Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 368
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
BMC Biotechnol ; 21(1): 43, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301236

RESUMO

BACKGROUND: The ability to achieve high peak viable cell density earlier in CHO cell culture and maintain an extended cell viability throughout the production process is highly desirable to increase recombinant protein yields, reduce host cell impurities for downstream processing and reduce the cost of goods. In this study we implemented label-free LC-MS/MS proteomic profiling of IgG4 producing CHO cell lines throughout the duration of the cell culture to identify differentially expressed (DE) proteins and intracellular pathways associated with the high peak viable cell density (VCD) and extended culture VCD phenotypes. RESULTS: We identified key pathways in DNA replication, mitotic cell cycle and evasion of p53 mediated apoptosis in high peak VCD clonally derived cell lines (CDCLs). ER to Golgi vesicle mediated transport was found to be highly expressed in extended culture VCD CDCLs while networks involving endocytosis and oxidative stress response were significantly downregulated. CONCLUSION: This investigation highlights key pathways for targeted engineering to generate desirable CHO cell phenotypes for biotherapeutic production.


Assuntos
Células CHO/química , Células CHO/citologia , Proliferação de Células , Proteínas/genética , Animais , Células CHO/metabolismo , Ciclo Celular , Cromatografia Líquida , Cricetinae , Cricetulus , Imunoglobulina G , Fenótipo , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
2.
Biotechnol Bioeng ; 117(11): 3435-3447, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32662873

RESUMO

Chinese hamster ovary (CHO) cells produce a large share of today's biopharmaceuticals. Still, the generation of satisfactory producer cell lines is a tedious undertaking. Recently, it was found that CHO cells, when exposed to new environmental conditions, modify their epigenome, suggesting that cells adapt their gene expression pattern to handle new challenges. The major aim of the present study was to employ artificially induced, random changes in the DNA-methylation pattern of CHO cells to diversify cell populations and consequently increase the finding of cell lines with improved cellular characteristics. To achieve this, DNA methyltransferases and/or the ten-eleven translocation enzymes were downregulated by RNA interference over a time span of ∼16 days. Methylation analysis of the resulting cell pools revealed that the knockdown of DNA methyltransferases was highly effective in randomly demethylating the genome. The same approach, when applied to stable CHO producer cells resulted in (a) an increased productivity diversity in the cell population, and (b) a higher number of outliers within the population, which resulted in higher specific productivity and titer in the sorted cells. These findings suggest that epigenetics play a previously underestimated, but actually important role in defining the overall cellular behavior of production clones.


Assuntos
Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Epigênese Genética/genética , Técnicas de Silenciamento de Genes , Animais , Células CHO/citologia , Células CHO/enzimologia , Células CHO/metabolismo , Cricetulus , Expressão Gênica/genética , Interferência de RNA , Proteínas Recombinantes/análise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Anal Bioanal Chem ; 412(9): 2065-2080, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32130440

RESUMO

Cell population heterogeneities and their changes in mammalian cell culture processes are still not well characterized. In this study, the formation and dynamics of cell population heterogeneities were investigated with flow cytometry and stably integrated fluorescent markers based on the lentiviral gene ontology (LeGO) vector system. To achieve this, antibody-producing CHO cells were transduced with different LeGO vectors to stably express single or multiple fluorescent proteins. This enables the tracking of the transduced populations and is discussed in two case studies from the field of bioprocess engineering: In case study I, cells were co-transduced to express red, green, and blue fluorescent proteins and the development of sub-populations and expression heterogeneities were investigated in high passage cultivations (total 130 days). The formation of a fast-growing and more productive population was observed with a simultaneous increase in cell density and product titer. In case study II, different preculture growth phases and their influence on the population dynamics were investigated in mixed batch cultures with flow cytometry (offline and automated). Four cell line derivatives, each expressing a different fluorescent protein, were generated and cultivated for different time intervals, corresponding to different growth phases. Mixed cultures were inoculated from them, and changes in the composition of the cell populations were observed during the first 48 h of cultivation with reduced process productivity. In summary, we showed how the dynamics of population heterogeneities can be characterized. This represents a novel approach to investigate the dynamics of cell population heterogeneities under near-physiological conditions with changing productivity in mammalian cell culture processes.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células CHO/metabolismo , Proteínas Luminescentes/genética , Animais , Reatores Biológicos , Células CHO/citologia , Contagem de Células , Cricetulus , Citometria de Fluxo/métodos , Expressão Gênica , Vetores Genéticos/genética , Lentivirus/genética , Transdução Genética
4.
Biotechnol Appl Biochem ; 65(2): 173-180, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28681393

RESUMO

The growing demand for recombinant therapeutics has driven biotechnologists to develop new production strategies. One such strategy for increasing the expression of heterologous proteins has focused on enhancing cell-specific productivity through environmental perturbations. In this work, the effects of hypothermia, hyperosmolarity, high shear stress, and sodium butyrate treatment on growth and productivity were studied using three (low, medium, and high producing) CHO cell lines that differed in their specific productivities of monoclonal antibody. In all three cell lines, the inhibitory effect of these parameters on proliferation was demonstrated. Additionally, compared to the control, specific productivity was enhanced under all conditions and exhibited a consistent cell line specific pattern, with maximum increases (50-290%) in the low producer, and minimum increases (7-20%) in the high producer. Thus, the high-producing cell line was less responsive to environmental perturbations than the low-producing cell line. We hypothesize that this difference is most likely due to the bottleneck associated with a higher metabolic burden caused by higher antibody expression. Increased recombinant mRNA levels and pyruvate carboxylase activities due to low temperature and hyperosmotic stress were found to be positively associated with the metabolic burden.


Assuntos
Anticorpos Monoclonais/metabolismo , Técnicas de Cultura Celular por Lotes/métodos , Biotecnologia/métodos , Células CHO/metabolismo , Animais , Anticorpos Monoclonais/genética , Células CHO/citologia , Proliferação de Células , Sobrevivência Celular , Temperatura Baixa , Cricetulus , Pressão Osmótica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
Biotechnol Bioeng ; 114(8): 1825-1836, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28436007

RESUMO

For decades, Chinese hamster ovary (CHO) cells have been the preferred host for therapeutic monoclonal antibody (mAb) production; however, increasing mAb titer by rational engineering remains a challenge. Our previous proteomic analysis in CHO cells suggested that a higher content of glutathione (GSH) might be related to higher productivity. GSH is an important antioxidant, cell detoxifier, and is required to ensure the formation of native disulfide bonds in proteins. To investigate the involvement of GSH in mAb production, we generated stable CHO cell lines overexpressing genes involved in the first step of GSH synthesis; namely the glutamate-cysteine ligase catalytic subunit (Gclc) and the glutamate-cysteine ligase modifier subunit (Gclm). The two genes were reconstructed from our RNA-Seq de novo assembly and then were functionally annotated. Once the sequences of the genes were confirmed using proteogenomics, a transiently expressed mAb was introduced into cell lines overexpressing either Gclc or Gclm. The new cell lines were compared for mAb production to the parental cell line and changes at the proteome level were measured using SWATH. As per our previous proteomics observations, overexpressing Gclm improved productivity, titer, and the frequency of high producer clones by 70%. In contrast, overexpressing Gclc, which produced a higher amount of GSH, did not increase mAb production. We show that GSH cannot be linked to higher productivity and that Gclm may be controlling other cellular processes involved in mAb production yet to be elucidated. Biotechnol. Bioeng. 2017;114: 1825-1836. © 2017 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/biossíntese , Células CHO/fisiologia , Melhoramento Genético/métodos , Glutamato-Cisteína Ligase/metabolismo , Engenharia de Proteínas/métodos , Regulação para Cima/fisiologia , Animais , Anticorpos Monoclonais/genética , Células CHO/citologia , Catálise , Cricetulus , Glutamato-Cisteína Ligase/genética , Subunidades Proteicas
6.
Biotechnol Bioeng ; 114(11): 2560-2570, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28627778

RESUMO

An optimized biomanufacturing process in mammalian cells is contingent on the ability of the producing cells to reach high viable cell densities. In addition, at the peak of growth, cells need to continue producing the biological entity at a consistent quality. Thus, engineering cells with robust growth performance and resilience to variable stress conditions is highly desirable. The tyrosine kinase receptor, KIT, plays a key role in cell differentiation and the survival of several immune cell types. Its oncogenic mutant, D816V, endows cells with high proliferation capacity, and resistance to kinase inhibitors. Importantly, this onco-KIT mutant when introduced into various cell types is arrested in the endoplasmic reticulum in a constitutively active form. Here, we investigated the effect of oncogenic D816V KIT on the performance of CHO-K1 cells under conventional tissue culture growth settings and when adapted, to shaking conditions. The onco-KIT promoted global protein synthesis, elevated the expression of a secretable transgene, enhanced proliferation, and improved the overall titers of a model glycoprotein. Moreover, the expression of the onco-KIT endowed the cells with a remarkable resistance to various stress conditions. Our data suggest that the introduction of onco-KIT can serve as a strategy for improving glycoprotein biomanufacturing. Biotechnol. Bioeng. 2017;114: 2560-2570. © 2017 Wiley Periodicals, Inc.


Assuntos
Células CHO/citologia , Células CHO/fisiologia , Proliferação de Células/fisiologia , Melhoramento Genético/métodos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Recombinantes/biossíntese , Estresse Fisiológico/fisiologia , Animais , Técnicas de Cultura Celular por Lotes/métodos , Cricetulus
7.
Biotechnol Bioeng ; 114(7): 1438-1447, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28128436

RESUMO

A simple method originally designed to control lactate accumulation in fed-batch cultures of Chinese Hamster Ovary (CHO) cells has been modified and extended to allow cells in culture to control their own rate of perfusion to precisely deliver nutritional requirements. The method allows for very fast expansion of cells to high density while using a minimal volume of concentrated perfusion medium. When the short-duration cell-controlled perfusion is performed in the production bioreactor and is immediately followed by a conventional fed-batch culture using highly concentrated feeds, the overall productivity of the culture is approximately doubled when compared with a highly optimized state-of-the-art fed-batch process. The technology was applied with near uniform success to five CHO cell processes producing five different humanized monoclonal antibodies. The increases in productivity were due to the increases in sustained viable cell densities. Biotechnol. Bioeng. 2017;114: 1438-1447. © 2017 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células CHO/citologia , Células CHO/fisiologia , Proliferação de Células/fisiologia , Glucose/metabolismo , Ácido Láctico/metabolismo , Perfusão/métodos , Animais , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Cricetulus
8.
Biotechnol Bioeng ; 114(8): 1791-1802, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28214330

RESUMO

We developed a method for the fast sorting and selection of mammalian cells expressing and secreting a protein at high levels. This procedure relies on cell capture using an automated microfluidic device handling antibody-coupled magnetic microparticles and on a timed release of the cells from the microparticles after capture. Using clinically compatible materials and procedures, we show that this approach is able to discriminate between cells that truly secrete high amounts of a protein from those that just display it at high levels on their surface without properly releasing it. When coupled to a cell colony imaging and picking device, this approach allowed the identification of CHO cell clones secreting a therapeutic protein at high levels that were not achievable without the cell sorting procedure. Biotechnol. Bioeng. 2017;114: 1791-1802. © 2017 Wiley Periodicals, Inc.


Assuntos
Células CHO/citologia , Células CHO/metabolismo , Separação Celular/métodos , Nanopartículas de Magnetita/química , Proteínas Recombinantes/metabolismo , Animais , Células CHO/efeitos da radiação , Cricetulus , Nanopartículas de Magnetita/efeitos da radiação , Coloração e Rotulagem/métodos
9.
Biotechnol Bioeng ; 114(7): 1495-1510, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28262952

RESUMO

In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Células CHO/fisiologia , Melhoramento Genético/métodos , MicroRNAs/metabolismo , Engenharia de Proteínas/métodos , Proteínas Recombinantes/biossíntese , Animais , Células CHO/citologia , Proliferação de Células/fisiologia , Cricetulus , MicroRNAs/genética , Proteínas Recombinantes/genética
10.
Microsc Microanal ; 23(3): 569-583, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28367787

RESUMO

Accurate and fast quantitative analysis of living cells from fluorescence microscopy images is useful for evaluating experimental outcomes and cell culture protocols. An algorithm is developed in this work to automatically segment and distinguish apoptotic cells from normal cells. The algorithm involves three steps consisting of two segmentation steps and a classification step. The segmentation steps are: (i) a coarse segmentation, combining a range filter with a marching square method, is used as a prefiltering step to provide the approximate positions of cells within a two-dimensional matrix used to store cells' images and the count of the number of cells for a given image; and (ii) a fine segmentation step using the Active Contours Without Edges method is applied to the boundaries of cells identified in the coarse segmentation step. Although this basic two-step approach provides accurate edges when the cells in a given image are sparsely distributed, the occurrence of clusters of cells in high cell density samples requires further processing. Hence, a novel algorithm for clusters is developed to identify the edges of cells within clusters and to approximate their morphological features. Based on the segmentation results, a support vector machine classifier that uses three morphological features: the mean value of pixel intensities in the cellular regions, the variance of pixel intensities in the vicinity of cell boundaries, and the lengths of the boundaries, is developed for distinguishing apoptotic cells from normal cells. The algorithm is shown to be efficient in terms of computational time, quantitative analysis, and differentiation accuracy, as compared with the use of the active contours method without the proposed preliminary coarse segmentation step.


Assuntos
Apoptose , Células CHO/citologia , Técnicas Citológicas/métodos , Microscopia de Fluorescência/métodos , Algoritmos , Animais , Cricetinae , Cricetulus , Processamento de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos
11.
Biotechnol Bioeng ; 113(11): 2433-42, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27183150

RESUMO

Recently, we reported that the loss of a telomeric region of chromosome 8 in Chinese Hamster Ovary (CHO) cells correlates with higher recombinant productivities. New cell lines lacking this region, called CHO-C8DEL, showed several advantages during cell line generation and for the production of recombinant proteins (Ritter et al., 2016, Biotechnol Bioeng). Here, we performed knock-down and knock-out experiments of genes located within this telomeric region of chromosome 8 to identify the genes causing the observed phenotypes of CHO-C8DEL cell lines. We present evidence that loss or reduced expression of the gene C12orf35 is responsible for higher productivities and shorter recovery times during selection pressure. These effects are mediated by increased levels of mRNA of the exogenes heavy chain (HC) and light chain (LC) as well as dihydrofolate reductase (DHFR) and neomycin phosphotransferase (Neo) during the stable expression of antibodies. Biotechnol. Bioeng. 2016;113: 2433-2442. © 2016 Wiley Periodicals, Inc.


Assuntos
Células CHO/fisiologia , Melhoramento Genético/métodos , Proteínas Recombinantes/biossíntese , Animais , Células CHO/citologia , Cricetulus , Técnicas de Silenciamento de Genes , Proteínas Recombinantes/genética , Regulação para Cima/genética
12.
Biotechnol Bioeng ; 113(9): 2005-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26913695

RESUMO

In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic traits characteristic of high-performance clones and enables informed decisions on which clones provide a good match for a particular process platform. The proposed approach also provides a mechanistic link between observed clone phenotype, process setup, and feeding regimes, and thereby offers concrete starting points for subsequent process optimization. Biotechnol. Bioeng. 2016;113: 2005-2019. © 2016 Wiley Periodicals, Inc.


Assuntos
Células CHO/citologia , Células CHO/metabolismo , Células Clonais/citologia , Células Clonais/metabolismo , Engenharia Metabólica/métodos , Proteínas Recombinantes/metabolismo , Animais , Cricetinae , Cricetulus , Perfilação da Expressão Gênica , Genômica , Redes e Vias Metabólicas
13.
Biotechnol Bioeng ; 113(5): 1084-93, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26523402

RESUMO

Chinese Hamster Ovary (CHO) cells are widely used for large scale production of recombinant biopharmaceuticals. Although these cells have been extensively used, a demand to further increase the performance, for example, to facilitate the process of clone selection to isolate the highest producing cell lines that maintain stability of production over time is still existing. We compared gene expression profiles of high versus low producing CHO clones to identify regulated genes which can be used as biomarkers during clone selection or for cell line engineering. We present evidence that increased production rates and cell line stability are correlated with the loss of the telomeric region of the chromosome 8. A new parental CHO cell line lacking this region was generated and its capability for protein production was assessed. The average volumetric productivity of cells after gene transfer and selection was found to be several fold improved, facilitating the supply of early drug substance material to determine for example, quality. In addition, significantly more cell clones with a higher average productivity and higher protein production stability were obtained with the new host cell line after single cell cloning. This allows reduced efforts in single cell sorting, screening of fewer clones and raises the opportunity to circumvent time and labor-intensive stability studies.


Assuntos
Células CHO/metabolismo , Cromossomos Humanos Par 8/genética , Telômero/genética , Animais , Anticorpos Monoclonais/genética , Células CHO/citologia , Deleção Cromossômica , Células Clonais/citologia , Células Clonais/metabolismo , Cricetinae , Cricetulus , Regulação para Baixo , Regulação da Expressão Gênica , Engenharia Genética/métodos , Humanos , Proteínas Recombinantes/genética , Transcriptoma , Transfecção
14.
Biotechnol Bioeng ; 113(5): 1094-101, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26523469

RESUMO

Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells.


Assuntos
Células CHO/metabolismo , Técnicas de Inativação de Genes , Engenharia Genética/métodos , Fator de Crescimento Insulin-Like I/genética , Receptor IGF Tipo 1/genética , Animais , Células CHO/citologia , Proliferação de Células , Cricetinae , Cricetulus , Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Humanos , Proteínas Recombinantes/genética
15.
J Proteome Res ; 14(11): 4687-703, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26418914

RESUMO

Chinese hamster ovary (CHO) cells are the preferred host cell line for manufacturing a variety of complex biotherapeutic drugs including monoclonal antibodies. We performed a proteomics and bioinformatics analysis on the spent medium from adherent CHO cells. Supernatant from CHO-K1 culture was collected and subjected to in-solution digestion followed by LC/LC-MS/MS analysis, which allowed the identification of 3281 different host cell proteins (HCPs). To functionally categorize them, we applied multiple bioinformatics tools to the proteins identified in our study including SignalP, TargetP, SecretomeP, TMHMM, WoLF PSORT, and Phobius. This analysis provided information on the presence of signal peptides, transmembrane domains, and cellular localization and showed that both secreted and intracellular proteins were constituents of the supernatant. Identified proteins were shown to be localized to the secretory pathway including ones playing roles in cell growth, proliferation, and folding as well as those involved in protein degradation and removal. After combining proteins predicted to be secreted or having a signal peptide, we identified 1015 proteins, which we termed as CHO supernatant-ome (CHO-SO), or superome. As a part of this effort, we created a publically accessible web-based tool called GO-CHO to functionally categorize proteins found in CHO-SO and identify enriched molecular functions, biological processes, and cellular components. We also used a tool to evaluate the immunogenicity potential of high-abundance HCPs. Among enriched functions were catalytic activity and structural constituents of the cytoskeleton. Various transport related biological processes, such as vesicle mediated transport, were found to be highly enriched. Extracellular space and vesicular exosome associated proteins were found to be the most enriched cellular components. The superome also contained proteins secreted from both classical and nonclassical secretory pathways. The work and database described in our study will enable the CHO community to rapidly identify high-abundance HCPs in their cultures and therefore help assess process and purification methods used in the production of biologic drugs.


Assuntos
Células CHO/metabolismo , Biologia Computacional/métodos , Proteoma/genética , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Transporte Biológico , Células CHO/citologia , Proliferação de Células , Cromatografia Líquida , Cricetulus , Meios de Cultivo Condicionados/química , Citoplasma/química , Citoesqueleto/química , Expressão Gênica , Anotação de Sequência Molecular , Mapeamento de Interação de Proteínas , Sinais Direcionadores de Proteínas/genética , Proteólise , Proteoma/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Via Secretória/genética , Espectrometria de Massas em Tandem
16.
Biotechnol Bioeng ; 112(5): 977-86, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25502369

RESUMO

Transient gene expression (TGE) is a rapid method for the production of recombinant proteins in mammalian cells. While the volumetric productivity of TGE has improved significantly over the past decade, most methods involve extensive cell line engineering and plasmid vector optimization in addition to long fed batch cultures lasting up to 21 days. Our colleagues have recently reported the development of a CHO K1SV GS-KO host cell line. By creating a bi-allelic glutamine synthetase knock out of the original CHOK1SV host cell line, they were able to improve the efficiency of generating high producing stable CHO lines for drug product manufacturing. We developed a TGE method using the same CHO K1SV GS-KO host cell line without any further cell line engineering. We also refrained from performing plasmid vector engineering. Our objective was to setup a TGE process to mimic protein quality attributes obtained from stable CHO cell line. Polyethyleneimine (PEI)-mediated transfections were performed at high cell density (4 × 10(6) cells/mL) followed by immediate growth arrest at 32 °C for 7 days. Optimizing DNA and PEI concentrations proved to be important. Interestingly, found the direct transfection method (where DNA and PEI were added sequentially) to be superior to the more common indirect method (where DNA and PEI are first pre-complexed). Moreover, the addition of a single feed solution and a polar solvent (N,N dimethylacetamide) significantly increased product titers. The scalability of process from 2 mL to 2 L was demonstrated using multiple proteins and multiple expression volumes. Using this simple, short, 7-day TGE process, we were able to successfully produce 54 unique proteins in a fraction of the time that would have been required to produce the respective stable CHO cell lines. The list of 54 unique proteins includes mAbs, bispecific antibodies, and Fc-fusion proteins. Antibody titers of up to 350 mg/L were achieved with the simple 7-day process. Titers were increased to 1 g/L by extending the culture to 16 days. We also present two case studies comparing product quality of material generated by transient HEK293, transient CHO K1SV GS-KO, and stable CHO K1SV KO pool. Protein from transient CHO was more representative of stable CHO protein compared to protein produced from HEK293.


Assuntos
Células CHO/metabolismo , Glutamato-Amônia Ligase/genética , Transfecção/instrumentação , Animais , Anticorpos Monoclonais/genética , Células CHO/citologia , Contagem de Células , Cricetulus , DNA/administração & dosagem , DNA/genética , Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Polietilenoimina/metabolismo , Proteínas Recombinantes/genética
17.
Protein Expr Purif ; 116: 113-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26291269

RESUMO

Transient expression of heterologous proteins in mammalian systems is a powerful way to generate protein reagents quickly. However, it has historically suffered from poor yields in comparison to methods where the recombinant gene is stably integrated into the genome and high expressing clones isolated. Transient methods have been well described for HEK-based systems. In this paper we show the use of a design of experiments (DoE) approach to quickly analyse the effect of a range of different parameters on protein expression from a CHO-based transient system. We show that this system is amenable to a very simple transfection procedure by independent direct addition of DNA and transfection reagent to the culture vessel. In addition we show that expression can be improved by reducing the temperature of the culture conditions post-transfection. The process is demonstrated to be transferrable from 3 ml cultures in deep 24-well plates through cultures in CultiFlask Bioreactors, shake flasks and up to 25 L culture in Wave Bioreactors. Data are shown to illustrate the utility of the system with a number of different classes of protein.


Assuntos
Células CHO/metabolismo , DNA/administração & dosagem , Transfecção/métodos , Animais , Reatores Biológicos/economia , Células CHO/citologia , Técnicas de Cultura de Células/economia , Técnicas de Cultura de Células/métodos , Cricetulus , DNA/genética , Expressão Gênica , Polietilenoimina/química , Transfecção/economia
18.
Biotechnol Bioeng ; 111(8): 1577-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25097916

RESUMO

Multi-wavelength fluorescence spectroscopy was investigated as a potential tool for use in monitoring key process variables that include: viable and dead cells, recombinant protein, glucose, and ammonia concentrations for Chinese hamster ovary (CHO) cells during cultivation.For the purpose of calibrating the fluorescence-based empirical model, cells were grown in batch mode with different initial glucose and glutamine concentrations.Spectrofluorometer settings were optimized to ensure reproducibility and accuracy of the acquired spectra. With the purpose of gaining qualitative insight into the evolution of the spectra, the trajectories of individual fluorophore peaks were studied during the cultivation process. Spectral changes related to biomass and secreted proteins were investigated by comparing the spectra at various stages during the downstream processing. A partial least square regression (PLSR) was used to formulate empirical models that related the input data set, i.e., the fluorescence excitation-emission matrix, to the actual state of the system including viable cell and dead cells and recombinant protein, glucose, and ammonia concentrations. The models exhibited accurate prediction ability for the process variables of interest.


Assuntos
Técnicas Biossensoriais/métodos , Células CHO/citologia , Células CHO/metabolismo , Espectrometria de Fluorescência/métodos , Amônia/análise , Amônia/metabolismo , Animais , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Cricetinae , Cricetulus , Glucose/análise , Glucose/metabolismo , Glutamina/metabolismo , Modelos Biológicos , Proteínas Recombinantes/análise , Proteínas Recombinantes/metabolismo
19.
Biotechnol Bioeng ; 109(12): 3103-11, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22711553

RESUMO

The selection of suitable mammalian cell lines with high specific productivities is a crucial aspect of large-scale recombinant protein production. This study utilizes a metabolomics approach to elucidate the key characteristics of Chinese hamster ovary (CHO) cells with high monoclonal antibody productivities (q(mAb)). Liquid chromatography-mass spectrometry (LC-MS)-based intracellular metabolite profiles of eight single cell clones with high and low q(mAb) were obtained at the mid-exponential phase during shake flask batch cultures. Orthogonal projection to latent structures discriminant analysis (OPLS-DA) subsequently revealed key differences between the high and low q(mAb) clones, as indicated by the variable importance for projection (VIP) scores. The mass peaks were further examined for their potential association with q(mAb) across all clones using Pearson's correlation analysis. Lastly, the identities of metabolites with high VIP and correlation scores were confirmed by comparison with standards through LC-MS-MS. A total of seven metabolites were identified-NADH, FAD, reduced and oxidized glutathione, and three activated sugar precursors. These metabolites are involved in key cellular pathways of citric acid cycle, oxidative phosphorylation, glutathione metabolism, and protein glycosylation. To our knowledge, this is the first study to identify metabolites that are associated closely with q(mAb). The results suggest that the high producers had elevated levels of specific metabolites to better regulate their redox status. This is likely to facilitate the generation of energy and activated sugar precursors to meet the demands of producing more glycosylated recombinant monoclonal antibodies.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Células CHO/metabolismo , Metabolômica/métodos , Animais , Células CHO/citologia , Cromatografia Líquida , Cricetinae , Cricetulus , Glutationa/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Metaboloma , Nucleotídeos/metabolismo , Análise de Componente Principal
20.
Biotechnol Bioeng ; 109(4): 1016-30, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22068683

RESUMO

One of the most important criteria for the successful manufacture of a therapeutic protein (e.g., an antibody) is to develop a mammalian cell line that maintains stability of production. Problems with process yield, lack of effective use of costly resources, and a possible delay in obtaining regulatory approval of the product may ensue otherwise. Therefore the stability of expression in a number of Chinese hamster ovary (CHO) derived production cell lines that were isolated using the glutamine synthetase (GS) selection system was investigated by defining a culture as unstable if the titer (which is a measure of productivity) of a cell line expressing an antibody or antibody-fusion protein declined by 20-30% or more as it underwent 55 population doublings. Using this criterion, a significant proportion of the GS-selected CHO production cell lines were observed to be unstable. Reduced antibody titers correlated with the gradual appearance of a secondary, less productive population of cells as detected with flow cytometric analysis of intracellular antibody content. Where tested, it was observed that the secondary population arose spontaneously from the parental population following multiple passages, which suggested inherent clonal instability. Moreover, the frequency of unstable clones decreased significantly if the host cell line from which the candidate production cell lines were derived was apoptotic-resistant. This data suggested that unstable cell lines were more prone to apoptosis, which was confirmed by the fact that unstable cell lines had higher levels of Annexin V and caspase 3 activities. This knowledge has been used to develop screening protocols that identify unstable CHO production cell lines at an early stage of the cell line development process, potentially reducing the cost of biotherapeutic development.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura Celular por Lotes/métodos , Células CHO/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Apoptose , Técnicas de Cultura Celular por Lotes/instrumentação , Reatores Biológicos , Células CHO/citologia , Caspase 3/metabolismo , Separação Celular , Células Clonais/citologia , Células Clonais/metabolismo , Cricetinae , Cricetulus , Citometria de Fluxo , Vetores Genéticos , Instabilidade Genômica , Glutamato-Amônia Ligase/genética , Humanos , Camundongos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA