Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463203

RESUMO

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Canais de Sódio Disparados por Voltagem , Humanos , Camundongos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética
2.
Brain ; 147(4): 1247-1263, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37935051

RESUMO

Missense variants in SCN3A encoding the voltage-gated sodium (Na+) channel α subunit Nav1.3 are associated with SCN3A-related neurodevelopmental disorder (SCN3A-NDD), a spectrum of disease that includes epilepsy and malformation of cortical development. How genetic variation in SCN3A leads to pathology remains unclear, as prior electrophysiological work on disease-associated variants has been performed exclusively in heterologous cell systems. To further investigate the mechanisms of SCN3A-NDD pathogenesis, we used CRISPR/Cas9 gene editing to modify a control human induced pluripotent stem cell (iPSC) line to express the recurrent de novo missense variant SCN3A c.2624T>C (p.Ile875Thr). With the established Ngn2 rapid induction protocol, we generated glutamatergic forebrain-like neurons (iNeurons), which we showed to express SCN3A mRNA and Nav1.3-mediated Na+ currents. We performed detailed whole-cell patch clamp recordings to determine the effect of the SCN3A-p.Ile875Thr variant on endogenous Na+ currents in, and intrinsic excitability of, human neurons. Compared to control iNeurons, variant-expressing iNeurons exhibit markedly increased slowly-inactivating/persistent Na+ current, abnormal firing patterns with paroxysmal bursting and plateau-like potentials with action potential failure, and a hyperpolarized voltage threshold for action potential generation. We then validated these findings using a separate iPSC line generated from a patient harbouring the SCN3A-p.Ile875Thr variant compared to a corresponding CRISPR-corrected isogenic control line. Finally, we found that application of the Nav1.3-selective blocker ICA-121431 normalizes action potential threshold and aberrant firing patterns in SCN3A-p.Ile1875Thr iNeurons; in contrast, consistent with action as a Na+ channel blocker, ICA-121431 decreases excitability of control iNeurons. Our findings demonstrate that iNeurons can model the effects of genetic variation in SCN3A yet reveal a complex relationship between gain-of-function at the level of the ion channel versus impact on neuronal excitability. Given the transient expression of SCN3A in the developing human nervous system, selective blockade or suppression of Nav1.3-containing Na+ channels could represent a therapeutic approach towards SCN3A-NDD.


Assuntos
Acetamidas , Encefalopatias , Células-Tronco Pluripotentes Induzidas , Tiazóis , Humanos , Potenciais de Ação , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Neurônios/fisiologia , Sódio , Canais de Sódio/genética
3.
Funct Integr Genomics ; 24(5): 162, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39289188

RESUMO

Recent studies suggest a need for reliable biomarkers enhancing prognosis prediction and treatment strategies in cancer. Here, we performed a data analysis bearing on the expression of SCN3B, voltage-gated sodium channel (VGSC) ß3 subunit, as a possible candidate for the development of a glioma biomarker for the first time. This extends our previous review article that mentioned the potential of SCN3B as a prognostic biomarker for glioma survival, further examining its association with existing indicators and immune responses. We utilized clinical and genomic data from multiple glioma cohorts. These include the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). We employed analytical techniques including time-dependent receiver operating characteristic (ROC) analysis, decision curves analysis (DCA), and correlation studies with immune checkpoint markers. Our findings indicate a differential SCN3B expression between glioma grades, and that this significantly correlates with patient survival, particularly in oligodendroglioma subtypes. The DCA curves suggested that the inclusion of SCN3B in the prognostic model would improve decision-making in these subtypes. Moreover, SCN3B expression positively correlated with the presence of key immune cells and negatively correlated with several immune checkpoint inhibitors. This suggests potential roles in modulating immune responses in glioma. Thus, SCN3B emerges as a promising potential prognostic biomarker for glioma, especially for oligodendroglioma. Its dual correlations with prognosis and immune regulation present a compelling case for further experimental and clinical investigations to establish its utility in enhancing glioma management strategies. These findings underscore the importance of integrating novel biomarkers with traditional prognostic models to refine treatment paradigms and improve patient outcomes.


Assuntos
Biomarcadores Tumorais , Glioma , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Glioma/genética , Glioma/metabolismo , Glioma/imunologia , Prognóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/imunologia , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Oligodendroglioma/genética , Oligodendroglioma/metabolismo
4.
Pflugers Arch ; 473(6): 953-968, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33881614

RESUMO

Action potentials play an important role in neurotransmitter release in response to taste. Here, I have investigated voltage-gated Na+ channels, a primary component of action potentials, in respective cell types of mouse fungiform taste bud cells (TBCs) with in situ whole-cell clamping and single-cell RT-PCR techniques. The cell types of TBCs electrophysiologically examined were determined immunohistochemically using the type III inositol 1,4,5-triphoshate receptor as a type II cell marker and synaptosomal-associated protein 25 as a type III cell marker. I show that type II cells, type III cells, and TBCs not immunoreactive to these markers (likely type I cells) generate voltage-gated Na+ currents. The recovery following inactivation of these currents was well fitted with double exponential curves. The time constants in type III cells (~20 ms and ~ 1 s) were significantly slower than respective time constants in other cell types. RT-PCR analysis indicated the expression of Nav1.3, Nav1.5, Nav1.6, and ß1 subunit mRNAs in TBCs. Pharmacological inhibition and single-cell RT-PCR studies demonstrated that type II and type III cells principally express tetrodotoxin (TTX)-sensitive Nav1.3 channels and that ~ 30% of type I cells express TTX-resistant Nav1.5 channels. The auxiliary ß1 subunit that modulates gating kinetics was rarely detected in TBCs. As the ß1 subunit co-expressed with an α subunit is known to accelerate the recovery from inactivation, it is likely that voltage-gated Na+ channels in TBCs may function without ß subunits. Slow recovery from inactivation, especially in type III cells, may limit high-frequency firing in response to taste substances.


Assuntos
Ativação do Canal Iônico , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Papilas Gustativas/metabolismo , Potenciais de Ação , Animais , Camundongos , Subunidades Proteicas/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Papilas Gustativas/citologia , Papilas Gustativas/fisiologia
5.
Ann Neurol ; 88(2): 348-362, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32515017

RESUMO

OBJECTIVE: Pathogenic variants in SCN3A, encoding the voltage-gated sodium channel subunit Nav1.3, cause severe childhood onset epilepsy and malformation of cortical development. Here, we define the spectrum of clinical, genetic, and neuroimaging features of SCN3A-related neurodevelopmental disorder. METHODS: Patients were ascertained via an international collaborative network. We compared sodium channels containing wild-type versus variant Nav1.3 subunits coexpressed with ß1 and ß2 subunits using whole-cell voltage clamp electrophysiological recordings in a heterologous mammalian system (HEK-293T cells). RESULTS: Of 22 patients with pathogenic SCN3A variants, most had treatment-resistant epilepsy beginning in the first year of life (16/21, 76%; median onset, 2 weeks), with severe or profound developmental delay (15/20, 75%). Many, but not all (15/19, 79%), exhibited malformations of cortical development. Pathogenic variants clustered in transmembrane segments 4 to 6 of domains II to IV. Most pathogenic missense variants tested (10/11, 91%) displayed gain of channel function, with increased persistent current and/or a leftward shift in the voltage dependence of activation, and all variants associated with malformation of cortical development exhibited gain of channel function. One variant (p.Ile1468Arg) exhibited mixed effects, with gain and partial loss of function. Two variants demonstrated loss of channel function. INTERPRETATION: Our study defines SCN3A-related neurodevelopmental disorder along a spectrum of severity, but typically including epilepsy and severe or profound developmental delay/intellectual disability. Malformations of cortical development are a characteristic feature of this unusual channelopathy syndrome, present in >75% of affected individuals. Gain of function at the channel level in developing neurons is likely an important mechanism of disease pathogenesis. ANN NEUROL 2020;88:348-362.


Assuntos
Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Canais de Sódio/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Feto/diagnóstico por imagem , Variação Genética/genética , Células HEK293 , Humanos , Lactente , Masculino
6.
Cell Biol Int ; 45(11): 2294-2303, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34296787

RESUMO

This study aimed to investigate the functions of miR-214-3p in diabetic neuropathic rodents. The diabetic neuropathy was induced by intraperitoneal injection of streptozotocin (STZ) in rats, and miR-214-3p was delivered via tail vein injection of lentivirus. Hot or cold stimulus tests demonstrated that STZ induced thermal hyperalgesia. Neurophysiological measurements revealed that motor and sensory nerve conduction velocity and nerve blood flow were decreased in diabetic neuropathic rats. However, the STZ-induced hyperalgesia, and reduced nerve conduction velocity and nerve blood flow were all significantly reversed by miR-214-3p administration. HE staining, TUNEL, ELISA, and immunoblotting demonstrated that STZ led to obvious pathological lesion, cell apoptosis, and inflammation in dorsal root ganglion (DRG), evidenced by altered levels of apoptosis-related protein molecules and inflammatory factors, and activation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response gene 88/nuclear factor kappa B signaling. The pathological alterations in diabetic neuropathic rats in DRG were significantly ameliorated by miR-214-3p application. In addition, sodium channel protein type 3 subunit alpha isoform 1 (Nav1.3) and TLR4 were identified as targets of miR-214-3p via dual-luciferase reporter assay. MiR-214-3p may play its roles by downregulating Nav1.3 and TLR4. In summary, miR-214-3p alleviated diabetes-induced nerve injury, and pathological lesion, cell apoptosis, and inflammation in DRG by regulating Nav1.3 and TLR4 in STZ-induced rats. These findings may provide novel therapeutic targets for clinical treatment of diabetic neuropathy.


Assuntos
Neuropatias Diabéticas/genética , MicroRNAs/genética , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose , Diabetes Mellitus Experimental/genética , Neuropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Hiperalgesia/fisiopatologia , Inflamação/metabolismo , Masculino , MicroRNAs/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética , NF-kappa B/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estreptozocina/farmacologia , Receptor 4 Toll-Like/genética
7.
Bioelectromagnetics ; 42(5): 357-370, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33998011

RESUMO

Low-frequency pulsed magnetic field (LF-PMF) application is a non-invasive, easy, and inexpensive treatment method in pain management. However, the molecular mechanism underlying the effect of LF-PMF on pain is not fully understood. Considering the obvious dysregulations of gene expression observed in certain types of voltage-gated sodium channels (VGSCs) in pain conditions, the present study tested the hypothesis that LF-PMF shows its pain-relieving effect by regulating genes that code VGSCs proteins. Five experimental rat groups (Control, Streptozotocin-induced experimental painful diabetic neuropathy (PDN), PDN Sham, PDN 10 Hz PMF, and PDN 30 Hz PMF) were established. After the pain formation in PDN groups, the magnetic field groups were exposed to 10/30 Hz, 1.5 mT PMF for 4 weeks, an hour daily. Progression of pain was evaluated using behavioral pain tests during the entire experimental processes. After the end of PMF treatment, SCN9A (NaV1.7 ), SCN10A (NaV1.8 ), SCN11A (NaV1.9 ), and SCN3A (NaV1.3 ) gene expression level changes were determined by analyzing real-time polymerase chain reaction results. We found that 10 Hz PMF application was more effective than 30 Hz on pain management. In addition, NaV1.7 and NaV1.3 transcriptions were upregulated while NaV1.8 and NaV1.9 were downregulated in painful conditions. Notably, the downregulated expression of the genes encoding NaV1.8 and NaV1.9 were re-regulated and increased to control level by 10 Hz PMF application. Consequently, it may be deduced that 10 Hz PMF application reduces pain by modulating certain VGSCs at the transcriptional level. © 2021 Bioelectromagnetics Society.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Animais , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/terapia , Campos Magnéticos , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Neuralgia/genética , Neuralgia/terapia , Ratos , Canais de Sódio
8.
Epilepsia ; 61(3): 387-399, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32090326

RESUMO

OBJECTIVE: Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS: We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS: Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE: Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.


Assuntos
Síndromes Epilépticas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canais de Sódio/genética , Idade de Início , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Códon sem Sentido , Variações do Número de Cópias de DNA , Eletroencefalografia , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/fisiopatologia , Feminino , Mutação com Ganho de Função , Deleção de Genes , Duplicação Gênica , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Lactente , Recém-Nascido , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/metabolismo
9.
J Cell Biochem ; 120(9): 14465-14475, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30993766

RESUMO

Breast cancer is the most commonly diagnosed cancer that affects women worldwide. This study aimed to investigate the competing endogenous RNAs (ceRNAs) mechanism in breast cancer. Microarray data were downloaded from the University of California Santa Cruz (UCSC) Xena database. The limma package was used to screen the differentially expressed messenger RNAs (DEMs) and differentially expressed long noncoding RNAs (DELs). Subsequently, functional analysis was performed using DAVID tool. After constructing the protein-protein interaction (PPI) network, we identified the major gene modules using the Cytoscape software. Univariate survival analysis in the survival package was performed. Finally, the ceRNA regulatory network was constructed to identify the critical genes. A total of 1380 DEMs and 345 DELs were identified in breast cancer samples compared with normal samples. Functional enrichment analysis showed that DEMs were mainly involved in cell division, and cell cycle. We screened four major gene modules and identified the hub nodes in these functional modules. Several DEMs (including FABP7, C4BPA, and LAMB3) and three long noncoding RNAs (lncRNAs) (LINC00092, SLC26A4.AS1, and COLCA1) exhibited significant correlation with patients' survival outcomes. In the ceRNA network, the lncRNA HOXA-AS2 regulated the expression level of SCN3A by interacting with hsa-miR-106a-5p. Thus, our study investigated the ceRNA mechanism in breast cancer. The results showed that lncRNA HOXA-AS2 might modulate the expression of SCN3A by sponging miR-106a in breast cancer.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica/métodos , MicroRNAs/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , RNA Longo não Codificante/genética , Canais de Sódio/genética , Biomarcadores Tumorais/genética , Neoplasias da Mama/mortalidade , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Sobrevida
10.
Ann Neurol ; 83(4): 703-717, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29466837

RESUMO

OBJECTIVE: Voltage-gated sodium (Na+ ) channels underlie action potential generation and propagation and hence are central to the regulation of excitability in the nervous system. Mutations in the genes SCN1A, SCN2A, and SCN8A, encoding the Na+ channel pore-forming (α) subunits Nav1.1, 1.2, and 1.6, respectively, and SCN1B, encoding the accessory subunit ß1 , are established causes of genetic epilepsies. SCN3A, encoding Nav1.3, is known to be highly expressed in brain, but has not previously been linked to early infantile epileptic encephalopathy. Here, we describe a cohort of 4 patients with epileptic encephalopathy and heterozygous de novo missense variants in SCN3A (p.Ile875Thr in 2 cases, p.Pro1333Leu, and p.Val1769Ala). METHODS: All patients presented with treatment-resistant epilepsy in the first year of life, severe to profound intellectual disability, and in 2 cases (both with the variant p.Ile875Thr), diffuse polymicrogyria. RESULTS: Electrophysiological recordings of mutant channels revealed prominent gain of channel function, with a markedly increased amplitude of the slowly inactivating current component, and for 2 of 3 mutants (p.Ile875Thr and p.Pro1333Leu), a leftward shift in the voltage dependence of activation to more hyperpolarized potentials. Gain of function was not observed for Nav1.3 variants known or presumed to be inherited (p.Arg1642Cys and p.Lys1799Gln). The antiseizure medications phenytoin and lacosamide selectively blocked slowly inactivating over transient current in wild-type and mutant Nav1.3 channels. INTERPRETATION: These findings establish SCN3A as a new gene for infantile epileptic encephalopathy and suggest a potential pharmacologic intervention. These findings also reinforce the role of Nav1.3 as an important regulator of neuronal excitability in the developing brain, while providing additional insight into mechanisms of slow inactivation of Nav1.3. Ann Neurol 2018;83:703-717.


Assuntos
Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canais de Sódio/genética , Espasmos Infantis/genética , Adolescente , Adulto , Análise de Variância , Linhagem Celular Transformada , Pré-Escolar , Estudos de Coortes , Estimulação Elétrica , Feminino , Humanos , Lacosamida/farmacologia , Imageamento por Ressonância Magnética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Modelos Moleculares , Técnicas de Patch-Clamp , Fenitoína/farmacologia , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/fisiopatologia , Transfecção , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
11.
Int J Neurosci ; 129(10): 955-962, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30889362

RESUMO

Objectives: Despite the etiology of trigeminal neuralgia has been verified by microvascular decompression as vascular compression of the trigeminal root, very few researches concerning its underlying pathogenesis has been reported in the literature. The present study focused on those voltage-gated sodium channels, which are the structural basis for generation of ectopic action potentials. Methods: The trigeminal neuralgia modeling was obtained with infraorbital nerve chronic constriction injury (ION-CCI) in rats. Two weeks postoperatively, the infraorbital nerve (TN), the trigeminal ganglion (TG), and the brain stem (BS) were removed and analyzed with a series of molecular biological techniques. Results: Western blot depicted a significant up-regulation of Nav1.3 in TN and TG but not in BS, while none of the other isoforms (Nav1.6, Nav1.7, Nav1.8, or Nav1.9) presented a statistical change. The Nav1.3 from ION-CCI group was quantified as 2.5-fold and 1.7-fold than that from sham group in TN and TG, respectively (p < .05). Immunocytochemistry showed the Nav1.3-IR from ION-CCI group accounted for 21.2 ± 2.3% versus 6.1 ± 1.2% from sham group in TN, while the Nav1.3-positive neurons from ION-CCI group accounted for 34.1 ± 3.5% versus 11.2 ± 1.8% from sham group in TG. Immunohistochemical labeling showed the Nav1.3 was co-localized with CGRP and IB4 but not with GFAP or NF-200 in TG. Conclusion: ION-CCI may give rise to an up-regulation of Nav1.3 in trigeminal nerve as well as in C-type neurons at the trigeminal ganglion. It implied that the ectopic action potential may generate from both the compressed site of the trigeminal nerve and the ganglion rather than from the trigeminal nuclei.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.3/biossíntese , Nervo Trigêmeo/metabolismo , Neuralgia do Trigêmeo/metabolismo , Animais , Constrição , Expressão Gênica , Masculino , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Fibras Nervosas Amielínicas/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Trigeminal/metabolismo , Neuralgia do Trigêmeo/genética , Canais de Sódio Disparados por Voltagem/biossíntese , Canais de Sódio Disparados por Voltagem/genética
12.
J Physiol ; 596(9): 1601-1626, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29441586

RESUMO

KEY POINTS: Na+ current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na+ (NaV ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary ß-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-ß-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary ß-cells, but not in HEK cells, inactivation of a single NaV subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that NaV channels adopt different inactivation behaviours depending on the local membrane environment. ABSTRACT: Pancreatic ß-cells are equipped with voltage-gated Na+ channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na+ current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na+ channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the ß-cell. It has been proposed that the biphasic inactivation reflects the contribution of different NaV α-subunits. We tested this possibility by expression of TTX-resistant variants of the NaV subunits found in ß-cells (NaV 1.3, NaV 1.6 and NaV 1.7) in insulin-secreting Ins1 cells and in non-ß-cells (including HEK and CHO cells). We found that all NaV subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. NaV 1.7 inactivated at 15--20 mV more negative membrane potentials than NaV 1.3 and NaV 1.6 in Ins1 cells but this small difference is insufficient to solely explain the biphasic inactivation in Ins1 cells. In Ins1 cells, but never in the other cell types, widely different components of NaV inactivation (separated by 30 mV) were also observed following expression of a single type of NaV α-subunit. The more positive component exhibited a voltage dependence of inactivation similar to that found in HEK and CHO cells. We propose that biphasic NaV inactivation in insulin-secreting cells reflects insertion of channels in membrane domains that differ with regard to lipid and/or membrane protein composition.


Assuntos
Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/química , Canal de Sódio Disparado por Voltagem NAV1.6/química , Canal de Sódio Disparado por Voltagem NAV1.7/química , Bloqueadores dos Canais de Sódio/farmacologia , Potenciais de Ação , Sequência de Aminoácidos , Animais , Cricetinae , Cricetulus , Fenômenos Eletrofisiológicos , Células HEK293 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Insulinoma/tratamento farmacológico , Insulinoma/patologia , Potenciais da Membrana , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Ratos , Homologia de Sequência , Sódio/metabolismo
13.
Mol Pain ; 14: 1744806918778491, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29783906

RESUMO

Background Oral administration of Bulleyaconitine A, an extracted diterpenoid alkaloid from Aconitum bulleyanum plants, is effective for treating chronic pain in rats and in human patients, but the underlying mechanisms are poorly understood. Results As the hyperexcitability of dorsal root ganglion neurons resulting from the upregulation of voltage-gated sodium (Nav) channels has been proved critical for development of chronic pain, we tested the effects of Bulleyaconitine A on Nav channels in rat spared nerve injury model of neuropathic pain. We found that Bulleyaconitine A at 5 nM increased the threshold of action potentials and reduced the firing rate of dorsal root ganglion neurons in spared nerve injury rats but not in sham rats. Bulleyaconitine A preferably blocked tetrodotoxin-sensitive Nav channels over tetrodotoxin-resistant ones in dorsal root ganglion neurons of spared nerve injury rats. Bulleyaconitine A was more potent for blocking Nav1.3 and Nav1.7 than Nav1.8 in cell lines. The half maximal inhibitory concentration (IC50) values for resting Nav1.3, Nav1.7, and Nav1.8 were 995.6 ± 139.1 nM, 125.7 ± 18.6 nM, and 151.2 ± 15.4 µM, respectively, which were much higher than those for inactivated Nav1.3 (20.3 ± 3.4 pM), Nav1.7 (132.9 ± 25.5 pM), and Nav1.8 (18.0 ± 2.5 µM). The most profound use-dependent blocking effect of Bulleyaconitine A was observed on Nav1.7, less on Nav1.3, and least on Nav1.8 at IC50 concentrations. Bulleyaconitine A facilitated the inactivation of Nav channels in each subtype. Conclusions Preferably blocking tetrodotoxin-sensitive Nav1.7 and Nav1.3 in dorsal root ganglion neurons may contribute to Bulleyaconitine A's antineuropathic pain effect.


Assuntos
Aconitina/análogos & derivados , Gânglios Espinais/patologia , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Tecido Nervoso/lesões , Neurônios/metabolismo , Aconitina/farmacologia , Animais , Linhagem Celular , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Tecido Nervoso/efeitos dos fármacos , Tecido Nervoso/metabolismo , Tecido Nervoso/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Ratos Sprague-Dawley
14.
Anesthesiology ; 128(6): 1151-1166, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509584

RESUMO

BACKGROUND: Voltage-gated sodium channels generate action potentials in excitable cells, but they have also been attributed noncanonical roles in nonexcitable cells. We hypothesize that voltage-gated sodium channels play a functional role during extravasation of neutrophils. METHODS: Expression of voltage-gated sodium channels was analyzed by polymerase chain reaction. Distribution of Nav1.3 was determined by immunofluorescence and flow cytometry in mouse models of ischemic heart and kidney injury. Adhesion, transmigration, and chemotaxis of neutrophils to endothelial cells and collagen were investigated with voltage-gated sodium channel inhibitors and lidocaine in vitro. Sodium currents were examined with a whole cell patch clamp. RESULTS: Mouse and human neutrophils express multiple voltage-gated sodium channels. Only Nav1.3 was detected in neutrophils recruited to ischemic mouse heart (25 ± 7%, n = 14) and kidney (19 ± 2%, n = 6) in vivo. Endothelial adhesion of mouse neutrophils was reduced by tetrodotoxin (56 ± 9%, unselective Nav-inhibitor), ICA121431 (53 ± 10%), and Pterinotoxin-2 (55 ± 9%; preferential inhibitors of Nav1.3, n = 10). Tetrodotoxin (56 ± 19%), ICA121431 (62 ± 22%), and Pterinotoxin-2 (59 ± 22%) reduced transmigration of human neutrophils through endothelial cells, and also prevented chemotactic migration (n = 60, 3 × 20 cells). Lidocaine reduced neutrophil adhesion to 60 ± 9% (n = 10) and transmigration to 54 ± 8% (n = 9). The effect of lidocaine was not increased by ICA121431 or Pterinotoxin-2. CONCLUSIONS: Nav1.3 is expressed in neutrophils in vivo; regulates attachment, transmigration, and chemotaxis in vitro; and may serve as a relevant target for antiinflammatory effects of lidocaine.


Assuntos
Adesão Celular/fisiologia , Quimiotaxia/fisiologia , Rim/metabolismo , Isquemia Miocárdica/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/biossíntese , Neutrófilos/metabolismo , Canais de Sódio/biossíntese , Migração Transendotelial e Transepitelial/fisiologia , Animais , Adesão Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Expressão Gênica , Humanos , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Lidocaína/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Miocárdica/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Neutrófilos/efeitos dos fármacos , Canais de Sódio/genética , Migração Transendotelial e Transepitelial/efeitos dos fármacos
15.
J Pharmacol Sci ; 137(1): 93-97, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29773519

RESUMO

The neurosteroid allopregnanolone has potent analgesic effects, and its potential use for neuropathic pain is supported by recent reports. However, the analgesic mechanisms are obscure. The voltage-gated sodium channels (Nav) α subunit Nav1.3 is thought to play an essential role in neuropathic pain. Here, we report the effects of allopregnanolone sulfate (APAS) on sodium currents (INa) in Xenopus oocytes expressing Nav1.3 with ß1 or ß3 subunits. APAS suppressed INa of Nav1.3 with ß1 and ß3 in a concentration-dependent manner (IC50 values; 75 and 26 µmol/L). These results suggest the possible importance of Nav1.3 inhibition for the analgesic mechanisms of allopregnanolone.


Assuntos
Analgésicos , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Neurotransmissores/farmacologia , Oócitos/metabolismo , Pregnanolona/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Relação Dose-Resposta a Droga , Feminino , Neuralgia/tratamento farmacológico , Neurotransmissores/uso terapêutico , Pregnanolona/uso terapêutico , Xenopus
16.
BMC Psychiatry ; 18(1): 248, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30071822

RESUMO

BACKGROUND: Mutations in voltage-gated sodium channel (SCN) genes are supposed to be of importance in the etiology of psychiatric and neurological diseases, in particular in the etiology of seizures. Previous studies report a potential susceptibility region at the chromosomal locus 2q including SCN1A, SCN2A and SCN3A genes for autism spectrum disorder (ASD). To date, there is no previous description of a patient with comorbid ASD and Tourette syndrome showing a deletion containing SCN2A and SCN3A. CASE PRESENTATION: We present the unique complex case of a 28-year-old male patient suffering from developmental retardation and exhibiting a range of behavioral traits since birth. He received the diagnoses of ASD (in early childhood) and of Tourette syndrome (in adulthood) according to ICD-10 and DSM-5 criteria. Investigations of underlying genetic factors yielded a heterozygous microdeletion of approximately 719 kb at 2q24.3 leading to a deletion encompassing the five genes SCN2A (exon 1 to intron 14-15), SCN3A, GRB14 (exon 1 to intron 2-3), COBLL1 and SCL38A11. CONCLUSIONS: We discuss the association of SCN2A, SCN3A, GRB14, COBLL1 and SCL38A11 deletions with ASD and Tourette syndrome and possible implications for treatment.


Assuntos
Transtorno do Espectro Autista/genética , Deficiências do Desenvolvimento/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canais de Sódio/genética , Síndrome de Tourette/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Deleção Cromossômica , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Fenótipo , Fatores de Transcrição/genética
17.
Chin J Physiol ; 61(2): 124-129, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29689688

RESUMO

Diabetes is a common metabolic disease which leads to diabetic peripheral neuropathy. Recently, the role of microRNA-96 (miR-96) in alleviating neuropathic pain by inhibiting the expression of NaV1.3, an isoform of voltage-gated sodium channels, has been shown. Peripheral nerve injuries result in NaV1.3 elevation. Exercise has beneficial role in diabetes management and peripheral neuropathy. However, the effects of exercise on miR-96 and its target gene NaV1.3 in diabetic rats are unknown. Therefore, the present study investigated the effects of exercise training on the expression of miR-96 and NaV1.3 in diabetic rats. For this purpose, rats were randomly divided into four groups: control, exercise, diabetic and diabetic-exercise groups. Type 2 diabetes was induced by a high-fat diet and the administration of streptozotocin (STZ) (35 mg/kg, i.p.). The exercise groups were subjected to swimming exercise 5 days/week for 10 weeks. At the end of the treatment period, thermal pain threshold, determined through the tail-flick test, and the expression levels of miR-96 and its target gene NaV1.3 were determined by reverse transcription (RT)-PCR in the sciatic nerve tissues of the rats. Data of the present study indicated that diabetes diminished miR-96 expression levels, but significantly upregulated NaV1.3 expression in the sciatic nerve. On exercise training, miR-96 expression was reversed with concurrent down-regulation of the NaV1.3 expression. This study introduced a new and potential miRNA-dependent mechanism for exerciseinduced protective effects against diabetic thermal hyperalgesia.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Neuropatias Diabéticas/terapia , Terapia por Exercício/métodos , MicroRNAs/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Nervo Isquiático/metabolismo , Natação , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/fisiopatologia , Dieta Hiperlipídica , Regulação da Expressão Gênica , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hiperalgesia/terapia , Masculino , MicroRNAs/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Limiar da Dor , Ratos Wistar , Nervo Isquiático/fisiopatologia , Estreptozocina , Fatores de Tempo
18.
Neurobiol Dis ; 102: 38-48, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28235671

RESUMO

Mutations in voltage-gated sodium channels expressed highly in the brain (SCN1A, SCN2A, SCN3A, and SCN8A) are responsible for an increasing number of epilepsy syndromes. In particular, mutations in the SCN3A gene, encoding the pore-forming Nav1.3 α subunit, have been identified in patients with focal epilepsy. Biophysical characterization of epilepsy-associated SCN3A variants suggests that both gain- and loss-of-function SCN3A mutations may lead to increased seizure susceptibility. In this report, we identified a novel SCN3A variant (L247P) by whole exome sequencing of a child with focal epilepsy, developmental delay, and autonomic nervous system dysfunction. Voltage clamp analysis showed no detectable sodium current in a heterologous expression system expressing the SCN3A-L247P variant. Furthermore, cell surface biotinylation demonstrated a reduction in the amount of SCN3A-L247P at the cell surface, suggesting the SCN3A-L247P variant is a trafficking-deficient mutant. To further explore the possible clinical consequences of reduced SCN3A activity, we investigated the effect of a hypomorphic Scn3a allele (Scn3aHyp) on seizure susceptibility and behavior using a gene trap mouse line. Heterozygous Scn3a mutant mice (Scn3a+/Hyp) did not exhibit spontaneous seizures nor were they susceptible to hyperthermia-induced seizures. However, they displayed increased susceptibility to electroconvulsive (6Hz) and chemiconvulsive (flurothyl and kainic acid) induced seizures. Scn3a+/Hyp mice also exhibited deficits in locomotor activity and motor learning. Taken together, these results provide evidence that loss-of-function of SCN3A caused by reduced protein expression or deficient trafficking to the plasma membrane may contribute to increased seizure susceptibility.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.3/deficiência , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Convulsões/genética , Convulsões/metabolismo , Canais de Sódio/deficiência , Canais de Sódio/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Epilepsias Parciais/genética , Epilepsias Parciais/metabolismo , Feminino , Predisposição Genética para Doença , Variação Genética , Células HEK293 , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/fisiologia , RNA Mensageiro/metabolismo
19.
Clin Genet ; 91(1): 106-110, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27153334

RESUMO

Duplications at 2q24.3 encompassing the voltage-gated sodium channel gene cluster are associated with early onset epilepsy. All cases described in the literature have presented in addition with different degrees of intellectual disability, and have involved neighbouring genes in addition to the sodium channel gene cluster. Here, we report eight new cases with overlapping duplications at 2q24 ranging from 0.05 to 7.63 Mb in size. Taken together with the previously reported cases, our study suggests that having an extra copy of SCN2A has an effect on epilepsy pathogenesis, causing benign familial infantile seizures which eventually disappear at the age of 1-2 years. However, the number of copies of SCN2A does not appear to have an effect on cognitive outcome.


Assuntos
Duplicação Gênica , Predisposição Genética para Doença/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Convulsões/genética , Canais de Sódio/genética , Adolescente , Idade de Início , Criança , Desenvolvimento Infantil , Pré-Escolar , Cromossomos Humanos Par 2/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Inteligência , Masculino , Convulsões/psicologia
20.
Biochim Biophys Acta ; 1848(7): 1545-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25838126

RESUMO

With the ultimate goal of detailed structural analysis of mammalian and particularly human voltage-gated sodium channels (VGSCs), we have investigated the relative stability of human and rat VGSCs and compared them with electric eel VGSC. We found that NaV1.3 from rat was the most stable after detergent solubilisation. The order of stability was rNaV1.3>hNaV1.2>hNaV1.1>hNaV1.6>hNaV1.3>hNaV1.4. However, a comparison with the VGSC from Electrophorus electricus, which is most similar to NaV1.4, shows that the eel VGSC is considerably more stable in detergent than the human VGSCs examined. We conclude that current methods of structural analysis, such as single particle electron cryomicroscopy (cryoEM), may be most usefully targeted to eel VGSC or rNaV1.3, but that structural analysis on the full spectrum of VGSCs, by methods that require greater stability such as crystallisation and X-ray crystallography, will require further stabilisation of the channel.


Assuntos
Benchmarking/métodos , Detergentes/química , Proteínas de Membrana/química , Canais de Sódio Disparados por Voltagem/química , Animais , Células CHO , Cricetinae , Cricetulus , Microscopia Crioeletrônica , Cristalografia por Raios X , Enguias/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.1/química , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.2/química , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/ultraestrutura , Canal de Sódio Disparado por Voltagem NAV1.3/química , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/ultraestrutura , Estabilidade Proteica/efeitos dos fármacos , Ratos , Solubilidade , Temperatura , Toxinas Biológicas/metabolismo , Toxinas Biológicas/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo , Canais de Sódio Disparados por Voltagem/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA