Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.188
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 31: 387-411, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298207

RESUMO

The immune cells that reside at the interface between the placenta and uterus are thought to play many important roles in pregnancy. Recent work has revealed that the composition and function of these cells are locally controlled by the specialized uterine stroma (the decidua) that surrounds the implanted conceptus. Here, I discuss how key immune cell types (natural killer cells, macrophages, dendritic cells, and T cells) are either enriched or excluded from the decidua, how their function is regulated within the decidua, and how they variously contribute to pregnancy success or failure. The discussion emphasizes the relationship between human and mouse studies. Deeper understanding of the immunology of the maternal-fetal interface promises to yield significant insight into the pathogenesis of many human pregnancy complications, including preeclampsia, intrauterine growth restriction, spontaneous abortion, preterm birth, and congenital infection.


Assuntos
Troca Materno-Fetal/imunologia , Animais , Diferenciação Celular/imunologia , Decídua/citologia , Decídua/imunologia , Decídua/patologia , Implantação do Embrião/imunologia , Feminino , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Placenta/irrigação sanguínea , Placenta/imunologia , Gravidez
2.
Annu Rev Immunol ; 31: 413-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298206

RESUMO

NKG2D is an activating receptor expressed by all NK cells and subsets of T cells. It serves as a major recognition receptor for detection and elimination of transformed and infected cells and participates in the genesis of several inflammatory diseases. The ligands for NKG2D are self-proteins that are induced by pathways that are active in certain pathophysiological states. NKG2D ligands are regulated transcriptionally, at the level of mRNA and protein stability, and by cleavage from the cell surface. In some cases, ligand induction can be attributed to pathways that are activated specifically in cancer cells or infected cells. We review the numerous pathways that have been implicated in the regulation of NKG2D ligands, discuss the pathologic states in which those pathways are likely to act, and attempt to synthesize the findings into general schemes of NKG2D ligand regulation in NK cell responses to cancer and infection.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Animais , Humanos , Células Matadoras Naturais/patologia , Ligantes , Camundongos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/biossíntese , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Células T Matadoras Naturais/patologia
3.
Annu Rev Immunol ; 31: 163-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23298212

RESUMO

Natural killer (NK) cells are effector cells of the innate immune system and are important in the control of viral infections. Their relevance is reflected by the multiple mechanisms evolved by viruses to evade NK cell-mediated immune responses. Over recent years, our understanding of the interplay between NK cell immunity and viral pathogenesis has improved significantly. Here, we review the role of NK cells in the control of four important viral infections in humans: cytomegalovirus, influenza virus, HIV-1, and hepatitis C virus.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Viroses/imunologia , Viroses/virologia , Animais , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/patologia , Infecções por Citomegalovirus/prevenção & controle , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/prevenção & controle , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/prevenção & controle , Hepatite Viral Animal/imunologia , Hepatite Viral Animal/patologia , Hepatite Viral Animal/prevenção & controle , Humanos , Influenza Humana/imunologia , Influenza Humana/patologia , Influenza Humana/prevenção & controle , Células Matadoras Naturais/patologia , Viroses/patologia
4.
Nat Immunol ; 23(9): 1309-1316, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002647

RESUMO

Eosinophils are important effector cells and therapeutic targets in allergic diseases. Emerging data indicate that eosinophils infiltrate a variety of solid tumor types and have pleiotropic activities by at least two non-mutually exclusive mechanisms: direct interactions with tumor cells, and intricate cross-talk with lymphocytes. In light of the immune checkpoint inhibition revolution in cancer therapy, we review eosinophil-lymphocyte interactions in the tumor microenvironment. We also analyze potential interactions between eosinophils and lymphocyte subsets, including T cells, natural killer cells and innate lymphoid cells. We provide perspectives on the consequences of these interactions and how eosinophils are accessory cells that can affect the response to various forms of T cell-mediated immunotherapies and might be therapeutically targeted to improve cancer immunotherapy.


Assuntos
Neoplasias , Microambiente Tumoral , Eosinófilos , Humanos , Inibidores de Checkpoint Imunológico , Imunidade Inata , Imunoterapia , Células Matadoras Naturais/patologia
5.
Cell ; 177(7): 1701-1713.e16, 2019 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-31155232

RESUMO

Over the last decade, various new therapies have been developed to promote anti-tumor immunity. Despite interesting clinical results in hematological malignancies, the development of bispecific killer-cell-engager antibody formats directed against tumor cells and stimulating anti-tumor T cell immunity has proved challenging, mostly due to toxicity problems. We report here the generation of trifunctional natural killer (NK) cell engagers (NKCEs), targeting two activating receptors, NKp46 and CD16, on NK cells and a tumor antigen on cancer cells. Trifunctional NKCEs were more potent in vitro than clinical therapeutic antibodies targeting the same tumor antigen. They had similar in vivo pharmacokinetics to full IgG antibodies and no off-target effects and efficiently controlled tumor growth in mouse models of solid and invasive tumors. Trifunctional NKCEs thus constitute a new generation of molecules for fighting cancer. VIDEO ABSTRACT.


Assuntos
Anticorpos Biespecíficos , Antígenos Ly/imunologia , Antineoplásicos Imunológicos , Citotoxicidade Imunológica/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Neoplasias Experimentais , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/farmacologia , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/farmacologia , Células Matadoras Naturais/patologia , Camundongos , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia
6.
Cell ; 175(7): 1731-1743.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30503213

RESUMO

Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma de Células Escamosas , Cetuximab/uso terapêutico , Imunidade Celular/efeitos dos fármacos , Imunoterapia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Ensaios Clínicos Fase II como Assunto , Humanos , Células Matadoras Naturais/patologia , Camundongos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia
7.
Cell ; 169(4): 750-765.e17, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475900

RESUMO

To guide the design of immunotherapy strategies for patients with early stage lung tumors, we developed a multiscale immune profiling strategy to map the immune landscape of early lung adenocarcinoma lesions to search for tumor-driven immune changes. Utilizing a barcoding method that allows a simultaneous single-cell analysis of the tumor, non-involved lung, and blood cells, we provide a detailed immune cell atlas of early lung tumors. We show that stage I lung adenocarcinoma lesions already harbor significantly altered T cell and NK cell compartments. Moreover, we identified changes in tumor-infiltrating myeloid cell (TIM) subsets that likely compromise anti-tumor T cell immunity. Paired single-cell analyses thus offer valuable knowledge of tumor-driven immune changes, providing a powerful tool for the rational design of immune therapies. VIDEO ABSTRACT.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/patologia , Imunidade Inata , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Análise de Célula Única/métodos , Adenocarcinoma de Pulmão , Células Dendríticas/patologia , Humanos , Células Matadoras Naturais/patologia , Macrófagos/patologia , Linfócitos T/patologia , Microambiente Tumoral
8.
Nat Immunol ; 19(12): 1330-1340, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420624

RESUMO

Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.


Assuntos
Vigilância Imunológica/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Melanoma Experimental/imunologia , Obesidade/imunologia , Adulto , Animais , Feminino , Humanos , Células Matadoras Naturais/patologia , Masculino , Melanoma Experimental/complicações , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Obesidade/complicações , Adulto Jovem
9.
Immunity ; 54(4): 753-768.e5, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33765435

RESUMO

Viral infections induce a conserved host response distinct from bacterial infections. We hypothesized that the conserved response is associated with disease severity and is distinct between patients with different outcomes. To test this, we integrated 4,780 blood transcriptome profiles from patients aged 0 to 90 years infected with one of 16 viruses, including SARS-CoV-2, Ebola, chikungunya, and influenza, across 34 cohorts from 18 countries, and single-cell RNA sequencing profiles of 702,970 immune cells from 289 samples across three cohorts. Severe viral infection was associated with increased hematopoiesis, myelopoiesis, and myeloid-derived suppressor cells. We identified protective and detrimental gene modules that defined distinct trajectories associated with mild versus severe outcomes. The interferon response was decoupled from the protective host response in patients with severe outcomes. These findings were consistent, irrespective of age and virus, and provide insights to accelerate the development of diagnostics and host-directed therapies to improve global pandemic preparedness.


Assuntos
Imunidade/genética , Viroses/imunologia , Apresentação de Antígeno/genética , Estudos de Coortes , Hematopoese/genética , Humanos , Interferons/sangue , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Células Mieloides/imunologia , Células Mieloides/patologia , Prognóstico , Índice de Gravidade de Doença , Biologia de Sistemas , Transcriptoma , Viroses/sangue , Viroses/classificação , Viroses/genética , Vírus/classificação , Vírus/patogenicidade
10.
Immunity ; 53(4): 864-877.e5, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32791036

RESUMO

The SARS-CoV-2 pandemic has resulted in millions of infections, yet the role of host immune responses in early COVID-19 pathogenesis remains unclear. By investigating 17 acute and 24 convalescent patients, we found that acute SARS-CoV-2 infection resulted in broad immune cell reduction including T, natural killer, monocyte, and dendritic cells (DCs). DCs were significantly reduced with functional impairment, and ratios of conventional DCs to plasmacytoid DCs were increased among acute severe patients. Besides lymphocytopenia, although neutralizing antibodies were rapidly and abundantly generated in patients, there were delayed receptor binding domain (RBD)- and nucleocapsid protein (NP)-specific T cell responses during the first 3 weeks after symptoms onset. Moreover, acute RBD- and NP-specific T cell responses included relatively more CD4 T cells than CD8 T cells. Our findings provided evidence that impaired DCs, together with timely inverted strong antibody but weak CD8 T cell responses, could contribute to acute COVID-19 pathogenesis and have implications for vaccine development.


Assuntos
Betacoronavirus/patogenicidade , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Coronavirus/imunologia , Células Dendríticas/imunologia , Diabetes Mellitus/imunologia , Hipertensão/imunologia , Pneumonia Viral/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Betacoronavirus/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , COVID-19 , Convalescença , Infecções por Coronavirus/complicações , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Complicações do Diabetes , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/virologia , Progressão da Doença , Feminino , Humanos , Hipertensão/complicações , Hipertensão/diagnóstico , Hipertensão/virologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/virologia , Ativação Linfocitária , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/patologia , Monócitos/virologia , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , SARS-CoV-2 , Índice de Gravidade de Doença
11.
Nat Immunol ; 16(4): 376-85, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25729921

RESUMO

An important cause of obesity-induced insulin resistance is chronic systemic inflammation originating in visceral adipose tissue (VAT). VAT inflammation is associated with the accumulation of proinflammatory macrophages in adipose tissue, but the immunological signals that trigger their accumulation remain unknown. We found that a phenotypically distinct population of tissue-resident natural killer (NK) cells represented a crucial link between obesity-induced adipose stress and VAT inflammation. Obesity drove the upregulation of ligands of the NK cell-activating receptor NCR1 on adipocytes; this stimulated NK cell proliferation and interferon-γ (IFN-γ) production, which in turn triggered the differentiation of proinflammatory macrophages and promoted insulin resistance. Deficiency of NK cells, NCR1 or IFN-γ prevented the accumulation of proinflammatory macrophages in VAT and greatly ameliorated insulin sensitivity. Thus NK cells are key regulators of macrophage polarization and insulin resistance in response to obesity-induced adipocyte stress.


Assuntos
Adipócitos/imunologia , Resistência à Insulina/imunologia , Gordura Intra-Abdominal/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Obesidade/imunologia , Adipócitos/patologia , Animais , Antígenos Ly/genética , Antígenos Ly/imunologia , Diferenciação Celular , Feminino , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Insulina/imunologia , Interferon gama/biossíntese , Interferon gama/imunologia , Gordura Intra-Abdominal/patologia , Células Matadoras Naturais/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Obesidade/genética , Obesidade/patologia , Transdução de Sinais
12.
Nature ; 600(7888): 295-301, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34695836

RESUMO

SARS-CoV-2 is a single-stranded RNA virus that causes COVID-19. Given its acute and often self-limiting course, it is likely that components of the innate immune system play a central part in controlling virus replication and determining clinical outcome. Natural killer (NK) cells are innate lymphocytes with notable activity against a broad range of viruses, including RNA viruses1,2. NK cell function may be altered during COVID-19 despite increased representation of NK cells with an activated and adaptive phenotype3,4. Here we show that a decline in viral load in COVID-19 correlates with NK cell status and that NK cells can control SARS-CoV-2 replication by recognizing infected target cells. In severe COVID-19, NK cells show defects in virus control, cytokine production and cell-mediated cytotoxicity despite high expression of cytotoxic effector molecules. Single-cell RNA sequencing of NK cells over the time course of the COVID-19 disease spectrum reveals a distinct gene expression signature. Transcriptional networks of interferon-driven NK cell activation are superimposed by a dominant transforming growth factor-ß (TGFß) response signature, with reduced expression of genes related to cell-cell adhesion, granule exocytosis and cell-mediated cytotoxicity. In severe COVID-19, serum levels of TGFß peak during the first two weeks of infection, and serum obtained from these patients severely inhibits NK cell function in a TGFß-dependent manner. Our data reveal that an untimely production of TGFß is a hallmark of severe COVID-19 and may inhibit NK cell function and early control of the virus.


Assuntos
COVID-19/imunologia , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Fator de Crescimento Transformador beta/imunologia , Atlas como Assunto , Regulação da Expressão Gênica/imunologia , Humanos , Imunidade Inata , Influenza Humana/imunologia , Células Matadoras Naturais/patologia , RNA-Seq , Análise de Célula Única , Fatores de Tempo , Fator de Crescimento Transformador beta/sangue , Carga Viral/imunologia , Replicação Viral/imunologia
13.
Blood ; 144(12): 1271-1283, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38875515

RESUMO

ABSTRACT: The promising results obtained with immunotherapeutic approaches for multiple myeloma (MM) call for a better stratification of patients based on immune components. The most pressing being cytotoxic lymphocytes such as natural killer (NK) cells that are mandatory for MM surveillance and therapy. Here, we performed a single-cell RNA sequencing analysis of NK cells from 10 patients with MM and 10 age/sex-matched healthy donors that revealed important transcriptomic changes in the NK cell landscape affecting both the bone marrow (BM) and peripheral blood compartment. The frequency of mature cytotoxic CD56dim NK cell subsets was reduced in patients with MM at the advantage of late-stage NK cell subsets expressing NF-κB and interferon-I inflammatory signatures. These NK cell subsets accumulating in patients with MM were characterized by low CD16 and CD226 expression and poor cytotoxic functions. MM CD16/CD226Lo NK cells also had adhesion defects with reduced lymphocyte function-associated antigen 1 (LFA-1) integrin activation and actin polymerization that may account for their limited effector functions in vitro. Finally, analysis of BM-infiltrating NK cells in a retrospective cohort of 177 patients with MM from the Intergroupe Francophone du Myélome (IFM) 2009 trial demonstrated that a high frequency of NK cells and their low CD16 and CD226 expression were associated with a shorter overall survival. Thus, CD16/CD226Lo NK cells with reduced effector functions accumulate along MM development and negatively affect patients' clinical outcomes. Given the growing interest in harnessing NK cells to treat myeloma, this improved knowledge around MM-associated NK cell dysfunction will stimulate the development of more efficient immunotherapeutic drugs against MM.


Assuntos
Adesão Celular , Células Matadoras Naturais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/terapia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Prognóstico , Feminino , Masculino , Citotoxicidade Imunológica , Antígenos de Diferenciação de Linfócitos T/metabolismo , Pessoa de Meia-Idade , Idoso , Estudos Retrospectivos , Antígeno-1 Associado à Função Linfocitária/metabolismo , Receptores de IgG , Proteínas Ligadas por GPI
14.
Blood ; 143(24): 2474-2489, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38498036

RESUMO

ABSTRACT: Patients with T- and natural killer (NK)-cell neoplasms frequently have somatic STAT5B gain-of-function mutations. The most frequent STAT5B mutation is STAT5BN642H, which is known to drive murine T-cell leukemia, although its role in NK-cell malignancies is unclear. Introduction of the STAT5BN642H mutation into human NK-cell lines enhances their potential to induce leukemia in mice. We have generated a mouse model that enables tissue-specific expression of STAT5BN642H and have selectively expressed the mutated STAT5B in hematopoietic cells (N642Hvav/+) or exclusively in NK cells (N642HNK/NK). All N642Hvav/+ mice rapidly develop an aggressive T/NKT-cell leukemia, whereas N642HNK/NK mice display an indolent NK-large granular lymphocytic leukemia (NK-LGLL) that progresses to an aggressive leukemia with age. Samples from patients with NK-cell leukemia have a distinctive transcriptional signature driven by mutant STAT5B, which overlaps with that of murine leukemic N642HNK/NK NK cells. To our knowledge, we have generated the first reliable STAT5BN642H-driven preclinical mouse model that displays an indolent NK-LGLL progressing to aggressive NK-cell leukemia. This novel in vivo tool will enable us to explore the transition from an indolent to an aggressive disease and will thus permit the study of prevention and treatment options for NK-cell malignancies.


Assuntos
Células Matadoras Naturais , Leucemia Linfocítica Granular Grande , Fator de Transcrição STAT5 , Animais , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Camundongos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Humanos , Leucemia Linfocítica Granular Grande/genética , Leucemia Linfocítica Granular Grande/patologia , Modelos Animais de Doenças , Linhagem da Célula/genética , Mutação , Camundongos Transgênicos
15.
Annu Rev Med ; 74: 321-337, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36228171

RESUMO

Cytokine storm syndrome (CSS), which is frequently fatal, has garnered increased attention with the ongoing coronavirus pandemic. A variety of hyperinflammatory conditions associated with multiorgan system failure can be lumped under the CSS umbrella, including familial hemophagocytic lymphohistiocytosis (HLH) and secondary HLH associated with infections, hematologic malignancies, and autoimmune and autoinflammatory disorders, in which case CSS is termed macrophage activation syndrome (MAS). Various classification and diagnostic CSS criteria exist and include clinical, laboratory, pathologic, and genetic features. Familial HLH results from cytolytic homozygous genetic defects in the perforin pathway employed by cytotoxic CD8 T lymphocytes and natural killer (NK) cells. Similarly, NK cell dysfunction is often present in secondary HLH and MAS, and heterozygous mutations in familial HLH genes are frequently present. Targeting overly active lymphocytes and macrophages with etoposide and glucocorticoids is the standard for treating HLH; however, more targeted and safer anticytokine (e.g., anti-interleukin-1, -6) approaches are gaining traction as effective alternatives.


Assuntos
Linfo-Histiocitose Hemofagocítica , Síndrome de Ativação Macrofágica , Humanos , Síndrome da Liberação de Citocina , Síndrome de Ativação Macrofágica/diagnóstico , Síndrome de Ativação Macrofágica/genética , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/genética , Linfo-Histiocitose Hemofagocítica/terapia , Células Matadoras Naturais/patologia , Macrófagos
16.
Nat Immunol ; 14(11): 1127-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24036998

RESUMO

Inflammation is a critical component of the immune response. However, acute or chronic inflammation can be highly destructive. Uncontrolled inflammation forms the basis for allergy, asthma and various autoimmune disorders. Here we identified a signaling pathway that was exclusively responsible for the production of inflammatory cytokines but not for cytotoxicity. Recognition of tumor cells expressing the NK cell-activatory ligands H60 or CD137L by mouse natural killer (NK) cells led to efficient cytotoxicity and the production of inflammatory cytokines. Both of those effector functions required the kinases Lck, Fyn and PI(3)K (subunits p85α and p110δ) and the signaling protein PLC-γ2. However, a complex of Fyn and the adaptor ADAP exclusively regulated the production of inflammatory cytokines but not cytotoxicity in NK cells. That unique function of ADAP required a Carma1-Bcl-10-MAP3K7 signaling axis. Our results have identified molecules that can be targeted to regulate inflammation without compromising NK cell cytotoxicity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Citocinas/biossíntese , Células Matadoras Naturais/imunologia , MAP Quinase Quinase Quinases/imunologia , Proteínas Proto-Oncogênicas c-fyn/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteína 10 de Linfoma CCL de Células B , Proteínas Adaptadoras de Sinalização CARD/genética , Linhagem Celular Tumoral , Técnicas de Cocultura , Citocinas/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação , Células Matadoras Naturais/patologia , Linfoma/genética , Linfoma/imunologia , Linfoma/patologia , MAP Quinase Quinase Quinases/genética , Camundongos , Proteínas Proto-Oncogênicas c-fyn/genética
17.
J Hepatol ; 80(5): 792-804, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331327

RESUMO

BACKGROUND & AIMS: Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS: Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS: Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS: Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS: Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Recidiva Local de Neoplasia/metabolismo , Células Matadoras Naturais/patologia , Imunoterapia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ligantes , Prognóstico
18.
J Gene Med ; 26(1): e3609, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37849429

RESUMO

BACKGROUND: Liver cancer, a common malignancy within the digestive system, presents with a particularly grim prognosis. Within the immune microenvironment, the role of natural killer (NK) cells in liver cancer remains unclear. METHODS: We sourced data on clinical parameters and gene expressions for liver cancer patients from The Cancer Genome Atlas Program database and carried out all analyses using R software and its relevant codes. RESULTS: In our research, we delved into the genes intertwined with NK cells in hepatocellular carcinoma (HCC). Leveraging the QUANTISEQ and MCPCOUNTER algorithms to quantify NK cells, we spotlighted genes vital to the recruitment of NK cells. Among these genes, GDE1, WDFY3, DNAJB14, PKD2, DGAT2, SGMS2 and MKNK2 showed a strong correlation with patient outcomes. We also mapped out the single-cell expression trajectories of these genes within the HCC milieu. From our findings, SGMS2 emerged as a key gene warranting further scrutiny. Our in-depth analysis of SGMS2 shed light on its influence over specific biological pathways, its contribution to the immune landscape and its role in genomic instability within HCC. Drawing from this, we formulated a predictive model rooted in SGMS2-associated genes. This model showcased remarkable precision across both training and validation cohorts. CONCLUSIONS: Overall, our investigation underscored the profound implications of SGMS2, a gene pivotal to NK cell infiltration, in the landscape of HCC, thereby positioning it as a potential linchpin in oncological strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Células Matadoras Naturais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Microambiente Tumoral/genética
19.
Mod Pathol ; 37(8): 100512, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734236

RESUMO

This review focuses on mature T cells, natural killer (NK) cells, and stroma-derived neoplasms in the fifth edition of the World Health Organization classification of hematolymphoid tumors, including changes from the revised fourth edition. Overall, information has expanded, primarily due to advancements in genomic understanding. The updated classification adopts a hierarchical format. The updated classification relies on a multidisciplinary approach, incorporating insights from a diverse group of pathologists, clinicians, and geneticists. Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract, Epstein-Barr virus-positive nodal T- and NK-cell lymphoma, and several stroma-derived neoplasms of lymphoid tissues have been newly introduced or included. The review also provides guidance on how the fifth edition of the World Health Organization classification of hematolymphoid tumors can be applied in routine clinical practice.


Assuntos
Células Matadoras Naturais , Organização Mundial da Saúde , Humanos , Células Matadoras Naturais/patologia , Células Matadoras Naturais/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Tecido Linfoide/patologia , Tecido Linfoide/imunologia , Células Estromais/patologia , Células Estromais/imunologia , Neoplasias Hematológicas/patologia , Neoplasias Hematológicas/classificação , Neoplasias Hematológicas/imunologia
20.
Blood ; 140(26): 2788-2804, 2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35981475

RESUMO

Relapse is a leading cause of death after allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute myeloid leukemia (AML). However, the underlying mechanisms remain poorly understood. Natural killer (NK) cells play a crucial role in tumor surveillance and cancer immunotherapy, and NK cell dysfunction has been observed in various tumors. Here, we performed ex vivo experiments to systematically characterize the mechanisms underlying the dysfunction of bone marrow-derived NK (BMNK) cells isolated from AML patients experiencing early relapse after allo-HSCT. We demonstrated that higher levels of active transforming growth factor ß1 (TGF-ß1) were associated with impaired effector function of BMNK cells in these AML patients. TGF-ß1 activation was induced by the overexpression of glycoprotein A repetitions predominant on the surface of CD4+ T cells. Active TGF-ß1 significantly suppressed mTORC1 activity, mitochondrial oxidative phosphorylation, the proliferation, and cytotoxicity of BMNK cells. Furthermore, pretreatment with the clinical stage TGF-ß1 pathway inhibitor, galunisertib, significantly restored mTORC1 activity, mitochondrial homeostasis, and cytotoxicity. Importantly, the blockade of the TGF-ß1 signaling improved the antitumor activity of NK cells in a leukemia xenograft mouse model. Thus, our findings reveal a mechanism explaining BMNK cell dysfunction and suggest that targeted inhibition of TGF-ß1 signaling may represent a potential therapeutic intervention to improve outcomes in AML patients undergoing allo-HSCT or NK cell-based immunotherapy.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Medula Óssea/patologia , Fator de Crescimento Transformador beta1 , Transplante Homólogo , Leucemia Mieloide Aguda/patologia , Células Matadoras Naturais/patologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Doença Crônica , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA