Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 550
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 29: 355-84, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24099085

RESUMO

Nociception is the process whereby primary afferent nerve fibers of the somatosensory system detect noxious stimuli. Pungent irritants from pepper, mint, and mustard plants have served as powerful pharmacological tools for identifying molecules and mechanisms underlying this initial step of pain sensation. These natural products have revealed three members of the transient receptor potential (TRP) ion channel family--TRPV1, TRPM8, and TRPA1--as molecular detectors of thermal and chemical stimuli that activate sensory neurons to produce acute or persistent pain. Analysis of TRP channel function and expression has validated the existence of nociceptors as a specialized group of somatosensory neurons devoted to the detection of noxious stimuli. These studies are also providing insight into the coding logic of nociception and how specification of nociceptor subtypes underlies behavioral discrimination of noxious thermal, chemical, and mechanical stimuli. Biophysical and pharmacological characterization of these channels has provided the intellectual and technical foundation for developing new classes of analgesic drugs.


Assuntos
Nociceptividade , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Humanos , Sensação Térmica , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/química
2.
Subcell Biochem ; 104: 207-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963489

RESUMO

The transient receptor potential ion channel TRPA1 is a Ca2+-permeable nonselective cation channel widely expressed in sensory neurons, but also in many nonneuronal tissues typically possessing barrier functions, such as the skin, joint synoviocytes, cornea, and the respiratory and intestinal tracts. Here, the primary role of TRPA1 is to detect potential danger stimuli that may threaten the tissue homeostasis and the health of the organism. The ability to directly recognize signals of different modalities, including chemical irritants, extreme temperatures, or osmotic changes resides in the characteristic properties of the ion channel protein complex. Recent advances in cryo-electron microscopy have provided an important framework for understanding the molecular basis of TRPA1 function and have suggested novel directions in the search for its pharmacological regulation. This chapter summarizes the current knowledge of human TRPA1 from a structural and functional perspective and discusses the complex allosteric mechanisms of activation and modulation that play important roles under physiological or pathophysiological conditions. In this context, major challenges for future research on TRPA1 are outlined.


Assuntos
Canal de Cátion TRPA1 , Humanos , Canal de Cátion TRPA1/metabolismo , Canal de Cátion TRPA1/química , Canal de Cátion TRPA1/fisiologia , Microscopia Crioeletrônica/métodos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/química , Canais de Potencial de Receptor Transitório/fisiologia , Relação Estrutura-Atividade , Regulação Alostérica
3.
Adv Exp Med Biol ; 1461: 3-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39289270

RESUMO

Somatosensory neurons can sense external temperature by converting sensation of temperature information to neural activity via afferent input to the central nervous system. Various populations of somatosensory neurons have specialized gene expression, including expression of thermosensitive transient receptor potential (TRP) ion channels. Thermosensitive TRP channels are responsible for thermal transduction at the peripheral ends of somatosensory neurons and can sense a wide range of temperatures. Here we focus on several thermosensitive TRP channels including TRPV1, TRPV4, TRPM2, TRPM3, TRPM8, TRPC5, and TRPA1 in sensory neurons. TRPV3, TRPV4, and TRPC5 are also involved in somatosensation in nonneuronal cells and tissues. In particular, we discuss whether skin senses ambient temperatures through TRPV3 and TRPV4 activation in skin keratinocytes and the involvement of TRPM2 expressed by hypothalamic neurons in thermosensation in the brain.


Assuntos
Sensação Térmica , Canais de Potencial de Receptor Transitório , Humanos , Sensação Térmica/fisiologia , Sensação Térmica/genética , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Pele/metabolismo , Pele/inervação , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Queratinócitos/metabolismo
4.
J Therm Biol ; 122: 103868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38852485

RESUMO

Transient Receptor Potential (TRP) ion channels are important for sensing environmental temperature. In rodents, TRPV4 senses warmth (25-34 °C), TRPV1 senses heat (>42 °C), TRPA1 putatively senses cold (<17 °C), and TRPM8 senses cool-cold (18-26 °C). We investigated if knockout (KO) mice lacking these TRP channels exhibited changes in thermal preference. Thermal preference was tested using a dual hot-cold plate with one thermoelectric surface set at 30 °C and the adjacent surface at a temperature of 15-45 °C in 5 °C increments. Blinded observers counted the number of times mice crossed through an opening between plates and the percentage of time spent on the 30 °C plate. In a separate experiment, observers blinded as to genotype also assessed the temperature at the location on a thermal gradient (1.83 m, 4-50 °C) occupied by the mouse at 5- or 10-min intervals over 2 h. Male and female wildtype mice preferred 30 °C and significantly avoided colder (15-20 °C) and hotter (40-45 °C) temperatures. Male TRPV1KOs and TRPA1KOs, and TRPV4KOs of both sexes, were similar, while female WTs, TRPV1KOs, TRPA1KOs and TRPM8KOs did not show significant thermal preferences across the temperature range. Male and female TRPM8KOs did not significantly avoid the coldest temperatures. Male mice (except for TRPM8KOs) exhibited significantly fewer plate crossings at hot and cold temperatures and more crossings at thermoneutral temperatures, while females exhibited a similar but non-significant trend. Occupancy temperatures along the thermal gradient exhibited a broad distribution that shrank somewhat over time. Mean occupancy temperatures (recorded at 90-120 min) were significantly higher for females (30-34 °C) compared to males (26-27 °C) of all genotypes, except for TRPA1KOs which exhibited no sex difference. The results indicate (1) sex differences with females (except TRPA1KOs) preferring warmer temperatures, (2) reduced thermosensitivity in female TRPV1KOs, and (3) reduced sensitivity to cold and innocuous warmth in male and female TRPM8KOs consistent with previous studies.


Assuntos
Camundongos Knockout , Canal de Cátion TRPA1 , Canais de Cátion TRPV , Sensação Térmica , Animais , Feminino , Masculino , Camundongos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo , Canais de Potencial de Receptor Transitório/fisiologia , Camundongos Endogâmicos C57BL , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Temperatura Alta , Temperatura Baixa
5.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806193

RESUMO

Neuropathic pain is common in diabetic peripheral neuropathy (DN), probably caused by pathogenic ion channel gene variants. Therefore, we performed molecular inversion probes-next generation sequencing of 5 transient receptor potential cation channels, 8 potassium channels and 2 calcium-activated chloride channel genes in 222 painful- and 304 painless-DN patients. Twelve painful-DN (5.4%) patients showed potentially pathogenic variants (five nonsense/frameshift, seven missense, one out-of-frame deletion) in ANO3 (n = 3), HCN1 (n = 1), KCNK18 (n = 2), TRPA1 (n = 3), TRPM8 (n = 3) and TRPV4 (n = 1) and fourteen painless-DN patients (4.6%-three nonsense/frameshift, nine missense, one out-of-frame deletion) in ANO1 (n = 1), KCNK18 (n = 3), KCNQ3 (n = 1), TRPA1 (n = 2), TRPM8 (n = 1), TRPV1 (n = 3) and TRPV4 (n = 3). Missense variants were present in both conditions, presumably with loss- or gain-of-functions. KCNK18 nonsense/frameshift variants were found in painless/painful-DN, making a causal role in pain less likely. Surprisingly, premature stop-codons with likely nonsense-mediated RNA-decay were more frequent in painful-DN. Although limited in number, painful-DN patients with ion channel gene variants reported higher maximal pain during the night and day. Moreover, painful-DN patients with TRP variants had abnormal thermal thresholds and more severe pain during the night and day. Our results suggest a role of ion channel gene variants in neuropathic pain, but functional validation is required.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Neuralgia , Canais de Potencial de Receptor Transitório , Anoctaminas , Humanos , Canais de Potássio , Canais de Cátion TRPV/genética , Canais de Potencial de Receptor Transitório/fisiologia
6.
J Cell Mol Med ; 25(7): 3469-3483, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33689230

RESUMO

The use of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Micro-scaled grooves can promote the maturation of cardiomyocytes by aligning them in order, but the mechanism of cardiomyocytes alignment has not been studied. From the level of calcium activity, gene expression and cell morphology, we verified that the W20H5 grooves can effectively promote the maturation of cardiomyocytes. The transient receptor potential channels (TRP channels) also play an important role in the maturation and development of cardiomyocytes. These findings support the engineered hPSC-CMs as a powerful model to study cardiac disease mechanism and partly mimic the myocardial morphological development. The important role of the TRP channels in the maturation and development of myocardium is first revealed.


Assuntos
Diferenciação Celular , Conexina 43/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Canais de Potencial de Receptor Transitório/fisiologia , Cálcio/metabolismo , Movimento Celular , Células Cultivadas , Humanos , Mecanorreceptores/fisiologia , Estresse Mecânico
7.
Annu Rev Neurosci ; 36: 519-46, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23750514

RESUMO

Transient receptor potential (TRP) channels act as sensors for a range of stimuli as diverse as light, sound, touch, pheromones, and tissue damage. Their role in mechanosensation in the animal kingdom, identified by gene ablation studies, has raised questions about whether they are directly mechanically gated, whether they act alone or in concert with other channels to transduce mechanical stimuli, and their relative importance in various functions and disease states in humans. The ability of these channels to form heteromultimers and interact with other ion channels underlies a range of cell-specific functions in different cell types. Here we overview recent advances in this rapidly expanding field, focusing on somatosensation, hearing, the cardiovascular system, and interactions between TRP channels and other proteins involved in mechanoelectrical signaling.


Assuntos
Mecanorreceptores/fisiologia , Mecanotransdução Celular/fisiologia , Tato/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Humanos
8.
Neuroendocrinology ; 111(1-2): 45-69, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32028278

RESUMO

OBJECTIVE: We examined whether pituitary adenylate cyclase-activating polypeptide (PACAP) excites proopiomelanocortin (POMC) neurons via PAC1 receptor mediation and transient receptor potential cation (TRPC) channel activation. METHODS: Electrophysiological recordings were done in slices from both intact male and ovariectomized (OVX) female PACAP-Cre mice and eGFP-POMC mice. RESULTS: In recordings from POMC neurons in eGFP-POMC mice, PACAP induced a robust inward current and increase in conductance in voltage clamp, and a depolarization and increase in firing in current clamp. These postsynaptic actions were abolished by inhibitors of the PAC1 receptor, TRPC channels, phospholipase C, phosphatidylinositol-3-kinase, and protein kinase C. Estradiol augmented the PACAP-induced inward current, depolarization, and increased firing, which was abrogated by estrogen receptor (ER) antagonists. In optogenetic recordings from POMC neurons in PACAP-Cre mice, high-frequency photostimulation induced inward currents, depolarizations, and increased firing that were significantly enhanced by Gq-coupled membrane ER signaling in an ER antagonist-sensitive manner. Importantly, the PACAP-induced excitation of POMC neurons was notably reduced in obese, high-fat (HFD)-fed males. In vivo experiments revealed that intra-arcuate nucleus (ARC) PACAP as well as chemogenetic and optogenetic stimulation of ventromedial nucleus (VMN) PACAP neurons produced a significant decrease in energy intake accompanied by an increase in energy expenditure, effects blunted by HFD in males and partially potentiated by estradiol in OVX females. CONCLUSIONS: These findings reveal that the PACAP-induced activation of PAC1 receptor and TRPC5 channels at VMN PACAP/ARC POMC synapses is potentiated by estradiol and attenuated under conditions of diet-induced obesity/insulin resistance. As such, they advance our understanding of how PACAP regulates the homeostatic energy balance circuitry under normal and pathophysiological circumstances.


Assuntos
Núcleo Arqueado do Hipotálamo/fisiologia , Metabolismo Energético/fisiologia , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Pró-Opiomelanocortina , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Metabolismo Energético/efeitos dos fármacos , Feminino , Cobaias , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos
9.
Behav Pharmacol ; 31(5): 413-434, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31833970

RESUMO

The transient receptor potential (TRP) channel superfamily is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling and are involved in plethora of animal behaviors. These channels are activated through a wide variety of mechanisms and participate in virtually every sensory modality. Modulating TRP channel activity provides an important way to regulate membrane excitability and intracellular calcium levels. This is reflected by the fact that small molecule compounds modulating different TRPs have all entered clinical trials for a variety of diseases. The role of TRPs will be further elucidated in complex diseases of the nervous, intestinal, renal, urogenital, respiratory, and cardiovascular systems in diverse therapeutic areas including pain and itch, headache, pulmonary function, oncology, neurology, visceral organs, and genetic diseases. This review focuses on recent developments in the TRP ion channel-related area and highlights evidence supporting TRP channels as promising targets for new analgesic drugs for therapeutic intervention. This review presents a variety of: (1) phylogeny aspects of TRP channels; (2) some structural and functional characteristics of TRPs; (3) a general view and short characteristics of main seven subfamilies of TRP channels; (4) the evidence for consider TRP channels as therapeutic and analgesic targets; and finally (5) further perspectives of TRP channels research.


Assuntos
Analgésicos/farmacologia , Comportamento Animal/fisiologia , Terapia de Alvo Molecular/métodos , Canais de Potencial de Receptor Transitório/efeitos dos fármacos , Canais de Potencial de Receptor Transitório/fisiologia , Analgésicos/uso terapêutico , Animais , Humanos , Filogenia
10.
Ecotoxicol Environ Saf ; 192: 110255, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32018154

RESUMO

Tetrabromobisphenol A (TBBPA) and its derivatives are the common flame-retardants that may increase the risk of development of many types of cancers, including liver cancer. However, the effects of TBBPA in the development and progression of liver cancer remains unknown. This study investigated the potential effects of TBBPA on a metastatic phenotype of hepatocellular carcinoma cell line-HepG2. Our results revealed that TBBPA significantly promoted the migration and invasion via affecting the number and distribution of lysosomes in HepG2 cells in a dose-dependent manner. Moreover, TBBPA decreased the intracellular protein levels of Beta-Hexosaminidase (HEXB), Cathepsin B (CTSB) and Cathepsin D (CTSD) while increased the extracellular CTSB and CTSD. It entailed that TBBPA exposure could promote the lysosomal exocytosis in cancer cells. The reversal results were obtained after adding lysosomal exocytosis inhibitor vacuolin-1. Docking results suggested that TBBPA could bind to TRPML1. It was consistent with the binding position of agonist ML-SA1. TRPML1 knockdown significantly decreased the invasion and migration, and the results were reversed when TBBPA was added. The results were indicated that TRPML1 was critical in lysosomal exocytosis. In addition, our results showed that TBBPA-TRPML1 complex regulated the calcium-mediated lysosomal exocytosis, thereby promoting the metastasis in liver cancer cells. It was expected that our data could provide important basis for understanding the molecular mechanism(s) of TBBPA promoting invasion and migration of hepatoma cells and give rise to profound concerns of TBBPA exposure on human health.


Assuntos
Carcinoma Hepatocelular/patologia , Exocitose/efeitos dos fármacos , Retardadores de Chama/toxicidade , Neoplasias Hepáticas/patologia , Lisossomos/efeitos dos fármacos , Bifenil Polibromatos/toxicidade , Cálcio/metabolismo , Carcinoma Hepatocelular/metabolismo , Movimento Celular/efeitos dos fármacos , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Neoplasias Hepáticas/metabolismo , Invasividade Neoplásica , Canais de Potencial de Receptor Transitório/fisiologia
11.
Neural Plast ; 2020: 3764193, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32273889

RESUMO

Chronic pathological pain is one of the most intractable clinical problems faced by clinicians and can be devastating for patients. Despite much progress we have made in understanding chronic pain in the last decades, its underlying mechanisms remain elusive. It is assumed that abnormal increase of calcium levels in the cells is a key determinant in the transition from acute to chronic pain. Exploring molecular players mediating Ca2+ entry into cells and molecular mechanisms underlying activity-dependent changes in Ca2+ signaling in the somatosensory pain pathway is therefore helpful towards understanding the development of chronic, pathological pain. Canonical transient receptor potential (TRPC) channels form a subfamily of nonselective cation channels, which permit the permeability of Ca2+ and Na+ into the cells. Initiation of Ca2+ entry pathways by these channels triggers the development of many physiological and pathological functions. In this review, we will focus on the functional implication of TRPC channels in nociception with the elucidation of their role in the detection of external stimuli and nociceptive hypersensitivity.


Assuntos
Neurônios/fisiologia , Nociceptividade/fisiologia , Dor/fisiopatologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Encéfalo/fisiopatologia , Sinalização do Cálcio , Gânglios Espinais/fisiopatologia , Humanos , Vias Neurais/fisiopatologia
12.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545371

RESUMO

Transient receptor potential (TRP) or transient receptor potential channels are a highly diverse family of mostly non-selective cation channels. In the mammalian genome, 28 members can be identified, most of them being expressed predominantly in the plasma membrane with the exception of the mucolipins or TRPMLs which are expressed in the endo-lysosomal system. In mammalian organisms, TRPMLs have been associated with a number of critical endo-lysosomal functions such as autophagy, endo-lysosomal fusion/fission and trafficking, lysosomal exocytosis, pH regulation, or lysosomal motility and positioning. The related non-selective two-pore cation channels (TPCs), likewise expressed in endosomes and lysosomes, have also been found to be associated with endo-lysosomal trafficking, autophagy, pH regulation, or lysosomal exocytosis, raising the question why these two channel families have evolved independently. We followed TRP/TRPML channels and TPCs through evolution and describe here in which species TRP/TRPMLs and/or TPCs are found, which functions they have in different species, and how this compares to the functions of mammalian orthologs.


Assuntos
Canais de Cálcio/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Evolução Molecular , Proteínas Fúngicas/fisiologia , Humanos , Proteínas de Plantas/fisiologia , Canais de Potencial de Receptor Transitório/genética , Canais de Potencial de Receptor Transitório/metabolismo
13.
Int J Mol Sci ; 21(11)2020 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-32486187

RESUMO

Transient receptor potential canonical (TRPC) proteins constitute a group of receptor-operated calcium-permeable nonselective cationic membrane channels of the TRP superfamily. They are largely expressed in the hippocampus and are able to modulate neuronal functions. Accordingly, they have been involved in different hippocampal functions such as learning processes and different types of memories, as well as hippocampal dysfunctions such as seizures. This review covers the mechanisms of activation of these channels, how these channels can modulate neuronal excitability, in particular the after-burst hyperpolarization, and in the persistent activity, how they control synaptic plasticity including pre- and postsynaptic processes and how they can interfere with cell survival and neurogenesis.


Assuntos
Encéfalo/fisiologia , Hipocampo/fisiologia , Convulsões/fisiopatologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Movimento Celular , Proliferação de Células , Potenciais Pós-Sinápticos Excitadores , Humanos , Potenciação de Longa Duração , Memória/fisiologia , Memória de Curto Prazo , Camundongos , Neurogênese , Plasticidade Neuronal , Neurônios/fisiologia , Isoformas de Proteínas , Receptores de Glutamato Metabotrópico/fisiologia , Memória Espacial , Transmissão Sináptica
14.
J Neurosci ; 38(7): 1788-1801, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29335357

RESUMO

Continuation of spiking after a stimulus ends (i.e. persistent spiking) is thought to support working memory. Muscarinic receptor activation enables persistent spiking among synaptically isolated pyramidal neurons in anterior cingulate cortex (ACC), but a detailed characterization of that spiking is lacking and the underlying mechanisms remain unclear. Here, we show that the rate of persistent spiking in ACC neurons is insensitive to the intensity and number of triggers, but can be modulated by injected current, and that persistent spiking can resume after several seconds of hyperpolarization-imposed quiescence. Using electrophysiology and calcium imaging in brain slices from male rats, we determined that canonical transient receptor potential (TRPC) channels are necessary for persistent spiking and that TRPC-activating calcium enters in a spike-dependent manner via voltage-gated calcium channels. Constrained by these biophysical details, we built a computational model that reproduced the observed pattern of persistent spiking. Nonlinear dynamical analysis of that model revealed that TRPC channels become fully activated by the small rise in intracellular calcium caused by evoked spikes. Calcium continues to rise during persistent spiking, but because TRPC channel activation saturates, firing rate stabilizes. By calcium rising higher than required for maximal TRPC channel activation, TRPC channels are able to remain active during periods of hyperpolarization-imposed quiescence (until calcium drops below saturating levels) such that persistent spiking can resume when hyperpolarization is discontinued. Our results thus reveal that the robust intrinsic bistability exhibited by ACC neurons emerges from the nonlinear positive feedback relationship between spike-dependent calcium influx and TRPC channel activation.SIGNIFICANCE STATEMENT Neurons use action potentials, or spikes, to encode information. Some neurons can store information for short periods (seconds to minutes) by continuing to spike after a stimulus ends, thus enabling working memory. This so-called "persistent" spiking occurs in many brain areas and has been linked to activation of canonical transient receptor potential (TRPC) channels. However, TRPC activation alone is insufficient to explain many aspects of persistent spiking such as resumption of spiking after periods of imposed quiescence. Using experiments and simulations, we show that calcium influx caused by spiking is necessary and sufficient to activate TRPC channels and that the ensuing positive feedback interaction between intracellular calcium and TRPC channel activation can account for many hitherto unexplained aspects of persistent spiking.


Assuntos
Sinalização do Cálcio/fisiologia , Giro do Cíngulo/citologia , Giro do Cíngulo/fisiologia , Neurônios/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Algoritmos , Animais , Canais de Cálcio/fisiologia , Simulação por Computador , Fenômenos Eletrofisiológicos/fisiologia , Retroalimentação Psicológica , Masculino , Dinâmica não Linear , Técnicas de Patch-Clamp , Células Piramidais/fisiologia , Ratos , Ratos Sprague-Dawley
15.
J Physiol ; 597(7): 2045-2061, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30656684

RESUMO

KEY POINTS: Orosensory thermal trigeminal afferent neurons respond to cool, warm, and nociceptive hot temperatures with the majority activated in the cool range. Many of these thermosensitive trigeminal orosensory afferent neurons also respond to capsaicin, menthol, and/or mustard oil (allyl isothiocyanate) at concentrations found in foods and spices. There is significant but incomplete overlap between afferent trigeminal neurons that respond to oral thermal stimulation and to the above chemesthetic compounds. Capsaicin sensitizes warm trigeminal thermoreceptors and orosensory nociceptors; menthol attenuates cool thermoresponses. ABSTRACT: When consumed with foods, mint, mustard, and chili peppers generate pronounced oral thermosensations. Here we recorded responses in mouse trigeminal ganglion neurons to investigate interactions between thermal sensing and the active ingredients of these plants - menthol, allyl isothiocyanate (AITC), and capsaicin, respectively - at concentrations found in foods and commercial hygiene products. We carried out in vivo confocal calcium imaging of trigeminal ganglia in which neurons express GCaMP3 or GCAMP6s and recorded their responses to oral stimulation with thermal and the above chemesthetic stimuli. In the V3 (oral sensory) region of the ganglion, thermoreceptive neurons accounted for ∼10% of imaged neurons. We categorized them into three distinct classes: cool-responsive and warm-responsive thermosensors, and nociceptors (responsive only to temperatures ≥43-45 °C). Menthol, AITC, and capsaicin also elicited robust calcium responses that differed markedly in their latencies and durations. Most of the neurons that responded to these chemesthetic stimuli were also thermosensitive. Capsaicin and AITC increased the numbers of warm-responding neurons and shifted the nociceptor threshold to lower temperatures. Menthol attenuated the responses in all classes of thermoreceptors. Our data show that while individual neurons may respond to a narrow temperature range (or even bimodally), taken collectively, the population is able to report on graded changes of temperature. Our findings also substantiate an explanation for the thermal sensations experienced when one consumes pungent spices or mint.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Capsaicina/farmacologia , Mentol/farmacologia , Neurônios/efeitos dos fármacos , Óleos de Plantas/farmacologia , Sensação Térmica/fisiologia , Nervo Trigêmeo/citologia , Animais , Temperatura Baixa , Feminino , Proteínas de Fluorescência Verde , Temperatura Alta , Masculino , Camundongos , Mostardeira , Canais de Potencial de Receptor Transitório/fisiologia
16.
Biochem Biophys Res Commun ; 510(3): 409-415, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30711251

RESUMO

The lysosomal Ca2+ permeable channel TRPML1 (MCOLN1) plays key roles in lysosomal membrane trafficking, including the fusion of late endosomes to lysosomes and lysosomal exocytosis, both of which are essential for release of exosomes into the extracellular milieu. Multiple lines of evidence indicate that the contents of adipocyte-derived exosomes mediate diverse cellular responses, including adipogenic differentiation. In this study, we aimed to define the potential roles of TRPML1 in lysosomal membrane trafficking during adipogenesis and in exosomal release. In response to adipogenic stimuli, the endogenous TRPML1 expression in OP9 pre-adipocytes was increased in a time-dependent manner, and the acute deletion of TRPML1 reduced lipid synthesis and expression of differentiation-related marker genes. Notably, mature adipocyte-derived exosomes were found to be necessary for adipogenesis and were dependent on TRPML1-mediated lysosomal exocytosis. Taken together, our findings indicate that TRPML1 mediates diverse roles in adipocyte differentiation and exosomal release. Further, we propose that TRPML1 should be considered as a regulator of obesity-related diseases.


Assuntos
Adipogenia , Exocitose , Exossomos/metabolismo , Lisossomos/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Células Cultivadas , Camundongos , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/biossíntese
17.
Nat Methods ; 13(2): 147-50, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657556

RESUMO

The zebrafish (Danio rerio) is a useful vertebrate model system in which to study neural circuits and behavior, but tools to modulate neurons in freely behaving animals are limited. As poikilotherms that live in water, zebrafish are amenable to thermal and pharmacological perturbations. We exploit these properties by using transient receptor potential (TRP) channels to activate or ablate specific neuronal populations using the chemical and thermal agonists of heterologously expressed TRPV1, TRPM8 and TRPA1.


Assuntos
Regulação da Expressão Gênica/fisiologia , Células Receptoras Sensoriais/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Embrião não Mamífero , Peixe-Zebra
18.
Nat Rev Neurosci ; 15(9): 573-89, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053448

RESUMO

Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors - such as types of transient receptor potential (TRP) cation channels - involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.


Assuntos
Mamíferos/fisiologia , Sistema Nervoso Periférico/fisiologia , Sensação Térmica/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Vias Aferentes/fisiologia , Animais , Humanos , Modelos Moleculares
19.
Pestic Biochem Physiol ; 153: 77-86, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30744899

RESUMO

The commercial insecticide pymetrozine has been extensively used for brown planthopper control in East Asia. The transient receptor potential vanilloid (TRPV) channel, which consists of two proteins, Nanchung (Nan) and Inactive (Iav), has recently been shown to be the molecular target of pymetrozine in the fruit fly (Drosophila melanogaster) and pea aphid (Acyrthosiphon pisum). In this study, we characterized the Nan and Iav TRPV channel subunits of N. lugens and measured the action of pymetrozine on them. NlNan and NlIav are structurally similar to homologs from other insects. The expression pattern analysis of various body parts showed that NlNan and NlIav were both more abundantly expressed in antennae. When NlNan and NlIav were co-expressed in Xenopus laevis oocytes, they formed channels with high sensitivity to pymetrozine (EC50 = 5.5 × 10-8 M). Behavioral observation revealed that the gravitaxis defect in the fruit fly nan36a mutant was rescued by ectopically expressed NlNan and the rescued behavior could be abolished by pymetrozine. Our results confirm that NlNan and NlIav co-expressed complexes can be activated by pymetrozine both in vitro and in vivo and provide useful information for future resistance mechanism studies.


Assuntos
Hemípteros/efeitos dos fármacos , Proteínas de Insetos/fisiologia , Inseticidas/toxicidade , Canais de Potencial de Receptor Transitório/fisiologia , Triazinas/toxicidade , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Drosophila melanogaster/genética , Feminino , Hemípteros/fisiologia , Masculino , Oócitos , Xenopus
20.
BMC Genomics ; 19(1): 674, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217143

RESUMO

BACKGROUND: Members of the transient receptor potential (TRP) superfamily are proteins that are critical for insects to detect changes in environmental stimuli and also play key roles in their sensory physiology. Moreover, this family provides potential targets for the design of insecticides. In contrast to a large number of studies conducted on Drosophila melanogaster, molecular studies to characterize TRP channels in agricultural pests are lacking. RESULTS: In this study, we identified 15 TRP channel genes in the genome of a notorious agricultural pest, the oriental fruit fly (Bactrocera dorsalis). Comparative analysis of the TRP channels (TRPs) in B. dorsalis with those in D. melanogaster, Glossina morsitans, Musca domestica and the closely related Ceratitis capitata, and TRPs from mosquitoes, Hymenoptera, Lepidoptera, Coleoptera and Hemiptera reveals that members of TRPA and TRPP subfamily are most diverse among insects. The results also suggest that Tephritidae family have two TRP-Polycystin 2 members even though most insects either possess just one or none. The highest expression levels of these two genes are in the testes of B. dorsalis, implying a role in regulating sperm function. We analyzed the expression profiles of the TRP channels identified in this study at different life stages using quantitative real time PCR. The results of this study demonstrate that all TRP channels are mainly expressed in adults, especially at mature stages. The one exception to this trend is BdTRPM, which is more highly expressed in the eggs of B. dorsalis, implying an important role in early development. We also detected the spatial expression of TRP channels in mature adult fruit flies by investigating expression levels within various tissues including those involved in sensory function, such as antennae, compound eyes, mouthparts, legs, and wings, as well as tissues critical for homeostasis and physiology (i.e., Malpighian tubules, the brain and gut as well as fat bodies, ovaries, and testes). CONCLUSION: The results of this study establish a solid foundation for future functional characterization of B. dorsalis TRP channels as well as those of other insects and will help future insecticide design targeting these channels.


Assuntos
Genes de Insetos/genética , Tephritidae/genética , Canais de Potencial de Receptor Transitório/genética , Sequência de Aminoácidos , Animais , Bases de Dados Genéticas , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genoma de Inseto , Insetos/genética , Masculino , Filogenia , Isoformas de Proteínas , Especificidade da Espécie , Canais de Cátion TRPP/genética , Tephritidae/crescimento & desenvolvimento , Distribuição Tecidual , Transcriptoma , Canais de Potencial de Receptor Transitório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA