto, the LPS-binding aptamer (LBA) was coupled with the AuNP-coated Fe3O4 nanoparticle, which was connected with the polymer of H1 capped on CuO (H1-CuO) and H2-CuO. Upon LPS recognition by LBA, the polymers of H1- and H2-CuO were released into the solution, creating a "one LPS-multiple CuO" effect. Under ascorbic acid reduction, CuAAC was initiated between the alkyne and azide groups on the AuNPs' surface; then, the product was observed visually in the microchannel by EA. Finally, LPS was quantified by the integrated density of AuNP aggregates. The limit of detections were 29.9 and 127.2 fM for water samples and serum samples, respectively. The levels of LPS in the injections and serum samples by our method had a good correlation with those from the limulus amebocyte lysate test (r = 0.99), indicating high accuracy. Remarkably, to popularize our method, a low-cost, wall-power-free portable device was developed, enabling point-of-care testing.
Assuntos
Química Click , Ouro , Lipopolissacarídeos , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Lipopolissacarídeos/análise , Humanos , Azidas/química , Limite de Detecção , Cobre/química , Alcinos/química , Aptâmeros de Nucleotídeos/químicaRESUMO
Nucleic acids play a pivotal role in the diagnosis of diseases. However, rapid, cost-efficient, and ultrasensitive identification of nucleic acid targets still represents a significant challenge. Herein, we describe an enzyme-free DNA amplification method capable of achieving accurate and ultrasensitive nucleic acid detection via DNA-templated click ligation chain reaction (DT-CLCR) catalyzed by a heterogeneous nanocatalyst made of Cu2O (hnCu2O). This hnCu2O-DT-CLCR method is built on two cross-amplifying hnCu2O-catalyzed DNA-templated azide-alkyne cycloaddition-driven DNA ligation reactions that boast a fast reaction rate and a high DNA ligation yield in minutes, enabling rapid exponential amplification of specific DNA targets. This newly developed hnCu2O-DT-CLCR-enabled DNA amplification strategy is further integrated with two signal reporting mechanisms to achieve low-cost and easy-to-use biosensors: an electrochemical sensor through the conjugation of a methylene blue redox reporter to a DNA probe used in hnCu2O-DT-CLCR and a colorimetric sensor through the incorporation of the split-to-intact G-quadruplex DNAzyme encoded into hnCu2O-DT-CLCR. Both sensors are able to achieve specific detection of the intended DNA target with a limit of detection at aM ranges, even when challenged in complex biological matrices. The combined hnCu2O-DT-CLCR and sensing strategies offer attractive universal platforms for enzyme-free and yet efficient detection of specific nucleic acid targets.
Assuntos
Química Click , Cobre , DNA , Técnicas de Amplificação de Ácido Nucleico , Cobre/química , DNA/química , Catálise , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção , DNA Catalítico/química , DNA Catalítico/metabolismo , Azidas/química , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Reação de CicloadiçãoRESUMO
Therapeutic devices incorporating living cells or tissues have been intensively investigated for applications in tissue engineering and regenerative medicine. Because many biological processes are governed by spatially dependent signals, programmable immobilization of materials is crucial for manipulating multiple types of cells. In this study, click chemistry substrates were introduced onto the surfaces of cells and cover glass, and the cells were fixed on the cover glass via covalent bonds for selective cell deposition. Azide group (Az)-labeled living cells were prepared by metabolic labeling with azido sugars. Following the introduction of Az, TCO (trans-cyclooctene) was metabolically labeled into the living cells by reacting with TCO-DBCO (dibenzocyclooctyne). Az and TCO in the cells were detected using DBCO-FAM (fluorescein)and tetrazine-Cy3, respectively. The mixture of Az-labeled green fluorescent protein HeLa cells and TCO-labeled red fluorescent protein HeLa cells was reacted in a culture dish in which three different cover glasses, DBCO-, tetrazine-, or methyl-coated, were added. Az- or TCO-labeled cells could be immobilized in a functional group-dependent manner. Next, tetrazine-labeled cells were incubated on TCO- or Az-labeled cell layers instead of cover glass. Functional group-dependent immobilization was also achieved in the cell layer. Introducing substrates for the click reaction could achieve cell-selective immobilization on different patterned glass surfaces, as well as cell-cell immobilization.