Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 733
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(1): 88-101.e16, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29909986

RESUMO

In colorectal cancer patients, a high density of cytotoxic CD8+ T cells in tumors is associated with better prognosis. Using a Stat3 loss-of-function approach in two wnt/ß-catenin-dependent autochthonous models of sporadic intestinal tumorigenesis, we unravel a complex intracellular process in intestinal epithelial cells (IECs) that controls the induction of a CD8+ T cell based adaptive immune response. Elevated mitophagy in IECs causes iron(II)-accumulation in epithelial lysosomes, in turn, triggering lysosomal membrane permeabilization. Subsequent release of proteases into the cytoplasm augments MHC class I presentation and activation of CD8+ T cells via cross-dressing of dendritic cells. Thus, our findings highlight a so-far-unrecognized link between mitochondrial function, lysosomal integrity, and MHC class I presentation in IECs and suggest that therapies triggering mitophagy or inducing LMP in IECs may prove successful in shifting the balance toward anti-tumor immunity in colorectal cancer.


Assuntos
Imunidade Adaptativa , Mitofagia , Imunidade Adaptativa/efeitos dos fármacos , Animais , Azoximetano/toxicidade , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Permeabilidade da Membrana Celular , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Compostos Ferrosos/metabolismo , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitofagia/efeitos dos fármacos , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Taxa de Sobrevida
2.
Gastroenterology ; 165(6): 1404-1419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37704113

RESUMO

BACKGROUND & AIMS: Pien Tze Huang (PZH) is a well-established traditional medicine with beneficial effects against inflammation and cancer. We aimed to explore the chemopreventive effect of PZH in colorectal cancer (CRC) through modulating gut microbiota. METHODS: CRC mouse models were established by azoxymethane plus dextran sulfate sodium treatment or in Apcmin/+ mice treated with or without PZH (270 mg/kg and 540 mg/kg). Gut barrier function was determined by means of intestinal permeability assays and transmission electron microscopy. Fecal microbiota and metabolites were analyzed by means of metagenomic sequencing and liquid chromatography mass spectrometry, respectively. Germ-free mice or antibiotic-treated mice were used as models of microbiota depletion. RESULTS: PZH inhibited colorectal tumorigenesis in azoxymethane plus dextran sulfate sodium-treated mice and in Apcmin/+ mice in a dose-dependent manner. PZH treatment altered the gut microbiota profile, with an increased abundance of probiotics Pseudobutyrivibrio xylanivorans and Eubacterium limosum, while pathogenic bacteria Aeromonas veronii, Campylobacter jejuni, Collinsella aerofaciens, and Peptoniphilus harei were depleted. In addition, PZH increased beneficial metabolites taurine and hypotaurine, bile acids, and unsaturated fatty acids, and significantly restored gut barrier function. Transcriptomic profiling revealed that PZH inhibited PI3K-Akt, interleukin-17, tumor necrosis factor, and cytokine-chemokine signaling. Notably, the chemopreventive effect of PZH involved both microbiota-dependent and -independent mechanisms. Fecal microbiota transplantation from PZH-treated mice to germ-free mice partly recapitulated the chemopreventive effects of PZH. PZH components ginsenoside-F2 and ginsenoside-Re demonstrated inhibitory effects on CRC cells and primary organoids, and PZH also inhibited tumorigenesis in azoxymethane plus dextran sulfate sodium-treated germ-free mice. CONCLUSIONS: PZH manipulated gut microbiota and metabolites toward a more favorable profile, improved gut barrier function, and suppressed oncogenic and pro-inflammatory pathways, thereby suppressing colorectal carcinogenesis.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Camundongos , Animais , Transdução de Sinais , Sulfato de Dextrana/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Apoptose , Medicina Tradicional , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/metabolismo , Carcinogênese , Azoximetano/toxicidade
3.
Biochem Biophys Res Commun ; 694: 149410, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38134478

RESUMO

Klebsiella aerogenes (K. aerogenes, KA) is a gram-negative opportunistic pathogen from the Klebsiella species and the Enterobacteriaceae family. However, the impact of K. aerogenes on colorectal cancer (CRC) remains uncertain. A colitis-associated tumorigenesis animal model was established by administering azoxymethane (AOM) and dextran sulfate sodium (DSS) to C57BL/6J mice. The concentration of K. aerogenes gavage in mice was 109 cfu. The study measured the following parameters: tumor formation (number and size), intestinal permeability (MUC2, ZO-1, and Occludin), colonic inflammation (TNF-α, IL-1ß, IL-6, and IL-10), proliferation and the fluctuation of the intestinal flora. Under the AOM/DSS-treated setting, K. aerogenes colonization worsened colitis by exacerbating intestinal inflammatory reaction and destroying the mucosal barrier. The intervention markedly augmented the quantity and dimensions of neoplasm in the AOM/DSS mice, stimulated cellular growth, and impeded cellular programmed cell death. In addition, K. aerogenes exacerbated the imbalance of the intestinal microbiota by elevating the abundance of Pseudomonas, Erysipelatoclostridium, Turicibacter, Rikenella, and Muribaculum and leading to a reduction in the abundance of Odoribacter, Alloprevotella, Roseburia, and Lachnospiraceae_NK4A136_group. The presence of K. aerogenes in AOM/DSS-treated mice promoted tumorigenesis, worsened intestinal inflammation, disrupted the intestinal barrier, and caused disturbance to the gut microbiota.


Assuntos
Colite , Enterobacter aerogenes , Animais , Camundongos , Azoximetano/toxicidade , Azoximetano/metabolismo , Camundongos Endogâmicos C57BL , Colite/patologia , Colo/patologia , Inflamação/patologia , Carcinogênese/patologia , Transformação Celular Neoplásica/patologia , Bacteroidetes , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças
4.
BMC Cancer ; 24(1): 1141, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267014

RESUMO

BACKGROUND: Curcumin has been reported to have activity for prevention and therapy of CRC, yet its underlying mechanisms remain largely unknown. Recently, emerging evidence suggests that the gut microbiota and its metabolites contribute to the causation and progression of Colorectal cancer (CRC). In this study, we aimed to investigate if curcumin affects the tumorigenesis of CRC by modulating gut microbiota and its metabolites. METHODS: Forty male C57BL/6JGpt mice were randomly divided into four groups: negative control (NC), curcumin control, CRC model, and curcumin treatment (CRC-Cur) groups. CRC mouse model was induced by using azoxymethane (AOM) and dextran sodium sulfate (DSS), and the mice in CRC model and curcumin treatment groups received oral PBS or curcumin (150 mg/kg/day), respectively. Additionally, fecal samples were collected. 16 S rRNA sequencing and Liquid Chromatography Mass Spectrometry (LC-MS)-based untargeted metabolomics were used to observe the changes of intestinal flora and intestinal metabolites. RESULTS: Curcumin treatment restored colon length and structural morphology, and significantly inhibited tumor formation in AOM/DSS-induced CRC model mice. The 16S rRNA sequencing analysis indicated that the diversity and richness of core and total species of intestinal microflora in the CRC group were significantly lower than those in the NC group, which were substantially restored in the curcumin treatment group. Curcumin reduced harmful bacteria, including Ileibacterium, Monoglobus and Desulfovibrio, which were elevated in CRC model mice. Moreover, curcumin increased the abundance of Clostridia_UCG-014, Bifidobacterium and Lactobacillus, which were decreased in CRC model mice. In addition, 13 different metabolites were identified. Compared to the NC group, ethosuximide, xanthosine, and 17-beta-estradiol 3-sulfate-17-(beta-D-glucuronide) were elevated in the CRC model group, whereas curcumin treatment significantly reduced their levels. Conversely, glutamylleucine, gamma-Glutamylleucine, liquiritin, ubenimex, 5'-deoxy-5'-fluorouridine, 7,8-Dihydropteroic acid, neobyakangelicol, libenzapril, xenognosin A, and 7,4'-dihydroxy-8-methylflavan were decreased in the CRC group but notably upregulated by curcumin. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis revealed enrichment in seven pathways, including folate biosynthesis (P < 0.05). CONCLUSIONS: The gut microecological balance was disrupted in AOM/DSS-induced CRC mice, accompanied by metabolite dysbiosis. Curcumin restored the equilibrium of the microbiota and regulated metabolites, highly indicating that curcumin may alleviate the development of AOM/DSS induced colorectal cancer in mice by regulating intestinal flora homeostasis and intestinal metabolites.


Assuntos
Neoplasias Colorretais , Curcumina , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Curcumina/farmacologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/induzido quimicamente , Camundongos , Masculino , Modelos Animais de Doenças , Azoximetano/toxicidade , Carcinogênese/efeitos dos fármacos , Sulfato de Dextrana/toxicidade , RNA Ribossômico 16S/genética , Metabolômica/métodos , Humanos
5.
J Immunol ; 209(11): 2227-2238, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36426975

RESUMO

Colorectal cancer is one of the most common cancers and a major cause of mortality. Proinflammatory and antitumor immune responses play critical roles in colitis-associated colon cancer. CCL17, a chemokine of the C-C family and ligand for CCR4, is expressed by intestinal dendritic cells in the steady state and is upregulated during colitis in mouse models and inflammatory bowel disease patients. In this study, we investigated the expression pattern and functional relevance of CCL17 for colitis-associated colon tumor development using CCL17-enhanced GFP-knockin mice. CCL17 was highly expressed by dendritic cells but also upregulated in macrophages and intermediary monocytes in colon tumors induced by exposure to azoxymethane and dextran sodium sulfate. Despite a similar degree of inflammation in the colon, CCL17-deficient mice developed fewer tumors than did CCL17-competent mice. This protective effect was abrogated by cohousing, indicating a dependency on the microbiota. Changes in microbiota diversity and composition were detected in separately housed CCL17-deficient mice, and these mice were more susceptible to azoxymethane-induced early apoptosis in the colon affecting tumor initiation. Immune cell infiltration in colitis-induced colon tumors was not affected by the lack of CCL17. Taken together, our results indicate that CCL17 promotes colitis-associated tumorigenesis by influencing the composition of the intestinal microbiome and reducing apoptosis during tumor initiation.


Assuntos
Colite , Neoplasias do Colo , Microbioma Gastrointestinal , Camundongos , Animais , Carcinogênese , Transformação Celular Neoplásica , Azoximetano/toxicidade , Neoplasias do Colo/patologia , Quimiocina CCL17
6.
J Immunol ; 208(5): 1280-1291, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121641

RESUMO

Inflammatory bowel disease such as chronic colitis promotes colorectal cancer, which is a common cause of cancer mortality worldwide. Hypoxia is a characteristic of inflammation as well as of solid tumors and enforces a gene expression response controlled by hypoxia-inducible factors (HIFs). Once established, solid tumors are immunosuppressive to escape their abatement through immune cells. Although HIF activity is known to 1) promote cancer development and 2) drive tumor immune suppression through the secretion of adenosine, both prolyl hydroxylases and an asparaginyl hydroxylase termed factor-inhibiting HIF (FIH) negatively regulate HIF. Thus, FIH may act as a tumor suppressor in colorectal cancer development. In this study, we examined the role of colon epithelial FIH in a mouse model of colitis-induced colorectal cancer. We recapitulated colitis-associated colorectal cancer development in mice using the azoxymethane/dextran sodium sulfate model in Vil1-Cre/FIH+f/+f and wild-type siblings. Colon samples were analyzed regarding RNA and protein expression and histology. Vil1-Cre/FIH+f/+f mice showed a less severe colitis progress compared with FIH+f/+f animals and a lower number of infiltrating macrophages in the inflamed tissue. RNA sequencing analyses of colon tissue revealed a lower expression of genes associated with the immune response in Vil1-Cre/FIH+f/+f mice. However, tumor occurrence did not significantly differ between Vil1-Cre/FIH+f/+f and wild-type mice. Thus, FIH knockout in colon epithelial cells did not modulate colorectal cancer development but reduced the inflammatory response in chronic colitis.


Assuntos
Neoplasias Associadas a Colite/patologia , Colite/patologia , Neoplasias Colorretais/patologia , Mucosa Intestinal/patologia , Oxigenases de Função Mista/metabolismo , Adenosina/metabolismo , Animais , Azoximetano/toxicidade , Hipóxia Celular/fisiologia , Colite/induzido quimicamente , Colite/genética , Neoplasias Associadas a Colite/genética , Colo/patologia , Neoplasias Colorretais/genética , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Células Epiteliais/patologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Prolil Hidroxilases/metabolismo , Transdução de Sinais/fisiologia , Evasão Tumoral/imunologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
Mol Biol Rep ; 51(1): 704, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824233

RESUMO

BACKGROUND: Tumor modeling using organoids holds potential in studies of cancer development, enlightening both the intracellular and extracellular molecular mechanisms behind different cancer types, biobanking, and drug screening. Intestinal organoids can be generated in vitro using a unique type of adult stem cells which are found at the base of crypts and are characterized by their high Lgr5 expression levels. METHODS AND RESULTS: In this study, we successfully established intestinal cancer organoid models by using both the BALB/c derived and mouse embryonic stem cells (mESCs)-derived intestinal organoids. In both cases, carcinogenesis-like model was developed by using azoxymethane (AOM) treatment. Carcinogenesis-like model was verified by H&E staining, immunostaining, relative mRNA expression analysis, and LC/MS analysis. The morphologic analysis demonstrated that the number of generated organoids, the number of crypts, and the intensity of the organoids were significantly augmented in AOM-treated intestinal organoids compared to non-AOM-treated ones. Relative mRNA expression data revealed that there was a significant increase in both Wnt signaling pathway-related genes and pluripotency transcription factors in the AOM-induced intestinal organoids. CONCLUSION: We successfully developed simple carcinogenesis-like models using mESC-based and Lgr5 + stem cell-based intestinal organoids. Intestinal organoid based carcinogenesi models might be used for personalized cancer therapy in the future.


Assuntos
Azoximetano , Carcinogênese , Células-Tronco Embrionárias Murinas , Organoides , Via de Sinalização Wnt , Animais , Organoides/metabolismo , Organoides/patologia , Camundongos , Azoximetano/toxicidade , Carcinogênese/patologia , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Células-Tronco Embrionárias Murinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos Endogâmicos BALB C , Intestinos/patologia , Neoplasias Intestinais/patologia , Neoplasias Intestinais/induzido quimicamente , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Modelos Animais de Doenças , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
8.
J Biochem Mol Toxicol ; 38(9): e23815, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39171650

RESUMO

Drug transporters play a pivotal role in modulating drug disposition and are subject to alterations under inflammatory conditions. This study aimed to elucidate the intricate expression patterns of drug transporters during both acute and chronic inflammation, which are closely linked to malignant transformation. To investigate acute inflammation, we employed an in vitro model by subjecting Caco-2 cells to various inflammatory stimuli (IL-1ß, TNF-α, or LPS) individually or in combination. The successful induction of inflammation was confirmed by robust increases in IL-6 and NO production. Notably, inflamed Caco-2 cells exhibited significantly diminished levels of ABCB1 and ABCG2, while the expression of ABCC2 was upregulated. For chronic inflammation induction in vivo, we employed the well-established AOM/DSS mouse model known for its association with colitis-driven tumorigenesis. Persistent inflammation was effectively monitored throughout the experiment via elevated IL-6 and NO levels. The sequential stages of tumorigenesis were confirmed through Ki-67 immunohistochemistry. Intriguingly, we observed gradual alterations in the expression patterns of the studied drug transporters during stepwise induction, with ABCB1, ABCG2, and ABCC1 showing downregulation and ABCC2 exhibiting upregulation. Immunohistochemistry further revealed dynamic changes in the expression of ABCB1 and ABCC2 during the induction cycles, closely paralleling the gradual increase in Ki-67 expression observed during the development of precancerous lesions. Collectively, our findings underscore the significant impact of inflammation on drug transporter expression, potentially influencing the process of malignant transformation of the colon.


Assuntos
Azoximetano , Neoplasias do Colo , Inflamação , Proteína 2 Associada à Farmacorresistência Múltipla , Humanos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/patologia , Animais , Células CACO-2 , Camundongos , Azoximetano/toxicidade , Inflamação/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Carcinogênese/metabolismo , Carcinogênese/induzido quimicamente , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/biossíntese , Interleucina-6/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/induzido quimicamente , Masculino
9.
Dig Dis Sci ; 69(2): 453-462, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103106

RESUMO

BACKGROUND: Gliclazide is a potential anti-cancer drug candidate for preventing carcinogenesis. However, the effect of gliclazide on colitis-associated colorectal cancer remains unknown. AIMS: We aimed to evaluate whether gliclazide plays a protective role in colitis-associated colorectal cancer and the underlying molecular mechanism. METHODS: The administration of azoxymethane (AOM) followed by dextran sulfate sodium (DSS) aimed to induce colitis-associated colorectal cancer in mice. C57BL mice were gavaged with gliclazide (6 mg/kg by gavage 5 days a week) for 12 weeks immediately following AOM administration. After sacrificing the mice, colon tissues were measured for tumor number and tumor burden. The proliferation- and inflammation-related molecular mechanisms were explored. RESULTS: The administration of gliclazide significantly reduced the tumor number and tumor burden in mice. Cell proliferation decreased in the gliclazide group compared with the control group, as indicated by reduced Ki-67 expression. Furthermore, gliclazide alleviated colonic inflammation, significantly decreased pro-inflammatory factor TNF-α levels and increased anti-inflammatory factor IL-10 levels in vivo. In vivo and vitro, it was shown that gliclazide increased the level of phospho-AMPK (p-AMPK) and inhibited NF-κB activity. Further studies demonstrated that the inhibition of NF-κB activity induced by gliclazide was mediated by p-AMPK in vitro. CONCLUSIONS: Gliclazide effectively alleviated colonic inflammation and prevented colonic carcinogenesis in an AOM-DSS mouse model by modulating the AMPK-NF-κB signaling pathway. Thus, gliclazide holds potential as a chemopreventive agent for colitis-associated colorectal cancer.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Gliclazida , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Gliclazida/efeitos adversos , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/metabolismo , Transdução de Sinais , Carcinogênese , Azoximetano/toxicidade , Sulfato de Dextrana/toxicidade , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/metabolismo
10.
World J Surg Oncol ; 22(1): 192, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054486

RESUMO

BACKGROUND: More and more studies showed that gut microbiota was closely related to the development of colorectal cancer (CRC). However, the specific pathway of gut microbiota regulating CRC development is still unknown. METHODS: We collected fecal samples from 14 CRC patients and 20 normal volunteers for 16 S sequencing analysis. At the same time, 14 CRC patients' tumors and their adjacent tissues were collected for the detection of STING pathway related protein level. Mice were injected with azoxymethane (AOM) to establish an animal model of CRC, and antibiotics were given at the same time to evaluate the influence of gut microbiota on STING pathway and whether it was involved in regulating the tumor development of CRC mice. RESULTS: The sequencing results showed that compared with the normal group, the gut microbiota gut microbiota of CRC patients changed significantly at different species classification levels. At the level of genus, Akkermansia, Ligilactobacillus and Subdoligranulum increased the most in CRC patients, while Bacteroides and Dialister decreased sharply. The expression of STING-related protein was significantly down-regulated in CRC tumor tissues. Antibiotic treatment of CRC mice can promote the development of tumor and inhibit the activation of STING pathway. CONCLUSION: Gut microbiota participates in CRC progress by mediating STING pathway activation.


Assuntos
Neoplasias Colorretais , Progressão da Doença , Microbioma Gastrointestinal , Proteínas de Membrana , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Animais , Camundongos , Humanos , Proteínas de Membrana/metabolismo , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Transdução de Sinais , Prognóstico , Azoximetano/toxicidade , Fezes/microbiologia
11.
Mar Drugs ; 22(10)2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39452878

RESUMO

In this study, we investigated the protective effects of astaxanthin (AST) against oxidative stress induced by the combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) in colitis-associated cancer (CAC) and TNF-α-induced human colorectal cancer cells (SW480), as well as the underlying mechanism. In vitro experiments revealed that astaxanthin reduced reactive oxygen species (ROS) generation and inhibited the expression of Phosphorylated JNK (P-JNK), Phosphorylated ERK (P-ERK), Phosphorylated p65 (P-p65), and the NF-κB downstream protein cyclooxygenase-2 (COX-2). In vivo experiments showed that astaxanthin ameliorated AOM/DSS-induced weight loss, shortened the colon length, and caused histomorphological changes. In addition, astaxanthin suppressed cellular inflammation by modulating the MAPK and NF-κB pathways and inhibiting the expression of the proinflammatory cytokines IL-6, IL-1ß, and TNF-α. In conclusion, astaxanthin attenuates cellular inflammation and CAC through its antioxidant effects.


Assuntos
Azoximetano , Neoplasias Associadas a Colite , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Fator de Necrose Tumoral alfa , Xantofilas , Xantofilas/farmacologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Azoximetano/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/prevenção & controle , Neoplasias Associadas a Colite/patologia , Masculino , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , NF-kappa B/metabolismo , Colite/induzido quimicamente , Colite/tratamento farmacológico , Modelos Animais de Doenças
12.
Int J Mol Sci ; 25(20)2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39456736

RESUMO

Colorectal cancer CRC remains one of the leading causes of cancer-related deaths worldwide, with chronic intestinal inflammation identified as a major risk factor. Notably, the tumor suppressor TP53 undergoes mutation at higher rates and earlier stages during human inflammation-driven colon tumorigenesis than in sporadic cases. We investigated whether deleting Trp53 affects inflammation-induced tumor growth and the expression of Lgr5+ cancer stem cells in mice. We examined azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon tumorigenesis in wild-type Trp53 (+/+), heterozygous (+/-), and knockout (-/-) mice. Trp53-/- mice showed increased sensitivity to DSS colitis and earlier accelerated tumorigenesis with 100% incidence. All groups could develop invasive tumors, but knockouts displayed the most aggressive features. Unlike wild-type CRC, knockouts selectively showed increased populations of Lgr5+ colon cancer stem-like cells. Trp53 loss also boosted laminin, possibly facilitating the disruption of the tumor border. This study highlights how Trp53 deletion promotes the perfect storm of inflammation and stemness, driving colon cancer progression. Trp53 deletion dramatically shortened AOM/DSS latency and improved tumor induction efficiency, offering an excellent inflammation-driven CRC model.


Assuntos
Azoximetano , Carcinogênese , Colite , Neoplasias Colorretais , Sulfato de Dextrana , Camundongos Knockout , Células-Tronco Neoplásicas , Receptores Acoplados a Proteínas G , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Camundongos , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/etiologia , Carcinogênese/genética , Carcinogênese/patologia , Carcinogênese/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Deleção de Genes
13.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731854

RESUMO

Factors that reduce the risk of developing colorectal cancer include biologically active substances. In our previous research, we demonstrated the anti-inflammatory, immunomodulatory, and antioxidant effects of oat beta-glucans in gastrointestinal disease models. The aim of this study was to investigate the effect of an 8-week consumption of a diet supplemented with low-molar-mass oat beta-glucan in two doses on the antioxidant potential, inflammatory parameters, and colonic metabolomic profile in azoxymethane(AOM)-induced early-stage colorectal cancer in the large intestine wall of rats. The results showed a statistically significant effect of AOM leading to the development of neoplastic changes in the colon. Consumption of beta-glucans induced changes in colonic antioxidant potential parameters, including an increase in total antioxidant status, a decrease in the superoxide dismutase (SOD) activity, and a reduction in thiobarbituric acid reactive substance (TBARS) concentration. In addition, beta-glucans decreased the levels of pro-inflammatory interleukins (IL-1α, IL-1ß, IL-12) and C-reactive protein (CRP) while increasing the concentration of IL-10. Metabolomic studies confirmed the efficacy of oat beta-glucans in the AOM-induced early-stage colon cancer model by increasing the levels of metabolites involved in metabolic pathways, such as amino acids, purine, biotin, and folate. In conclusion, these results suggest a wide range of mechanisms involved in altering colonic metabolism during the early stage of carcinogenesis and a strong influence of low-molar-mass oat beta-glucan, administered as dietary supplement, in modulating these mechanisms.


Assuntos
Antioxidantes , Azoximetano , Neoplasias Colorretais , beta-Glucanas , Animais , beta-Glucanas/farmacologia , Azoximetano/toxicidade , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia , Ratos , Masculino , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Modelos Animais de Doenças , Avena/química , Superóxido Dismutase/metabolismo , Colo/metabolismo , Colo/patologia , Colo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Proteína C-Reativa/metabolismo
14.
Bull Exp Biol Med ; 177(1): 162-168, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38960963

RESUMO

In adult male C57BL/6 mice with high (HR) and low (LR) resistance to hypoxia, morphological features of colon tumors and blood parameters were evaluated 70 days after intraperitoneal injection of azoxymethane and subsequent consumption of 3 cycles of dextran sulfate sodium. On macroscopic analysis, tumors were found in the distal colon in 35% (7 of 20 animals) of HR and 31% (4 of 13 animals) of LR animals. Microscopic analysis of the distal colon revealed tumors in 75% (15 of 20 animals) of HR and 69% (9 of 13 animals) of LR mice. The tumors were presented by areas of glandular intraepithelial neoplasia and adenocarcinomas; the incidence and the area of the tumors did not differ in groups of HR and LR mice. The number of neuroendocrine and goblet cells in the distal colon mucosa in the areas of tumors was similar in the compared groups. However, in both HR and LR mice of the experimental groups, the content of goblet cells in tumors was lower and the content of endocrine cells was higher than in the corresponding control groups. In the peripheral blood, the erythrocyte count and hemoglobin content decreased in HR and LR mice of the experimental groups; the relative number of monocytes increased only in HR mice and the absolute number of lymphocytes and monocytes decreased in LR mice. Thus, 70 days after azoxymethane administration and dextran sulfate sodium consumption, the tumors in mice were presented by glandular intraepithelial neoplasia and adenocarcinomas, and their incidence and area did not differ between animals with different tolerance to hypoxia.


Assuntos
Adenocarcinoma , Azoximetano , Neoplasias do Colo , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Animais , Camundongos , Neoplasias do Colo/patologia , Neoplasias do Colo/induzido quimicamente , Neoplasias do Colo/metabolismo , Masculino , Sulfato de Dextrana/toxicidade , Azoximetano/toxicidade , Adenocarcinoma/patologia , Adenocarcinoma/induzido quimicamente , Adenocarcinoma/metabolismo , Hipóxia/patologia , Colo/patologia , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Mucosa Intestinal/patologia , Hemoglobinas/metabolismo , Monócitos/patologia , Monócitos/metabolismo , Contagem de Eritrócitos
15.
Carcinogenesis ; 44(12): 837-846, 2023 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-37864831

RESUMO

In this study, we explored the in vivo effects of Ocimum gratissimum aqueous extracts (OGE) on colorectal cancer (CRC) development provoked by azoxymethane/dextran sodium sulfate (AOM/DSS). The results showed a significant reduction in the tumor load and tumor number for the OGEH group that received continued administration of OGE compared to the AOM/DSS group, with P values of <0.01, but this was not observed in the OGEHs group that received separated administration of OGE. All groups except the control group exhibited aberrant crypt foci (ACF) and adenocarcinoma of lesion pathology in colon, and both conditions were significantly reduced in the OGEH group (P < 0.01) as compared to the AOM/DSS group. Subsequent investigation into whether OGE exhibits eliminative effects on DSS-induced severe colitis (SC) in mice showed that the disease activity index score was significantly reduced in the OGE-treated groups (P < 0.01), also colon colitis histological score was reversed. These data suggest that OGE may be potentially effective in preventing CRC when administered throughout the promotional stages of carcinogenesis by inhibiting inflammatory SC.


Assuntos
Colite , Neoplasias Colorretais , Camundongos , Animais , Azoximetano/toxicidade , Sulfato de Dextrana/toxicidade , Colite/induzido quimicamente , Colite/patologia , Carcinogênese , Água , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/prevenção & controle , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
16.
Cancer Sci ; 114(5): 1972-1985, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36692143

RESUMO

The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.


Assuntos
Colite , Neoplasias Colorretais , Animais , Masculino , Camundongos , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/genética , Colite/complicações , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/uso terapêutico , Modelos Animais de Doenças , Dano ao DNA/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Cell Commun Signal ; 21(1): 245, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37730576

RESUMO

BACKGROUND: Several studies show that natural foods are a source of compounds with anticancer properties that affect the gut microbiota and its metabolites. In the present study, we investigate the effect of a delactosed buffalo milk whey by-product (DMW) on colorectal carcinogenesis. METHODS: The effect of DMW on colorectal carcinoma (CRC) was investigated in the established mouse model of azoxymethane (AOM)-induced colon carcinoma, which closely resembles the human clinical condition of CRC. The effect of DMW on CRC immortalized cell lines was also evaluated to further identify the antineoplastic mechanism of action. RESULTS: Pretreatment of AOM-treated mice with DMW significantly (P < 0.05) reduced the percentage of mice bearing both aberrant crypt foci with more than four crypts (which are early precancerous lesions that progress to CRC) and tumors. In addition, DMW completely counteracted the effect of AOM on protein expression of caspase-9, cleaved caspase-3 and poly ADP-ribose polymerase in colonic tissue. Administration of DMW alone (i.e. without AOM) resulted in changes in the composition of the gut microbiota, leading to enrichment or depletion of genera associated with health and disease, respectively. DMW was also able to restore AOM-induced changes in specific genera of the gut microbiota. Specifically, DMW reduced the genera Atopobiaceae, Ruminococcus 1 and Lachnospiraceae XPB1014 and increased the genera Parabacteroides and Candidatus Saccharimonas, which were increased and reduced, respectively, by AOM. Blood levels of butyric acid and cancer diagnostic markers (5-methylcytidine and glycerophosphocholine), which were increased by AOM treatment, were reduced by DMW. Furthermore, DMW exerted cytotoxic effects on two human CRC cell lines (HCT116 and HT29) and these effects were associated with the induction of apoptotic signaling. CONCLUSIONS: Our results suggest that DMW exerts chemopreventive effects and restores the gut microbiota in AOM-induced CRC, and induces cytotoxic effect on CRC cells. DMW could be an important dietary supplement to support a healthy gut microbiota and reduce the prevalence of CRC in humans. Video Abstract.


Assuntos
Neoplasias Colorretais , Soro do Leite , Humanos , Animais , Camundongos , Búfalos , Leite , Carcinogênese , Neoplasias Colorretais/tratamento farmacológico , Azoximetano/toxicidade , Ácido Butírico
18.
Dig Dis Sci ; 68(5): 1885-1893, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36504013

RESUMO

BACKGROUND: Chronic inflammation, such as ulcerative colitis, increases the risk of developing colitis-associated cancers. Currently, mice administered with azoxymethane/dextran sodium sulfate are well-known models for colitis-associated cancers. Although human colitis-associated cancers are often flat lesions, most azoxymethane/dextran sodium sulfate mouse cancers are raised lesions. AIMS: To establish a novel mouse model for colitis-associated cancers and evaluate its characteristics. METHODS: A single dose of azoxymethane was intraperitoneally administered to CD4-dnTGFßRII mice, which are genetically modified mice that spontaneously develop inflammatory bowel disease at different doses and timings. The morphological and biological characteristics of cancers was assessed in these mice. RESULTS: Colorectal cancer developed with different proportions in each group. In particular, a high rate of cancer was observed at 10 and 20 weeks after administration in 12-week-old CD4-dnTGFßRII mice dosed at 15 mg/kg. Immunohistochemical staining of tumors was positive for ß-catenin, ki67, and Sox9 but not for p53. Grade of inflammation was significantly higher in mice with cancer than in those without cancer (p < 0.001). In CD4-dnTGFßRII/azoxymethane mice, adenocarcinomas with flat lesions were observed, with moderate-to-severe inflammation in the non-tumor area. In comparison, non-tumor areas of azoxymethane/dextran sodium sulfate mice had less inflammation than those of CD4-dnTGFßRII/azoxymethane mice, and most macroscopic characteristics of tumors were pedunculated or sessile lesions in azoxymethane/dextran sodium sulfate mice. CONCLUSIONS: Although feasibility and reproducibility of azoxymethane/CD4-dbTGFßRII appear to be disadvantages compared to the azoxymethane/dextran sodium sulfate model, this is the first report to demonstrate that the chronic inflammatory colitis model, CD4-dnTGFßRII also develops colitis-related colorectal cancer.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Humanos , Animais , Camundongos , Dextranos , Reprodutibilidade dos Testes , Colite/induzido quimicamente , Colite/complicações , Colite/patologia , Azoximetano/toxicidade , Inflamação , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/patologia
19.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37834032

RESUMO

Cholangiocarcinoma is the second most common primary cancer of the liver and has a poor prognosis. Various animal models, including carcinogen-induced and genetically engineered rodent models, have been established to clarify the mechanisms underlying cholangiocarcinoma development. In the present study, we developed a novel mouse model of malignant lesions in the biliary ducts induced by the administration of the carcinogen azoxymethane to obese C57BLKS/J-db/db mice. A histopathological analysis revealed that the biliary tract lesions in the liver appeared to be an intrahepatic cholangiocarcinoma with higher tumor incidence, shorter experimental duration, and a markedly increased incidence in obese mice. Molecular markers analyzed using a microarray and a qPCR indicated that the cancerous lesions originated from the cholangiocytes and developed in the inflamed livers. These findings indicated that this is a novel mouse model of intrahepatic cholangiocarcinoma in the context of steatohepatitis. This model can be used to provide a better understanding of the pathogenic mechanisms of cholangiocarcinoma and to develop novel therapeutic strategies for this malignancy.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Ductos Biliares Intra-Hepáticos/patologia , Azoximetano/toxicidade , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/patologia , Carcinógenos/toxicidade
20.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37511456

RESUMO

The mechanisms underlying the transition from colitis-associated inflammation to carcinogenesis and the cell origin of cancer formation are still unclear. The azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse model reproduces human colitis-associated colorectal cancer. To elucidate the mechanisms of cancer development and dynamics of the linker threonine-phosphorylated Smad2/3 (pSmad2/3L-Thr)-positive cells, we explored the early stages of colitis-associated colorectal cancer in AOM/DSS mice. The AOM/DSS mice were sacrificed at 4 to 6 weeks following AOM administration. To analyze the initial lesions, immunofluorescence staining for the following markers was performed: ß-catenin, Ki67, CDK4, Sox9, Bmi1, cyclin D1, and pSmad2/3L-Thr. Micro-neoplastic lesions were flat and unrecognizable, and the uni-cryptal ones were either open to the surfaces or hidden within the mucosae. These neoplastic cells overexpressed ß-catenin, Sox9, Ki67, and Cyclin D1 and had large basophilic nuclei in the immature atypical cells. In both the lesions, pSmad2/3L-Thr-positive cells were scattered and showed immunohistochemical co-localization with ß-catenin, CDK4, and Bmi1 but never with Ki67. More ß-catenin-positive neoplastic cells of both lesions were detected at the top compared to the base or center of the mucosae. We confirmed initial lesions in the colitis-associated colorectal cancer model mice and observed results that suggest that pSmad2/3L-Thr is a biomarker for tissue stem cells and cancer stem cells.


Assuntos
Neoplasias Associadas a Colite , Colite , Neoplasias Colorretais , Camundongos , Humanos , Animais , beta Catenina/metabolismo , Ciclina D1 , Antígeno Ki-67/metabolismo , Células-Tronco Neoplásicas/metabolismo , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Azoximetano/toxicidade , Sulfato de Dextrana/toxicidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA