Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.785
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 35(11): 2152-2159, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260657

RESUMO

In a series of previous studies we reported that black raspberry (BRB) powder inhibits dibenzo[a,l]pyrene (DBP)-induced DNA damage, mutagenesis, and oral squamous cell carcinoma (OSCC) development in mice. In the present study, using human oral leukoplakia (MSK-Leuk1) and squamous cell carcinoma (SCC1483) cells, we tested the hypothesis that BRB extract (BRBE) will enhance the synthesis of glutathione (GSH) and in turn increase GSH conjugation of the fjord-region DBP diol epoxide (DBPDE) derived from DBP leading to inhibition of DBP-induced DNA damage. The syntheses of DBPDE-GSH conjugate, DBPDE-dA adduct, and the corresponding isotope-labeled internal standards were performed; LC-MS/MS methods were used for their quantification. BRBE significantly (p < 0.05) increased cellular GSH by 31% and 13% at 6 and 24 h, respectively, in OSCC cells; in MSK-LeuK1 cells, the levels of GSH significantly (p < 0.05) increased by 55% and 22%, at 1 and 6 h. Since BRBE significantly enhanced the synthesis of GSH in both cell types, subsequent experiments were performed in MSK-Leuk1 cells. Western blot analysis was performed to determine the types of proteins involved in the synthesis of GSH. BRBE significantly (p < 0.05) increased the protein expression (2.5-fold) of the glutamate-cysteine ligase catalytic subunit (GCLC) but had no effect on the glutamate-cysteine ligase modifier subunit (GCLM) and glutathione synthetase (GSS). LC-MS/MS analysis showed that pretreatment of cells with BRBE followed by DBPDE significantly (p < 0.05) increased the levels of DBPDE-GSH conjugate (2.5-fold) and decreased DNA damage by 74% measured by assessing levels of DBPDE-dA adduct formation. Collectively, the results of this in vitro study clearly support our hypothesis, and the LC-MS/MS methods developed in the present study will be highly useful in testing the same hypothesis initially in our mouse model and ultimately in smokers.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Rubus , Humanos , Camundongos , Animais , Carcinógenos , Crisenos , Benzopirenos/metabolismo , Compostos de Epóxi , Nicotiana/metabolismo , Glutamato-Cisteína Ligase , Adutos de DNA , Cromatografia Líquida , Estuários , Neoplasias Bucais/induzido quimicamente , Espectrometria de Massas em Tandem , Glutationa/metabolismo , Extratos Vegetais/farmacologia
2.
J Chem Phys ; 154(17): 175102, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241046

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in environments, and some of them are causative agents of human cancer. Previous studies concluded that benzo[a]pyrene-7,8-dione (BPQ), which is one kind of carcinogenic PAH metabolites, forms covalently bonded adducts with DNA, and the major adduct formed is a deoxyguanosine adduct. In this work, we investigate the interactions between BPQ and DNA molecules via first-principles calculations. We identify six possible DNA adducts with BPQ. In addition to the four adducts forming covalent bonds, there are two adducts bound purely by van der Waals (vdW) interactions. Remarkably, the two vdW-bound adducts have comparable, if not larger, binding energies as the covalent adducts. The results may help us gain more understanding of the interactions between PAH metabolites and DNA.


Assuntos
Benzopirenos/química , Adutos de DNA/química , Teoria da Densidade Funcional , Simulação de Dinâmica Molecular , Benzopirenos/metabolismo , Adutos de DNA/metabolismo , Estrutura Molecular
3.
Arch Toxicol ; 95(10): 3323-3340, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34432120

RESUMO

Developmental toxicity testing is an animal-intensive endpoints in toxicity testing and calls for animal-free alternatives. Previous studies showed the applicability of an in vitro-in silico approach for predicting developmental toxicity of a range of compounds, based on data from the mouse embryonic stem cell test (EST) combined with physiologically based kinetic (PBK) modelling facilitated reverse dosimetry. In the current study, the use of this approach for predicting developmental toxicity of polycyclic aromatic hydrocarbons (PAHs) was evaluated, using benzo[a]pyrene (BaP) as a model compound. A rat PBK model of BaP was developed to simulate the kinetics of its main metabolite 3-hydroxybenzo[a]pyrene (3-OHBaP), shown previously to be responsible for the developmental toxicity of BaP. Comparison to in vivo kinetic data showed that the model adequately predicted BaP and 3-OHBaP blood concentrations in the rat. Using this PBK model and reverse dosimetry, a concentration-response curve for 3-OHBaP obtained in the EST was translated into an in vivo dose-response curve for developmental toxicity of BaP in rats upon single or repeated dose exposure. The predicted half maximal effect doses (ED50) amounted to 67 and 45 mg/kg bw being comparable to the ED50 derived from the in vivo dose-response data reported for BaP in the literature, of 29 mg/kg bw. The present study provides a proof of principle of applying this in vitro-in silico approach for evaluating developmental toxicity of BaP and may provide a promising strategy for predicting the developmental toxicity of related PAHs, without the need for extensive animal testing.


Assuntos
Benzo(a)pireno/administração & dosagem , Benzopirenos/metabolismo , Modelos Biológicos , Animais , Benzo(a)pireno/farmacocinética , Benzo(a)pireno/toxicidade , Simulação por Computador , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Sprague-Dawley , Testes de Toxicidade/métodos
4.
Chem Res Toxicol ; 31(11): 1111-1118, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30260214

RESUMO

Ovarian cancer ranked second in incidence among gynecologic cancers, but it causes more deaths than any other gynecologic cancer; at present there is no curative treatment beyond surgery. Animal models that employ carcinogens found in the human environment can provide a realistic platform to understand the mechanistic basis for disease development and to design rational chemopreventive/therapeutic strategies. We and others have shown that the administration of the environmental pollutant and tobacco smoke constituent dibenzo[ def,p]chrysene (DBP) to mice by several routes of exposure can induce tumors in multiple sites including the ovary. In the present study we compared, for the first time, the tumorigenicity and DNA damage induced by DBP and its metabolites DBP-dihydrodiol (DBPDHD) and DBP-dihydrodiol epoxide (DBPDE) in the mouse ovary. Compounds were dissolved in dimethyl sulfoxide (DMSO) as the vehicle and administered by topical application into the mouse oral cavity three times per week for 38 weeks. No tumors were observed in mice treated with DMSO. At equal dose (24 nmol/30 µL DMSO), the incidence of ovarian tumors induced by DBPDHD was higher (60.7%), although not significantly, than that induced by DBP (44.8%). Similarly the levels of DNA damage induced by DBPDHD in the ovary were higher than those observed with DBP. We did not observe any histological abnormality in the ovary of mice treated with DBPDE, which is consistent with lack of DNA damage. Our results suggested that both DBP and DBPDHD can be metabolized in the mouse ovary leading to the formation of DBPDE that can damage DNA, which is a prerequisite step in the initiation stage of carcinogenesis.


Assuntos
Benzopirenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Neoplasias Ovarianas/etiologia , Ovário/efeitos dos fármacos , Administração Tópica , Animais , Benzopirenos/metabolismo , Carcinógenos/metabolismo , Carcinógenos/toxicidade , Cromatografia Líquida de Alta Pressão , Adutos de DNA/análise , Feminino , Camundongos , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/veterinária , Ovário/patologia , Taxa de Sobrevida , Espectrometria de Massas em Tandem
5.
J Immunol ; 197(12): 4639-4650, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27849171

RESUMO

The aryl hydrocarbon receptor (AhR) pathway plays a key role in receptor activator of NF-κB ligand (RANKL)-mediated osteoclastogenesis. However, the mechanism underlying the regulation of AhR expression in osteoclasts and the signaling pathway through which AhR controls osteoclastogenesis remain unclear. We found that the expression of AhR in bone marrow-derived osteoclasts was upregulated by RANKL at an earlier stage than was the expression of signature osteoclast genes such as those encoding cathepsin K and NFAT, cytoplasmic, calcineurin-dependent 1. In response to RANKL, bone marrow macrophages isolated from AhR-/- mice exhibited impaired phosphorylation of Akt and MAPK as well as NF-κB, whereas their response to M-CSF remained unchanged. Osteoclast differentiation mediated by the AhR signaling pathway was also regulated in an RANKL/c-Fos-dependent manner. Furthermore, ligand activation of AhR by the smoke toxin benzo[a]pyrene accelerated osteoclast differentiation in a receptor-dependent manner, and AhR-dependent regulation of mitochondrial biogenesis in osteoclasts was observed. Moreover, AhR-/- mice exhibited impaired bone healing with delayed endochondral ossification. Taken together, the present results suggest that the RANKL/AhR/c-Fos signaling axis plays a critical role in osteoclastogenesis, thereby identifying the potential of AhR in treating pathological, inflammatory, or metabolic disorders of the bone.


Assuntos
Mitocôndrias/metabolismo , Osteoclastos/fisiologia , Osteogênese , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Benzopirenos/metabolismo , Células da Medula Óssea/fisiologia , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Osteogênese/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ligante RANK/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Transdução de Sinais
6.
Nucleic Acids Res ; 44(10): 4957-67, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27034468

RESUMO

Benzo[a]pyrene (BP) is a well-known and frequently encountered carcinogen which generates a bulky DNA adduct (+)-trans-10S-BP-N(2)-dG (BP-dG) in cells. DNA polymerase kappa (polκ) is the only known Y-family polymerase that bypasses BP-dG accurately and thus protects cells from genotoxic BP. Here, we report the structures of human polκ in complex with DNA containing either a normal guanine (G) base or a BP-dG adduct at the active site and a correct deoxycytidine. The structures and supporting biochemical data reveal a unique mechanism for accurate replication by translesion synthesis past the major bulky adduct. The active site of polκ opens at the minor groove side of the DNA substrate to accommodate the bulky BP-dG that is attached there. More importantly, polκ stabilizes the lesion DNA substrate in the same active conformation as for regular B-form DNA substrates and the bulky BPDE ring in a 5' end pointing conformation. The BP-dG adducted DNA substrate maintains a Watson-Crick (BP-dG:dC) base pair within the active site, governing correct nucleotide insertion opposite the bulky adduct. In addition, polκ's unique N-clasp domain supports the open conformation of the enzyme and the extended conformation of the single-stranded template to allow bypass of the bulky lesion. This work illustrates the first molecular mechanism for how a bulky major adduct is replicated accurately without strand misalignment and mis-insertion.


Assuntos
Benzopirenos/química , Replicação do DNA , DNA Polimerase Dirigida por DNA/química , Desoxiguanosina/análogos & derivados , Benzopirenos/metabolismo , Sítios de Ligação , Domínio Catalítico , DNA/química , DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Humanos , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos
7.
Chem Res Toxicol ; 30(5): 1168-1176, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28402640

RESUMO

Benzo[a]pyrene, a potent human carcinogen, is metabolized in vivo to a diol epoxide that reacts with the N2-position of guanine to produce N2-BP-dG adducts. These adducts are mutagenic causing G to T transversions. These adducts block replicative polymerases but can be bypassed by the Y-family translesion synthesis polymerases. The mechanisms by which mutagenic bypass occurs is not well-known. We have evaluated base pairing structures using atomic substitution of the dNTP with two stereoisomers, 2'-deoxy-N-[(7R,8S,9R,10S)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine and 2'-deoxy-N-[(7S,8R,9S,10R)-7,8,9,10-tetrahydro-7,8,9-trihydroxybenzo[a]pyren-10-yl]guanosine. We have examined the kinetics of incorporation of 1-deaza-dATP, 7-deaza-dATP, 2'-deoxyinosine triphosphate, and 7-deaza-dGTP, analogues of dATP and dGTP in which single atoms are changed. Changes in rate will occur if that atom provided a critical interaction in the transition state of the reaction. We examined two polymerases, Escherichia coli DNA polymerase I (Kf) and Sulfolobus solfataricus DNA polymerase IV (Dpo4), as models of a high fidelity and TLS polymerase, respectively. We found that with Kf, substitution of the nitrogens on the Watson-Crick face of the dNTPs resulted in decreased rate of reactions. This result is consistent with a Hoogsteen base pair in which the template N2-BP-dG flipped from the anti to syn conformation. With Dpo4, while the substitution did not affect the rate of reaction, the amplitude of the reaction decreased with all substitutions. This result suggests that Dpo4 bypasses N2-BP-dG via Hoogsteen base pairs but that the flipped nucleotide can be either the dNTP or the template.


Assuntos
Benzopirenos/metabolismo , Adutos de DNA , DNA Polimerase I/metabolismo , DNA Polimerase beta/metabolismo , Replicação do DNA , Desoxiguanosina/análogos & derivados , Escherichia coli/enzimologia , Sulfolobus solfataricus/enzimologia , Pareamento de Bases , Catálise , Desoxiguanosina/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29106334

RESUMO

Previously, we showed that oral application of the environmental pollutant dibenzo[a,l]pyrene (DB[a,l]P) induces oral tumors in mice. Thus, in the present investigation we examined the effect of alcohol on DB[a,l]P-induced DNA damage and immune regulation; we showed that alcohol (6.4% v/v in the diet, 35% of Calories) significantly enhanced the levels of (-)-anti-trans-DB[a,l]P-dA while decreased the levels of GSH in the mouse oral tissues. Analysis of RNA expression revealed that DB[a,l]P alone upregulates inflammatory genes while alcohol suppresses several markers of immune surveillance. Collectively, these results suggest that alcohol may enhance oral carcinogenesis induced by DB[a,l]P.


Assuntos
Consumo de Bebidas Alcoólicas/efeitos adversos , Benzopirenos/metabolismo , Dano ao DNA , Poluentes Ambientais/metabolismo , Boca/metabolismo , Consumo de Bebidas Alcoólicas/imunologia , Alcoolismo , Animais , Carcinogênese , Camundongos , Boca/imunologia , Neoplasias Bucais
9.
Proc Natl Acad Sci U S A ; 111(5): 1789-94, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449898

RESUMO

DNA polymerase κ (Polκ) is the only known Y-family DNA polymerase that bypasses the 10S (+)-trans-anti-benzo[a]pyrene diol epoxide (BPDE)-N(2)-deoxyguanine adducts efficiently and accurately. The unique features of Polκ, a large structure gap between the catalytic core and little finger domain and a 90-residue addition at the N terminus known as the N-clasp, may give rise to its special translesion capability. We designed and constructed two mouse Polκ variants, which have reduced gap size on both sides [Polκ Gap Mutant (PGM) 1] or one side flanking the template base (PGM2). These Polκ variants are nearly as efficient as WT in normal DNA synthesis, albeit with reduced accuracy. However, PGM1 is strongly blocked by the 10S (+)-trans-anti-BPDE-N(2)-dG lesion. Steady-state kinetic measurements reveal a significant reduction in efficiency of dCTP incorporation opposite the lesion by PGM1 and a moderate reduction by PGM2. Consistently, Polκ-deficient cells stably complemented with PGM1 GFP-Polκ remained hypersensitive to BPDE treatment, and complementation with WT or PGM2 GFP-Polκ restored BPDE resistance. Furthermore, deletion of the first 51 residues of the N-clasp in mouse Polκ (mPolκ(52-516)) leads to reduced polymerization activity, and the mutant PGM2(52-516) but not PGM1(52-516) can partially compensate the N-terminal deletion and restore the catalytic activity on normal DNA. However, neither WT nor PGM2 mPolκ(52-516) retains BPDE bypass activity. We conclude that the structural gap physically accommodates the bulky aromatic adduct and the N-clasp is essential for the structural integrity and flexibility of Polκ during translesion synthesis.


Assuntos
Benzopirenos/metabolismo , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Desoxiguanosina/análogos & derivados , Proteínas Mutantes/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/farmacologia , Animais , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Benzopirenos/química , Biocatálise/efeitos dos fármacos , Primers do DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Embrião de Mamíferos/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Cinética , Camundongos , Modelos Moleculares
10.
Chem Res Toxicol ; 29(10): 1641-1650, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27494294

RESUMO

Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.


Assuntos
Benzopirenos/metabolismo , Benzopirenos/farmacocinética , Adulto , Idoso , Benzopirenos/análise , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Feminino , Voluntários Saudáveis , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Estrutura Molecular , Adulto Jovem
11.
Environ Res ; 147: 469-79, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26970901

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous carcinogenic pollutants emitted in complex mixtures in the ambient air and contribute to the incidence of human cancers. Taking into account all absorption routes, biomonitoring is more relevant than atmospheric measurements to health risk assessment, but knowledge about how to use biomarkers is essential. In this work, urinary elimination kinetic of 1-hydroxypyrene (1-OHP) and 3-hydroxybenzo(a)pyrene (3-OHBaP) were studied in six electrometallurgy workers after PAHs exposure. Spot samples were collected on pre- and post-shift of the last workday then the whole urinations were separately sampled during the weekend. Non-linear mixed effects models were built to study inter- and intra-individual variability of both urinary metabolites toxicokinetic and investigate diuresis correction ways. Comparison of models confirmed the diuresis correction requirement to perform urinary biomonitoring of pyrene and BaP exposure. Urinary creatinine was found as a better way than specific gravity to normalize urinary concentrations of 1-OHP and as a good compromise for 3-OHBaP. Maximum observed levels were 1.0 µmol/mol creatinine and 0.8nmol/mol creatinine for 1-OHP and 3-OHBaP, respectively. Urinary 1-OHP concentrations on post-shift were higher than pre-shift for each subject, while 3-OHBaP levels were steady or decreased, and maximum urinary excretion rates of 3-OHBaP was delayed compared to 1-OHP. These results were consistent with the sampling time previously proposed for 3-OHBaP analysis, the next morning after exposure. Apparent urinary half-life of 1-OHP and 3-OHBaP ranged from 12.0h to 18.2h and from 4.8h to 49.5h, respectively. Finally, inter-individual variability of 1-OHP half-life seemed linked with the cutaneous absorption extent during exposure, while calculation of 3-OHBaP half-life required the awareness of individual urinary background level. The toxicokinetic modeling described here is an efficient tool which could be used to describe elimination kinetic and determine diuresis correction way for any other urinary biomarkers of chemicals or metals exposure.


Assuntos
Benzopirenos/farmacocinética , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Pirenos/farmacocinética , Adulto , Benzopirenos/metabolismo , Biomarcadores/urina , Diurese , Voluntários Saudáveis , Humanos , Masculino , Metalurgia , Pessoa de Meia-Idade , Pirenos/urina
12.
Arch Toxicol ; 90(6): 1449-58, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26238291

RESUMO

Benzo(a)pyrene (BaP) is a ubiquitous carcinogen resulting from incomplete combustion of organic compounds and also present at high levels in cigarette smoke. A wide range of biological effects has been attributed to BaP and its genotoxic metabolite BPDE, but the contribution to BaP toxicity of intermediary metabolites generated along the detoxification path remains unknown. Here, we report for the first time how 3-OH-BaP, 9,10-diol and BPDE, three major BaP metabolites, temporally relate to BaP-induced transcriptomic alterations in HepG2 cells. Since BaP is also known to induce AhR activation, we additionally evaluated TCDD to source the expression of non-genotoxic AhR-mediated patterns. 9,10-Diol was shown to activate several transcription factor networks related to BaP metabolism (AhR), oxidative stress (Nrf2) and cell proliferation (HIF-1α, AP-1) in particular at early time points, while BPDE influenced expression of genes involved in cell energetics, DNA repair and apoptotic pathways. Also, in order to grasp the role of BaP and its metabolites in chemical hepatocarcinogenesis, we compared expression patterns from BaP(-metabolites) and TCDD to a signature set of approximately nine thousand gene expressions derived from hepatocellular carcinoma (HCC) patients. While transcriptome modulation by TCDD appeared not significantly related to HCC, BaP and BPDE were shown to deregulate metastatic markers via non-genotoxic and genotoxic mechanisms and activate inflammatory pathways (NF-κß signaling, cytokine-cytokine receptor interaction). BaP also showed strong repression of genes involved in cholesterol and fatty acid biosynthesis. Altogether, this study provides new insights into BaP-induced toxicity and sheds new light onto its mechanism of action as a hepatocarcinogen.


Assuntos
Benzo(a)pireno/toxicidade , Carcinógenos Ambientais/toxicidade , Adutos de DNA/genética , Dano ao DNA , Neoplasias Hepáticas/genética , Transcriptoma/efeitos dos fármacos , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/metabolismo , 7,8-Di-Hidro-7,8-Di-Hidroxibenzo(a)pireno 9,10-óxido/toxicidade , Benzo(a)pireno/metabolismo , Benzopirenos/metabolismo , Benzopirenos/toxicidade , Carcinógenos Ambientais/metabolismo , Adutos de DNA/metabolismo , Di-Hidroxi-Di-Hidrobenzopirenos/metabolismo , Di-Hidroxi-Di-Hidrobenzopirenos/toxicidade , Células Hep G2 , Humanos , Neoplasias Hepáticas/induzido quimicamente
13.
Inhal Toxicol ; 28(11): 520-35, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27569524

RESUMO

Benzo[a]pyrene (BaP) is a by-product of incomplete combustion of fossil fuels and plant/wood products, including tobacco. A physiologically based pharmacokinetic (PBPK) model for BaP for the rat was extended to simulate inhalation exposures to BaP in rats and humans including particle deposition and dissolution of absorbed BaP and renal elimination of 3-hydroxy benzo[a]pyrene (3-OH BaP) in humans. The clearance of particle-associated BaP from lung based on existing data in rats and dogs suggest that the process is bi-phasic. An initial rapid clearance was represented by BaP released from particles followed by a slower first-order clearance that follows particle kinetics. Parameter values for BaP-particle dissociation were estimated using inhalation data from isolated/ventilated/perfused rat lungs and optimized in the extended inhalation model using available rat data. Simulations of acute inhalation exposures in rats identified specific data needs including systemic elimination of BaP metabolites, diffusion-limited transfer rates of BaP from lung tissue to blood and the quantitative role of macrophage-mediated and ciliated clearance mechanisms. The updated BaP model provides very good prediction of the urinary 3-OH BaP concentrations and the relative difference between measured 3-OH BaP in nonsmokers versus smokers. This PBPK model for inhaled BaP is a preliminary tool for quantifying lung BaP dosimetry in rat and humans and was used to prioritize data needs that would provide significant model refinement and robust internal dosimetry capabilities.


Assuntos
Benzo(a)pireno/farmacocinética , Carcinógenos/farmacocinética , Pulmão/metabolismo , Modelos Biológicos , Material Particulado/farmacocinética , Administração por Inalação , Administração Oral , Animais , Benzo(a)pireno/administração & dosagem , Benzopirenos/metabolismo , Carcinógenos/administração & dosagem , Humanos , Exposição por Inalação , Material Particulado/administração & dosagem , Ratos
14.
Chem Res Toxicol ; 28(7): 1427-33, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26034881

RESUMO

Dibenzo[def,p]chrysene (DBP), a representative example of the class of polycyclic aromatic hydrocarbon (PAH), is known to induce tumors in multiple organ sites including the ovary, lung, mammary glands, and oral cavity in rodents. The goal of this study was to test the hypothesis that the levels of DBP and its metabolites that reach and retain the levels for an extended time in the target organs as well as the capacity of these organs to metabolize this carcinogen to active metabolites that can damage DNA may account for its tissue selective tumorigenicity. Therefore, we used the radiolabeled [(3)H] DBP to accurately assess the tissue distribution, excretion, and pharmacokinetics of this carcinogen. We also compared the levels of DBPDE-DNA adducts in a select target organ (ovary) and nontarget organs (kidney and liver) in mice treated orally with DBP. Our results showed that after 1 week, 91.40 ± 7.23% of the radioactivity was recovered in the feces; the corresponding value excreted in the urine was less than 2% after 1 week. After 24 h, the stomach had the highest radioactivity followed by the intestine and the liver; however, after 1 week, levels of the radioactivity in these organs were the lowest among tissues examined including the ovary and liver; the pharmacokinetic analysis of DBP was conducted using a one compartment open model. The level of (-)-anti-trans-DBPDE-dA in the ovaries (8.91 ± 0.08 adducts/10(7) dA) was significantly higher (p < 0.01) than the levels of adducts in kidneys (0.69 ± 0.09 adducts/10(7) dA) and livers (0.63 ± 0.11 adducts/10(7) dA). Collectively, the results of the tissue distribution and pharmacokinetic analysis may not fully support our hypothesis, but the capacity of the target organs vs nontarget organs to metabolize DBP to active intermediates that can damage DNA may account for its tissue selective tumorigenicity.


Assuntos
Benzopirenos/metabolismo , Poluentes Ambientais/metabolismo , Animais , Benzopirenos/química , Benzopirenos/toxicidade , Cromatografia Líquida de Alta Pressão , DNA/química , DNA/metabolismo , Adutos de DNA/análise , Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/química , Poluentes Ambientais/toxicidade , Fezes/química , Feminino , Meia-Vida , Camundongos , Espectrometria de Massas em Tandem , Distribuição Tecidual , Trítio/química
15.
J Nat Prod ; 78(3): 381-7, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25537064

RESUMO

Actinomycete genomes are encoded with immense potential to produce secondary metabolites, however standard laboratory culture experiments rarely provide the conditions under which associated biosynthetic pathways are expressed. Despite years of research attempting to access these pathways and aside from a few well-studied bacterial quorum sensing systems, little is known about the specificity of secondary metabolite regulation in bacteria, such as the conditions under which a bacterium produces an antibiotic and the extent to which it does so in recognition of a particular species in the immediate environment. In the current study, we observed that the cocultivation of a Streptomyces sp. (strain B033) with four pathogenic strains of the phylum Proteobacteria resulted in the production of the antibiotic resistomycin. After further coculture experiments, we determined that Proteobacteria induced the production of resistomycin in B033 at significantly higher rates (65%) than strains from the phyla Firmicutes (5.9%) and Actinobacteria (9.1%), supporting that the regulation of secondary metabolism in bacteria can be dependent on the species present in the immediate environment. These results suggest a lack of promiscuity of antibiotic biosynthetic pathway regulation and indicate that it is feasible to mine existing microbial strain libraries for antibiotics in a phylum-specific manner.


Assuntos
Vias Biossintéticas/genética , Streptomyces/genética , Actinobacteria/genética , Antibacterianos/biossíntese , Bactérias/genética , Bactérias/metabolismo , Benzopirenos/química , Benzopirenos/metabolismo , Técnicas de Cocultura , Estrutura Molecular , Percepção de Quorum , Streptomyces/química
16.
Anaerobe ; 28: 8-12, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24785349

RESUMO

The mutagen binding ability of the goat probiotics (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum DDBA) was evaluated. The oral administration of these probiotics reduced fecal mutagens and intestinal cancer markers in goats. Secondly, the effects of probiotics against the mutagenesis induced by sodium azide (SA), and Benzopyrene (B[α]P) by performing the modified Ames test using Salmonella typhimurium TA 100 was investigated. The capacity to bind benzopyrene and the stability of the bacterial-mutagen complex was analyzed by HPLC. The dismutagenic potential against both mutagens was proportional to probiotic concentration. Results showed that probiotic antimutagenic capacity against SA was ranging from 13 to 78%. The mixture of four goat probiotics (MGP) displayed higher antimutagenic activity against SA than any individual strains at the same cell concentration. This study shows that the highest diminution of mutagenicity in presence of B[α]P (74%) was observed in presence of MGP. The antimutagenic activity of nearly all the individual probiotic and the MGP were in concordance with the B[α]P binding determined by HPLC. According to our results, the B[α]P binding to probiotic was irreversible still after being washed with DMSO solution. The stability of the toxic compounds-bacterial cell binding is a key consideration when probiotic antimutagenic property is evaluated. MGP exhibits the ability to bind and detoxify potent mutagens, and this property can be useful in supplemented foods for goats since it can lead to the removal of potent mutagens and protect and enhance ruminal health and hence food safety of consumers.


Assuntos
Bifidobacterium/metabolismo , Enterococcus faecium/metabolismo , Limosilactobacillus reuteri/metabolismo , Mutagênicos/metabolismo , Probióticos/metabolismo , Animais , Benzopirenos/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Cabras , Taxa de Mutação , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Azida Sódica/metabolismo
17.
J Environ Biol ; 35(3): 445-52, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24812998

RESUMO

Polyaromatic hydrocarbons (PAHs) with high molecular weight (more than three benzene rings) were difficult to degrade in saline environment. The present study details about the bacterial consortium enriched from industrial sludge from salt manufacturing company, Tuticorin, Tamilnadu (India), which was capable of degrading 1, 4 dioxane (Emerging micropollutant) and also phenanthrene as sole carbon source under saline condition. The halophilic bacterial consortium was able to degrade low molecular weight (LMW) phenanthrene, but unable to degrade high molecular weight (HMW) benzo(e)pyrene. To overcome this problem, phenanthrene was added as co-substrate along with benzo(e)pyrene which enhanced the biodegradation process by co-metabolism under saline conditions. The consortium potentially degraded 80% and 99% of benzo(e)pyrene in 7 days and phenanthrene in 5 days at 30 g l⁻¹ of NaCl concentration. When the saline concentration increased to 60 g l⁻¹, degradation of phenanthrene (97% in 8 days) and benzo(e)pyrene (65% in 10 days) was observed. Further increase in saline concentration to 90 g I⁻¹ of NaCI showed reduction in the percent degradation of phenanthrene and benzo(e)pyrene leads to 30.3% and 9% respectively in 6 days. Potential bacterial strains, present in PAHs degrading bacterial consortium were identified as Achromobacter sp. AYS3 (JQ419751), Marinobacter sp. AYS4 (JQ419752) and Rhodanobacter sp. AYS5 (JQ419753). The present study details about the effect of salinity on PAHs degradation and vital role of co-metabolism on biodegradation of benzo(e)pyrene with phenanthrene under saline conditions.


Assuntos
Achromobacter/metabolismo , Benzopirenos/metabolismo , Biodegradação Ambiental , Marinobacter/metabolismo , Salinidade , Xanthomonadaceae/metabolismo , Achromobacter/genética , Poluentes Ambientais/química , Poluentes Ambientais/metabolismo , Marinobacter/genética , Fenantrenos , Xanthomonadaceae/genética
18.
Biochemistry ; 52(33): 5517-21, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23902560

RESUMO

Extensive molecular modeling with molecular dynamics simulations and van der Waals energy analyses were used to elucidate the striking finding that a mutagenic benzo[a]pyrene-derived DNA lesion, the base-displaced intercalated 10R-(+)-cis-anti-B[a]P-N(2)-dG (G*), manifests large differences in nucleotide excision repair (NER) efficiencies in DNA duplexes, which depend on the identities of the partner base opposite G*. The nature of the partner base causes marked differences in the extent of its major groove extrusion and dynamics, as well as energetic stability of the intercalation pocket that parallels the relative NER efficiencies.


Assuntos
Benzopirenos/química , Adutos de DNA/química , Reparo do DNA , DNA/química , Benzopirenos/metabolismo , DNA/genética , DNA/metabolismo , Adutos de DNA/genética , Adutos de DNA/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Nucleotídeos/metabolismo , Espectrofotometria Ultravioleta , Termodinâmica
19.
Chem Res Toxicol ; 26(10): 1570-8, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24047243

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are environmental and tobacco carcinogens. Proximate carcinogenic PAH trans-dihydrodiols are activated by human aldo-keto reductases (AKRs) to yield electrophilic and redox-active o-quinones. Interconversion among benzo[a]pyrene (B[a]P)-7,8-dione, a representative PAH o-quinone, and its corresponding catechol generates a futile redox-cycle with the concomitant production of reactive oxygen species (ROS). We investigated whether glucuronidation of B[a]P-7,8-catechol by human UDP glucuronosyltransferases (UGTs) could intercept the catechol in three different human lung cells. RT-PCR showed that UGT1A1, 1A3, and 2B7 were only expressed in human lung adenocarcinoma A549 cells. The corresponding recombinant UGTs were examined for their kinetic constants and product profile using B[a]P-7,8-catechol as a substrate. B[a]P-7,8-dione was reduced to B[a]P-7,8-catechol by dithiothreitol under anaerobic conditions and then further glucuronidated by the UGTs in the presence of uridine-5'-diphosphoglucuronic acid as a glucuronic acid group donor. UGT1A1 catalyzed the glucuronidation of B[a]P-7,8-catechol and generated two isomeric O-monoglucuronsyl-B[a]P-7,8-catechol products that were identified by RP-HPLC and by LC-MS/MS. By contrast, UGT1A3 and 2B7 catalyzed the formation of only one monoglucuronide, which was identical to that formed in A549 cells. The kinetic profiles of three UGTs followed Michaelis-Menten kinetics. On the basis of the expression levels of UGT1A3 and UGT2B7 and the observation that a single monoglucuronide was produced in A549 cells, we suggest that the major UGT isoforms in A549 cells that can intercept B[a]P-7,8-catechol are UGT1A3 and 2B7.


Assuntos
Benzopirenos/química , Benzopirenos/metabolismo , Catecóis/química , Glucuronosiltransferase/metabolismo , Benzopirenos/análise , Catecóis/análise , Catecóis/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Ditiotreitol/química , Glucuronídeos/química , Glucuronídeos/metabolismo , Glucuronosiltransferase/genética , Humanos , Cinética , Pulmão/enzimologia , Espectrometria de Massas , Oxirredução , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
20.
J Environ Manage ; 114: 202-8, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23219334

RESUMO

The present study was conducted to investigate the effectiveness of GA(3) and Tween-80 on enhancing the phytoremediation of Cd-B[a]P co-contaminated soils. Results showed that the addition of GA(3) and GA(3)-Tween-80 enhanced Tagetes patula growth by 14%-32% and 23%-55%, respectively, relative to the control group. However, under independent GA(3)-treated soils, Cd and B[a]P concentrations in the shoots of the plants decreased by 15%-33% and 15%-53%, respectively, compared with CK. By contrast, the shoot concentration and accumulation of Cd under GA(3)-Tween-80 treatment increased by 0.01-0.46 and 1.33-1.55 times, respectively, whereas those of B[a]P increased from 0.57 to 0.82, and 1.33 to 1.55 times, respectively, compared with those of the control. Optimal result for Cd phytoextraction was obtained under combined 5 mmol Tween-80 kg(-1) and 1 mmol GA(3) kg(-1) treatment, and the maximum removal rate of B[a]P was obtained after the application of 5 mmol Tween-80 kg(-1) and 5 mmol GA(3) kg(-1).


Assuntos
Benzopirenos/metabolismo , Cádmio/metabolismo , Polissorbatos/farmacologia , Tagetes/efeitos dos fármacos , Tagetes/metabolismo , Biodegradação Ambiental , Estudos de Viabilidade , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Poluentes do Solo/metabolismo , Tensoativos/farmacologia , Tagetes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA