Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.816
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 82(17): 3121-3123, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055205

RESUMO

In this issue of Molecular Cell, Ali et al. (2022) show that bicarbonate uptake by SLC4A7 fuels de novo nucleotide synthesis and cell proliferation and is regulated by mTORC1.


Assuntos
Bicarbonatos , Simportadores de Sódio-Bicarbonato , Bicarbonatos/metabolismo , Proliferação de Células , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Nucleotídeos
2.
Mol Cell ; 82(17): 3284-3298.e7, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35772404

RESUMO

Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.


Assuntos
Bicarbonatos , Alvo Mecanístico do Complexo 1 de Rapamicina , Nucleotídeos , Simportadores de Sódio-Bicarbonato , Bicarbonatos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nucleotídeos/biossíntese , Fosforilação , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo
3.
Nature ; 609(7927): 605-610, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768502

RESUMO

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras , Antiporters/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação , Transporte Biológico , Herbicidas/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Ftalimidas/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Prolina/metabolismo , Domínios Proteicos , Multimerização Proteica , Prótons , Sódio/metabolismo , Simportadores/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(24): e2216144120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276409

RESUMO

Coral reefs are highly diverse ecosystems of immense ecological, economic, and aesthetic importance built on the calcium-carbonate-based skeletons of stony corals. The formation of these skeletons is threatened by increasing ocean temperatures and acidification, and a deeper understanding of the molecular mechanisms involved may assist efforts to mitigate the effects of such anthropogenic stressors. In this study, we focused on the role of the predicted bicarbonate transporter SLC4γ, which was suggested in previous studies to be a product of gene duplication and to have a role in coral-skeleton formation. Our comparative-genomics study using 30 coral species and 15 outgroups indicates that SLC4γ is present throughout the stony corals, but not in their non-skeleton-forming relatives, and apparently arose by gene duplication at the onset of stony-coral evolution. Our expression studies show that SLC4γ, but not the closely related and apparently ancestral SLC4ß, is highly upregulated during coral development coincident with the onset of skeleton deposition. Moreover, we show that juvenile coral polyps carrying CRISPR/Cas9-induced mutations in SLC4γ are defective in skeleton formation, with the severity of the defect in individual animals correlated with their frequencies of SLC4γ mutations. Taken together, the results suggest that the evolution of the stony corals involved the neofunctionalization of the newly arisen SLC4γ for a unique role in the provision of concentrated bicarbonate for calcium-carbonate deposition. The results also demonstrate the feasibility of reverse-genetic studies of ecologically important traits in adult corals.


Assuntos
Antozoários , Animais , Antozoários/genética , Bicarbonatos , Ecossistema , Cálcio , Recifes de Corais
5.
Proc Natl Acad Sci U S A ; 120(18): e2221047120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098065

RESUMO

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) contains an active site Cys and is one of the most sensitive cellular enzymes to oxidative inactivation and redox regulation. Here, we show that inactivation by hydrogen peroxide is strongly enhanced in the presence of carbon dioxide/bicarbonate. Inactivation of isolated mammalian GAPDH by H2O2 increased with increasing bicarbonate concentration and was sevenfold faster in 25 mM (physiological) bicarbonate compared with bicarbonate-free buffer of the same pH. H2O2 reacts reversibly with CO2 to form a more reactive oxidant, peroxymonocarbonate (HCO4-), which is most likely responsible for the enhanced inactivation. However, to account for the extent of enhancement, we propose that GAPDH must facilitate formation and/or targeting of HCO4- to promote its own inactivation. Inactivation of intracellular GAPDH was also strongly enhanced by bicarbonate: treatment of Jurkat cells with 20 µM H2O2 in 25 mM bicarbonate buffer for 5 min caused almost complete GAPDH inactivation, but no loss of activity when bicarbonate was not present. H2O2-dependent GAPDH inhibition in bicarbonate buffer was observed even in the presence of reduced peroxiredoxin 2 and there was a significant increase in cellular glyceraldehyde-3-phosphate/dihydroxyacetone phosphate. Our results identify an unrecognized role for bicarbonate in enabling H2O2 to influence inactivation of GAPDH and potentially reroute glucose metabolism from glycolysis to the pentose phosphate pathway and NAPDH production. They also demonstrate what could be wider interplay between CO2 and H2O2 in redox biology and the potential for variations in CO2 metabolism to influence oxidative responses and redox signaling.


Assuntos
Dióxido de Carbono , Peróxido de Hidrogênio , Humanos , Animais , Peróxido de Hidrogênio/química , Dióxido de Carbono/química , Bicarbonatos , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Peroxirredoxinas/metabolismo , Oxirredução , Mamíferos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(8): e2205882120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800386

RESUMO

The PII superfamily consists of widespread signal transduction proteins found in all domains of life. In addition to canonical PII proteins involved in C/N sensing, structurally similar PII-like proteins evolved to fulfill diverse, yet poorly understood cellular functions. In cyanobacteria, the bicarbonate transporter SbtA is co-transcribed with the conserved PII-like protein, SbtB, to augment intracellular inorganic carbon levels for efficient CO2 fixation. We identified SbtB as a sensor of various adenine nucleotides including the second messenger nucleotides cyclic AMP (cAMP) and c-di-AMP. Moreover, many SbtB proteins possess a C-terminal extension with a disulfide bridge of potential redox-regulatory function, which we call R-loop. Here, we reveal an unusual ATP/ADP apyrase (diphosphohydrolase) activity of SbtB that is controlled by the R-loop. We followed the sequence of hydrolysis reactions from ATP over ADP to AMP in crystallographic snapshots and unravel the structural mechanism by which changes of the R-loop redox state modulate apyrase activity. We further gathered evidence that this redox state is controlled by thioredoxin, suggesting that it is generally linked to cellular metabolism, which is supported by physiological alterations in site-specific mutants of the SbtB protein. Finally, we present a refined model of how SbtB regulates SbtA activity, in which both the apyrase activity and its redox regulation play a central role. This highlights SbtB as a central switch point in cyanobacterial cell physiology, integrating not only signals from the energy state (adenyl-nucleotide binding) and the carbon supply via cAMP binding but also from the day/night status reported by the C-terminal redox switch.


Assuntos
Apirase , Cianobactérias , Apirase/genética , Apirase/metabolismo , Bicarbonatos/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo
7.
Nature ; 576(7787): 477-481, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31827278

RESUMO

Oncogenic activation of RAS is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumour cell fitness. Cells that express oncogenic RAS are able to internalize and degrade extracellular protein via a fluid-phase uptake mechanism termed macropinocytosis1. There is increasing recognition of the role of this RAS-dependent process in the generation of free amino acids that can be used to support tumour cell growth under nutrient-limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic RAS. Here we identify vacuolar ATPase (V-ATPase) as an essential regulator of RAS-induced macropinocytosis. Oncogenic RAS promotes the translocation of V-ATPase from intracellular membranes to the plasma membrane via a pathway that requires the activation of protein kinase A by a bicarbonate-dependent soluble adenylate cyclase. Accumulation of V-ATPase at the plasma membrane is necessary for the cholesterol-dependent plasma-membrane association of RAC1, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations establish a link between V-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of RAS-mutant tumour cells.


Assuntos
Membrana Celular/enzimologia , Proteína Oncogênica p21(ras)/metabolismo , Pinocitose , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Bicarbonatos/metabolismo , Carcinogênese , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Colesterol/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais , Simportadores de Sódio-Bicarbonato/metabolismo
8.
Nature ; 567(7748): 405-408, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30867598

RESUMO

Loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) compromise epithelial HCO3- and Cl- secretion, reduce airway surface liquid pH, and impair respiratory host defences in people with cystic fibrosis1-3. Here we report that apical addition of amphotericin B, a small molecule that forms unselective ion channels, restored HCO3- secretion and increased airway surface liquid pH in cultured airway epithelia from people with cystic fibrosis. These effects required the basolateral Na+, K+-ATPase, indicating that apical amphotericin B channels functionally interfaced with this driver of anion secretion. Amphotericin B also restored airway surface liquid pH, viscosity, and antibacterial activity in primary cultures of airway epithelia from people with cystic fibrosis caused by different mutations, including ones that do not yield CFTR, and increased airway surface liquid pH in CFTR-null pigs in vivo. Thus, unselective small-molecule ion channels can restore host defences in cystic fibrosis airway epithelia via a mechanism that is independent of CFTR and is therefore independent of genotype.


Assuntos
Fibrose Cística/metabolismo , Epitélio/metabolismo , Canais Iônicos/metabolismo , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Anfotericina B/farmacologia , Animais , Bicarbonatos/metabolismo , Células Cultivadas , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/deficiência , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Mucosa Respiratória/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
9.
Proc Natl Acad Sci U S A ; 119(40): e2203904119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161891

RESUMO

Many calcifying organisms utilize metabolic CO2 to generate CaCO3 minerals to harden their shells and skeletons. Carbonic anhydrases are evolutionary ancient enzymes that have been proposed to play a key role in the calcification process, with the underlying mechanisms being little understood. Here, we used the calcifying primary mesenchyme cells (PMCs) of sea urchin larva to study the role of cytosolic (iCAs) and extracellular carbonic anhydrases (eCAs) in the cellular carbon concentration mechanism (CCM). Molecular analyses identified iCAs and eCAs in PMCs and highlight the prominent expression of a glycosylphosphatidylinositol-anchored membrane-bound CA (Cara7). Intracellular pH recordings in combination with CO2 pulse experiments demonstrated iCA activity in PMCs. iCA activity measurements, together with pharmacological approaches, revealed an opposing contribution of iCAs and eCAs on the CCM. H+-selective electrodes were used to demonstrate eCA-catalyzed CO2 hydration rates at the cell surface. Knockdown of Cara7 reduced extracellular CO2 hydration rates accompanied by impaired formation of specific skeletal segments. Finally, reduced pHi regulatory capacities during inhibition and knockdown of Cara7 underscore a role of this eCA in cellular HCO3- uptake. This work reveals the function of CAs in the cellular CCM of a marine calcifying animal. Extracellular hydration of metabolic CO2 by Cara7 coupled to HCO3- uptake mechanisms mitigates the loss of carbon and reduces the cellular proton load during the mineralization process. The findings of this work provide insights into the cellular mechanisms of an ancient biological process that is capable of utilizing CO2 to generate a versatile construction material.


Assuntos
Calcificação Fisiológica , Dióxido de Carbono , Carbono , Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Ouriços-do-Mar , Animais , Bicarbonatos/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Glicosilfosfatidilinositóis , Concentração de Íons de Hidrogênio , Prótons , Ouriços-do-Mar/enzimologia
10.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35115403

RESUMO

Photosystem II (PSII), the water/plastoquinone photo-oxidoreductase, plays a key energy input role in the biosphere. [Formula: see text], the reduced semiquinone form of the nonexchangeable quinone, is often considered capable of a side reaction with O2, forming superoxide, but this reaction has not yet been demonstrated experimentally. Here, using chlorophyll fluorescence in plant PSII membranes, we show that O2 does oxidize [Formula: see text] at physiological O2 concentrations with a t1/2 of 10 s. Superoxide is formed stoichiometrically, and the reaction kinetics are controlled by the accessibility of O2 to a binding site near [Formula: see text], with an apparent dissociation constant of 70 ± 20 µM. Unexpectedly, [Formula: see text] could only reduce O2 when bicarbonate was absent from its binding site on the nonheme iron (Fe2+) and the addition of bicarbonate or formate blocked the O2-dependant decay of [Formula: see text] These results, together with molecular dynamics simulations and hybrid quantum mechanics/molecular mechanics calculations, indicate that electron transfer from [Formula: see text] to O2 occurs when the O2 is bound to the empty bicarbonate site on Fe2+ A protective role for bicarbonate in PSII was recently reported, involving long-lived [Formula: see text] triggering bicarbonate dissociation from Fe2+ [Brinkert et al, Proc. Natl. Acad. Sci. U.S.A. 113, 12144-12149 (2016)]. The present findings extend this mechanism by showing that bicarbonate release allows O2 to bind to Fe2+ and to oxidize [Formula: see text] This could be beneficial by oxidizing [Formula: see text] and by producing superoxide, a chemical signal for the overreduced state of the electron transfer chain.


Assuntos
Bicarbonatos/metabolismo , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Chlamydomonas reinhardtii/metabolismo , Clorofila/metabolismo , Transporte de Elétrons/fisiologia , Formiatos/metabolismo , Oxirredução , Quinonas/metabolismo , Spinacia oleracea/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173044

RESUMO

The lungs and kidneys are pivotal organs in the regulation of body acid-base homeostasis. In cystic fibrosis (CF), the impaired renal ability to excrete an excess amount of HCO3- into the urine leads to metabolic alkalosis [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020); F. Al-Ghimlas, M. E. Faughnan, E. Tullis, Open Respir. Med. J. 6, 59-62 (2012)]. This is caused by defective HCO3- secretion in the ß-intercalated cells of the collecting duct that requires both the cystic fibrosis transmembrane conductance regulator (CFTR) and pendrin for normal function [P. Berg et al., J. Am. Soc. Nephrol. 31, 1711-1727 (2020)]. We studied the ventilatory consequences of acute oral base loading in normal, pendrin knockout (KO), and CFTR KO mice. In wild-type mice, oral base loading induced a dose-dependent metabolic alkalosis, fast urinary removal of base, and a moderate base load did not perturb ventilation. In contrast, CFTR and pendrin KO mice, which are unable to rapidly excrete excess base into the urine, developed a marked and transient depression of ventilation when subjected to the same base load. Therefore, swift renal base elimination in response to an acute oral base load is a necessary physiological function to avoid ventilatory depression. The transient urinary alkalization in the postprandial state is suggested to have evolved for proactive avoidance of hypoventilation. In CF, metabolic alkalosis may contribute to the commonly reduced lung function via a suppression of ventilatory drive.


Assuntos
Alcalose/fisiopatologia , Fibrose Cística/fisiopatologia , Hipoventilação/fisiopatologia , Equilíbrio Ácido-Base/fisiologia , Alcalose/metabolismo , Animais , Bicarbonatos/metabolismo , Antiportadores de Cloreto-Bicarbonato , Fibrose Cística/complicações , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Modelos Animais de Doenças , Feminino , Hipoventilação/etiologia , Hipoventilação/metabolismo , Transporte de Íons , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Eliminação Renal , Reabsorção Renal/fisiologia
12.
J Am Soc Nephrol ; 35(1): 57-65, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170601

RESUMO

SIGNIFICANCE STATEMENT: In CKD, metabolic acidosis is commonly treated with alkali in the hope that it will improve bone health. In a post hoc analysis of the Bicarbonate Administration to Stabilize eGFR Pilot Trial, we investigated whether sodium bicarbonate affects serum levels of bone turnover markers and other hormones related to bone health in individuals with CKD who have normal to slightly reduced total CO2 (20-28 mEq/L). Sodium bicarbonate increased serum levels of α-klotho but had no significant effect on other bone health markers, including intact fibroblast growth factor-23 (iFGF-23), intact parathyroid hormone (iPTH), and bone-specific alkaline phosphatase (B-SAP). Further study is needed to determine the effect of bicarbonate administration on clinical aspects of bone health. BACKGROUND: Treatment with alkali has been hypothesized to improve bone health in CKD by mitigating adverse effects of acid on bone mineral. We investigated the effect of treatment with sodium bicarbonate on bone turnover markers and other factors related to bone metabolism in CKD. METHODS: This is a post hoc analysis of the Bicarbonate Administration to Stabilize eGFR Pilot Trial in which 194 individuals with CKD and serum total CO2 20-28 mEq/L were randomly assigned to placebo or one of two doses of sodium bicarbonate (0.5 or 0.8 mEq/kg lean body weight per day) for 28 weeks. The following serum measurements were performed at baseline, week 12, and week 28: B-SAP, c-telopeptide, procollagen type I intact N-terminal propeptide, iPTH, iFGF-23, soluble klotho, 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and tartrate-resistant acid phosphatase 5b. The difference (sodium bicarbonate versus placebo) in mean change of each bone biomarker from baseline was determined using linear mixed models. RESULTS: One hundred sixty-eight participants submitted samples for post hoc investigations. Mean eGFR was 37±10 ml/min per 1.73 m2 and mean total CO2 was 24±3 mEq/L at baseline. Sodium bicarbonate induced a dose-dependent increase in soluble klotho levels compared with placebo. There was no significant effect of treatment with either dose of sodium bicarbonate on any of the other bone biomarkers, including iFGF-23, iPTH, and B-SAP. Effects on bone biomarkers were similar in those with baseline serum total CO2 <24 mEq/L compared with those with total CO2 ≥24 mEq/L. CONCLUSIONS: In this pilot trial of individuals with CKD and total CO2 20-28 mEq/L, sodium bicarbonate treatment increased serum klotho levels but did not affect other bone health markers over 28 weeks. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: ClinicalTrials.gov, NCT02521181.


Assuntos
Insuficiência Renal Crônica , Bicarbonato de Sódio , Humanos , Bicarbonatos , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Projetos Piloto , Dióxido de Carbono , Remodelação Óssea , Biomarcadores , Álcalis/uso terapêutico
13.
J Am Soc Nephrol ; 35(3): 311-320, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38261535

RESUMO

SIGNIFICANCE STATEMENT: Metabolic acidosis is a common complication of CKD and is associated with more rapid decline of kidney function, but well-powered controlled randomized trials testing the effect of treating metabolic acidosis on slowing CKD progression have not been conducted. The VALOR-CKD study randomized 1480 individuals with CKD and metabolic acidosis, across 320 sites to placebo or veverimer (a novel hydrochloric acid binder). The findings did not demonstrate the efficacy of veverimer in slowing CKD progression, but the difference in serum bicarbonate between placebo and drug arms was only approximately 1 mEq/L. Veverimer was safe and well tolerated. BACKGROUND: Metabolic acidosis is common in CKD, but whether its treatment slows CKD progression is unknown. Veverimer, a novel hydrochloric acid binder that removes acid from the gastrointestinal tract, leads to an increase in serum bicarbonate. METHODS: In a phase 3, double-blind, placebo-controlled trial, patients with CKD (eGFR of 20-40 ml/min per 1.73 m 2 ) and metabolic acidosis (serum bicarbonate of 12-20 mEq/L) from 35 countries were randomized to veverimer or placebo. The primary outcome was the composite end point of CKD progression, defined as the development of ESKD (kidney transplantation or maintenance dialysis), a sustained decline in eGFR of ≥40% from baseline, or death due to kidney failure. RESULTS: The mean (±SD) baseline eGFR was 29.2±6.3 ml/min per 1.73 m 2 , and serum bicarbonate was 17.5±1.4 mEq/L; this increased to 23.4±2.0 mEq/L after the active treatment run-in. After randomized withdrawal, the mean serum bicarbonate was 22.0±3.0 mEq/L and 20.9±3.3 mEq/L in the veverimer and placebo groups at month 3, and this approximately 1 mEq/L difference remained stable for the first 24 months. A primary end point event occurred in 149/741 and 148/739 patients in the veverimer and placebo groups, respectively (hazard ratio, 0.99; 95% confidence interval, 0.8 to 1.2; P = 0.90). Serious and overall adverse event incidence did not differ between the groups. CONCLUSIONS: Among patients with CKD and metabolic acidosis, treatment with veverimer did not slow CKD progression. The lower than expected bicarbonate separation may have hindered the ability to test the hypothesis. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: VALOR-CKD, NCT03710291 .


Assuntos
Acidose , Polímeros , Insuficiência Renal Crônica , Humanos , Bicarbonatos/uso terapêutico , Ácido Clorídrico , Acidose/tratamento farmacológico , Acidose/etiologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico
14.
J Physiol ; 602(6): 1065-1083, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38389307

RESUMO

Type 1 diabetes is a disease of the endocrine pancreas; however, it also affects exocrine function. Although most studies have examined the effects of diabetes on acinar cells, much less is known regarding ductal cells, despite their important protective function in the pancreas. Therefore, we investigated the effect of diabetes on ductal function. Diabetes was induced in wild-type and cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice following an i.p. administration of streptozotocin. Pancreatic ductal fluid and HCO3 - secretion were determined using fluid secretion measurements and fluorescence microscopy, respectively. The expression of ion transporters was measured by real-time PCR and immunohistochemistry. Transmission electron microscopy was used for the morphological characterization of the pancreas. Serum secretin and cholecystokinin levels were measured by an enzyme-linked immunosorbent assay. Ductal fluid and HCO3 - secretion, CFTR activity, and the expression of CFTR, Na+ /H+ exchanger-1, anoctamine-1 and aquaporin-1 were significantly elevated in diabetic mice. Acute or chronic glucose treatment did not affect HCO3 - secretion, but increased alkalizing transporter activity. Inhibition of CFTR significantly reduced HCO3 - secretion in both normal and diabetic mice. Serum levels of secretin and cholecystokinin were unchanged, but the expression of secretin receptors significantly increased in diabetic mice. Diabetes increases fluid and HCO3 - secretion in pancreatic ductal cells, which is associated with the increased function of ion and water transporters, particularly CFTR. KEY POINTS: There is a lively interaction between the exocrine and endocrine pancreas not only under physiological conditions, but also under pathophysiological conditions The most common disease affecting the endocrine part is type-1 diabetes mellitus (T1DM), which is often associated with pancreatic exocrine insufficiency Compared with acinar cells, there is considerably less information regarding the effect of diabetes on pancreatic ductal epithelial cells, despite the fact that the large amount of fluid and HCO3 - produced by ductal cells is essential for maintaining normal pancreatic functions Ductal fluid and HCO3 - secretion increase in T1DM, in which increased cystic fibrosis transmembrane conductance regulator activation plays a central role. We have identified a novel interaction between T1DM and ductal cells. Presumably, the increased ductal secretion represents a defence mechanism in the prevention of diabetes, but further studies are needed to clarify this issue.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Camundongos , Bicarbonatos/metabolismo , Colecistocinina/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Ductos Pancreáticos/metabolismo , Secretina/metabolismo
15.
Pflugers Arch ; 476(4): 479-503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38536494

RESUMO

Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.


Assuntos
Bicarbonatos , Simportadores de Sódio-Bicarbonato , Simportadores de Sódio-Bicarbonato/genética , Simportadores de Sódio-Bicarbonato/metabolismo , Bicarbonatos/metabolismo , Bicarbonato de Sódio , Sódio/metabolismo , Proteínas de Membrana Transportadoras , Concentração de Íons de Hidrogênio
16.
Pflugers Arch ; 476(4): 545-554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38221598

RESUMO

Secretin is a key hormone of the intestinal phase of digestion which activates pancreatic, bile duct and Brunner gland HCO3- secretion. Recently, the secretin receptor (SCTR) was also found in the basolateral membrane of the beta-intercalated cell (B-IC) of the collecting duct. Experimental addition of secretin triggers a pronounced activation of urinary HCO3- excretion, which is fully dependent on key functional proteins of the B-IC, namely apical pendrin and CFTR and the basolateral SCTR. Recent studies demonstrated that the SCTR knock-out mouse is unable to respond to an acute base load. Here, SCTR KO mice could not rapidly increase urine base excretion, developed prolonged metabolic alkalosis and exhibited marked compensatory hypoventilation. Here, we review the physiological effects of secretin with distinct focus on how secretin activates renal HCO3- excretion. We describe its new function as a hormone for HCO3- homeostasis.


Assuntos
Bicarbonatos , Secretina , Camundongos , Animais , Secretina/metabolismo , Secretina/farmacologia , Membrana Celular/metabolismo , Transportadores de Sulfato/metabolismo , Transporte Biológico , Homeostase , Bicarbonatos/metabolismo
17.
Pflugers Arch ; 476(4): 593-610, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374228

RESUMO

The transport of bicarbonate across the enterocyte cell membrane regulates the intracellular as well as the luminal pH and is an essential part of directional fluid movement in the gut. Since the first description of "active" transport of HCO3- ions against a concentration gradient in the 1970s, the fundamental role of HCO3- transport for multiple intestinal functions has been recognized. The ion transport proteins have been identified and molecularly characterized, and knockout mouse models have given insight into their individual role in a variety of functions. This review describes the progress made in the last decade regarding novel techniques and new findings in the molecular regulation of intestinal HCO3- transport in the different segments of the gut. We discuss human diseases with defects in intestinal HCO3- secretion and potential treatment strategies to increase luminal alkalinity. In the last part of the review, the cellular and organismal mechanisms for acid/base sensing in the intestinal tract are highlighted.


Assuntos
Bicarbonatos , Enterócitos , Animais , Camundongos , Humanos , Bicarbonatos/metabolismo , Transporte de Íons , Enterócitos/metabolismo , Membrana Celular/metabolismo , Secreções Corporais/metabolismo , Concentração de Íons de Hidrogênio , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo
18.
Pflugers Arch ; 476(4): 457-465, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581526

RESUMO

Soluble adenylyl cyclase (sAC) differs from transmembrane adenylyl cyclases (tmAC) in many aspects. In particular, the activity of sAC is not regulated by G-proteins but by the prevailing bicarbonate concentrations inside cells. Therefore, sAC serves as an exquisite intracellular pH sensor, with the capacity to translate pH changes into the regulation of localization and/or activity of cellular proteins involved in pH homeostasis. In this review, we provide an overview of literature describing the regulation of sAC activity by bicarbonate, pinpointing the importance of compartmentalization of intracellular cAMP signaling cascades. In addition, examples of processes involving proton and bicarbonate transport in different cell types, in which sAC plays an important regulatory role, were described in detail.


Assuntos
Adenilil Ciclases , AMP Cíclico , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Bicarbonatos/metabolismo , Transdução de Sinais/fisiologia , Concentração de Íons de Hidrogênio
19.
Antimicrob Agents Chemother ; 68(3): e0162723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38349162

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) strains are a major challenge for clinicians due, in part, to their resistance to most ß-lactams, the first-line treatment for methicillin-susceptible S. aureus. A phenotype termed "NaHCO3-responsiveness" has been identified, wherein many clinical MRSA isolates are rendered susceptible to standard-of-care ß-lactams in the presence of physiologically relevant concentrations of NaHCO3, in vitro and ex vivo; moreover, such "NaHCO3-responsive" isolates can be effectively cleared by ß-lactams from target tissues in experimental infective endocarditis (IE). One mechanistic impact of NaHCO3 exposure on NaHCO3-responsive MRSA is to repress WTA synthesis. This NaHCO3 effect mimics the phenotype of tarO-deficient MRSA, including sensitization to the PBP2-targeting ß-lactam, cefuroxime (CFX). Herein, we further investigated the impacts of NaHCO3 exposure on CFX susceptibility in the presence and absence of a WTA synthesis inhibitor, ticlopidine (TCP), in a collection of clinical MRSA isolates from skin and soft tissue infections (SSTI) and bloodstream infections (BSI). NaHCO3 and/or TCP enhanced susceptibility to CFX in vitro, by both minimum inhibitor concentration (MIC) and time-kill assays, as well as in an ex vivo simulated endocarditis vegetations (SEV) model, in NaHCO3-responsive MRSA. Furthermore, in experimental IE (presumably in the presence of endogenous NaHCO3), pre-exposure to TCP prior to infection sensitized the NaHCO3-responsive MRSA strain (but not the non-responsive strain) to enhanced clearances by CFX in target tissues. These data support the notion that NaHCO3 is acting similarly to WTA synthesis inhibitors, and that such inhibitors have potential translational applications in the treatment of certain MRSA strains in conjunction with specific ß-lactam agents.


Assuntos
Endocardite Bacteriana , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Cefuroxima/farmacologia , Bicarbonatos/farmacologia , Staphylococcus aureus , beta-Lactamas/farmacologia , Endocardite Bacteriana/tratamento farmacológico , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico
20.
Lancet ; 401(10376): 557-567, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36708734

RESUMO

BACKGROUND: Metabolic acidosis is common in kidney transplant recipients and is associated with declining graft function. Sodium bicarbonate treatment effectively corrects metabolic acidosis, but no prospective studies have examined its effect on graft function. Therefore, we aimed to test whether sodium bicarbonate treatment would preserve graft function and slow the progression of estimated glomerular filtration rate (GFR) decline in kidney transplant recipients. METHODS: The Preserve-Transplant Study was a multicentre, randomised, single-blind, placebo-controlled, phase 3 trial at three University Hospitals in Switzerland (Zurich, Bern, and Geneva), which recruited adult (aged ≥18 years) male and female long-term kidney transplant recipients if they had undergone transplantation more than 1 year ago. Key inclusion criteria were an estimated GFR between 15 mL/min per 1·73 m2 and 89 mL/min per 1·73 m2, stable allograft function in the last 6 months before study inclusion (<15% change in serum creatinine), and a serum bicarbonate of 22 mmol/L or less. We randomly assigned patients (1:1) to either oral sodium bicarbonate 1·5-4·5 g per day or matching placebo using web-based data management software. Randomisation was stratified by study centre and gender using a permuted block design to guarantee balanced allocation. We did multi-block randomisation with variable block sizes of two and four. Treatment duration was 2 years. Acid-resistant soft gelatine capsules of 500 mg sodium bicarbonate or matching 500 mg placebo capsules were given at an initial dose of 500 mg (if bodyweight was <70 kg) or 1000 mg (if bodyweight was ≥70 kg) three times daily. The primary endpoint was the estimated GFR slope over the 24-month treatment phase. The primary efficacy analyses were applied to a modified intention-to-treat population that comprised all randomly assigned participants who had a baseline visit. The safety population comprised all participants who received at least one dose of study drug. The trial is registered with ClinicalTrials.gov, NCT03102996. FINDINGS: Between June 12, 2017, and July 10, 2019, 1114 kidney transplant recipients with metabolic acidosis were assessed for trial eligibility. 872 patients were excluded and 242 were randomly assigned to the study groups (122 [50%] to the placebo group and 120 [50%] to the sodium bicarbonate group). After secondary exclusion of two patients, 240 patients were included in the intention-to-treat analysis. The calculated yearly estimated GFR slopes over the 2-year treatment period were a median -0·722 mL/min per 1·73 m2 (IQR -4·081 to 1·440) and mean -1·862 mL/min per 1·73 m2 (SD 6·344) per year in the placebo group versus median -1·413 mL/min per 1·73 m2 (IQR -4·503 to 1·139) and mean -1·830 mL/min per 1·73 m2 (SD 6·233) per year in the sodium bicarbonate group (Wilcoxon rank sum test p=0·51; Welch t-test p=0·97). The mean difference was 0·032 mL/min per 1·73 m2 per year (95% CI -1·644 to 1·707). There were no significant differences in estimated GFR slopes in a subgroup analysis and a sensitivity analysis confirmed the primary analysis. Although the estimated GFR slope did not show a significant difference between the treatment groups, treatment with sodium bicarbonate effectively corrected metabolic acidosis by increasing serum bicarbonate from 21·3 mmol/L (SD 2·6) to 23·0 mmol/L (2·7) and blood pH from 7·37 (SD 0·06) to 7·39 (0·04) over the 2-year treatment period. Adverse events and serious adverse events were similar in both groups. Three study participants died. In the placebo group, one (1%) patient died from acute respiratory distress syndrome due to SARS-CoV-2 and one (1%) from cardiac arrest after severe dehydration following diarrhoea with hypotension, acute kidney injury, and metabolic acidosis. In the sodium bicarbonate group, one (1%) patient had sudden cardiac death. INTERPRETATION: In adult kidney transplant recipients, correction of metabolic acidosis by treatment with sodium bicarbonate over 2 years did not affect the decline in estimated GFR. Thus, treatment with sodium bicarbonate should not be generally recommended to preserve estimated GFR (a surrogate marker for graft function) in kidney transplant recipients with chronic kidney disease who have metabolic acidosis. FUNDING: Swiss National Science Foundation.


Assuntos
Acidose , COVID-19 , Transplante de Rim , Adulto , Humanos , Masculino , Feminino , Adolescente , Bicarbonato de Sódio/uso terapêutico , Bicarbonatos/uso terapêutico , Suíça , Transplante de Rim/efeitos adversos , Método Simples-Cego , Método Duplo-Cego , SARS-CoV-2 , Acidose/tratamento farmacológico , Acidose/etiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA