Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 63(13): 3712-3724, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856558

RESUMO

This study aimed to evaluate the effects of herbicide 2, 4-D-dichlorophenoxy acetic acid on golden apple snail eggs and embryos. Additionally, the study assessed the applicability of optical coherence tomography (OCT), a non-invasive depth cross-sectional microscopic imaging technique, as a novel method, to the best of our knowledge, for studying morphological changes in golden apple snail eggs and embryos, in comparison to the conventional approach of using white light microscopy. The study revealed that the herbicide 2,4-D-dichlorophenoxy acetic acid affected the hatchery rate and morphological changes of the eggs and embryos. The lethal concentration (LC50), representing the concentration of a substance that is expected to cause death in half of the population being studied, of the golden apple eggs and embryos increased with longer exposure time and higher concentrations. The estimated median effective concentration (EC50), which denotes the concentration producing the desired effect in 50% of the exposed golden apple embryos, exhibited a similar trend of change as the LC50. When compared to the microscopic study, it was observed that OCT could be employed to investigate morphological changes of golden apple snail eggs and embryos, enabling evaluation of alterations in both 2D and 3D structures.


Assuntos
Ácido 2,4-Diclorofenoxiacético , Embrião não Mamífero , Herbicidas , Tomografia de Coerência Óptica , Animais , Ácido 2,4-Diclorofenoxiacético/farmacologia , Ácido 2,4-Diclorofenoxiacético/toxicidade , Tomografia de Coerência Óptica/métodos , Herbicidas/farmacologia , Herbicidas/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/embriologia , Caramujos/embriologia , Caramujos/efeitos dos fármacos , Óvulo/efeitos dos fármacos
2.
Dev Biol ; 470: 1-9, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33191200

RESUMO

Caudal homeobox genes are found across animals, typically linked to two other homeobox genes in what has been called the ParaHox cluster. These genes have been proposed to pattern the anterior-posterior axis of the endoderm ancestrally, but the expression of Caudal in extant groups is varied and often occurs in other germ layers. Here we examine the role of Caudal in the embryo of the mollusc Tritia (Ilyanassa) obsoleta. ToCaudal expression is initially broad, then becomes progressively restricted and is finally only in the developing hindgut (a.k.a. intestine). Knockdown of ToCaudal using morpholino oligonucleotides specifically blocks hindgut development, indicating that despite its initially broad expression, the functional role of ToCaudal is in hindgut patterning. This is the first functional characterization of Caudal in an animal with spiralian development, which is an ancient mode of embryogenesis that arose early in bilaterian animal evolution. These results are consistent with the hypothesis that the ancestral role of the ParaHox genes was anterior-posterior patterning of the endoderm.


Assuntos
Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Caramujos/embriologia , Caramujos/genética , Animais , Sistema Digestório/embriologia , Embrião não Mamífero/metabolismo , Técnicas de Silenciamento de Genes , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Família Multigênica , Filogenia , Caramujos/metabolismo
3.
Bull Environ Contam Toxicol ; 101(4): 428-433, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30167760

RESUMO

We used a comparative approach to investigate the effects of a copper-based pesticide (EarthTec® QZ) on embryos of an invasive snail (Bithynia tentaculata) and a native snail (Physa gyrina). Embryos were exposed to one of three treatments: control (0 mg/L Cu2+), low-dose (0.1 mg/L Cu2+), or high-dose (0.6 mg/L Cu2+), which reflect manufacturer-recommended low and medium 4-day molluscicide treatment concentrations. Exposure to 0.6 mg/L Cu2+ over 4 days generated 100% mortality in both invasive and native snail embryos; however, reducing the exposure time from 4 to 1 day resulted in 100% mortality in B. tentaculata but some hatching (7%) in P. gyrina. In contrast, embryos of both species exposed to 0.1 mg/L Cu2+ treatment for 4 days showed almost 100% survivorship. Further manipulations of Cu2+ concentrations and exposure times may yield regimes that maximize mortality in B. tentaculata while minimizing negative impacts on native species.


Assuntos
Cobre/toxicidade , Moluscocidas/toxicidade , Caramujos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Projetos Piloto , Rios , Caramujos/embriologia , Caramujos/crescimento & desenvolvimento , Especificidade da Espécie
4.
J Exp Zool B Mol Dev Evol ; 328(5): 449-461, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28656657

RESUMO

Investigation of alternative phenotypes, different morphologies produced by a single genome, has contributed novel insights into development and evolution. Yet, the mechanisms underlying developmental switch points between alternative phenotypes remain poorly understood. The calyptraeid snails Crepidula navicella and Calyptraea lichen produce two phenotypes: viable and nutritive embryos, where nutritive embryos arrest their development after gastrulation and are ingested by their viable siblings as a form of intracapsular nutrition. Here, we investigate the activity of mitogen-activated protein kinase (MAPK, ERK1/2) and apoptosis during early cleavage. MAPK and apoptosis, found in a previous transcriptomic study, are known to be involved in organization of other spiralian embryos and nutritive embryo development, respectively. In the model Crepidula fornicata, MAPK activation begins at the 16-cell stage. In contrast, we discovered in C. navicella and C. lichen that many embryos begin MAPK activation at the one-cell stage. A subset of embryos shows a similar pattern of MAPK activation to C. fornicata at later stages. In all stages where MAPK is detected, the activation pattern is highly variable, frequently occurring in all quadrants or in multiple tiers of cells. We also detected apoptosis in cleaving embryos, while C. fornicata and Crepidula lessoni, which do not produce nutritive embryos, show no signs of apoptosis during cleavage. Our results show that MAPK and apoptosis are expressed during early development in species with nutritive embryos, and raises the possibility that these processes may play a role and even interact with one another in producing the nutritive embryo phenotype.


Assuntos
Apoptose/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Caramujos/embriologia , Animais , Embrião não Mamífero , Desenvolvimento Embrionário , Quinases de Proteína Quinase Ativadas por Mitógeno/genética
5.
J Exp Zool B Mol Dev Evol ; 326(3): 151-67, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27194576

RESUMO

Alternative phenotypes are discrete phenotypic differences that develop in response to both genetic and environmental cues. Nutritive embryos, which arrest their development to serve as nutrition for their viable siblings, are an example of an alternative developmental phenotype found in many animal groups. Females of the marine snail, Crepidula navicella, produce broods that consist mainly of nutritive embryos and a small number of viable embryos. In order to better understand the genetic mechanisms that lead to the development of alternative phenotypes in this species, we compared the transcriptomes of viable and nutritive embryos at the earliest stage that we were able to distinguish visually between the two. Using high-throughput Illumina sequencing, we assembled and annotated a de novo transcriptome and compared transcript levels in viable and nutritive embryos. Viable embryos express high levels of transcripts associated with known developmental events, while nutritive embryos express high levels of apoptosis-related transcripts. Gene Ontology term enrichment with GOSeq found that these are associated with the negative regulation of apoptotic processes. This enrichment, combined with morphological evidence, suggests that apoptosis is important in the formation of gastrula-like nutritive embryos. Apoptosis has been implicated in the development of alternative phenotypes in other animal groups, raising the possibility that this mechanism's role in alternative phenotypes is conserved in gastropod development. We suggest possible alternative mechanisms of nutritive embryo development. Most importantly, we contribute further evidence to the hypothesis that nutritive embryos are an alternative developmental phenotype.


Assuntos
Caramujos/genética , Transcriptoma , Animais , Apoptose/genética , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Fenótipo , Caramujos/embriologia
6.
Dev Dyn ; 244(10): 1215-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26197970

RESUMO

BACKGROUND: During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS: Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS: We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.


Assuntos
Gastrulação , Genes Reguladores , Caramujos/embriologia , Animais , Expressão Gênica , Camadas Germinativas/metabolismo , Organogênese , Caramujos/genética , Caramujos/metabolismo
7.
Ontogenez ; 47(5): 296-306, 2016.
Artigo em Russo | MEDLINE | ID: mdl-30272429

RESUMO

Individual growth of the great ramshorn snail Planorbarius corneus has been studied by intravital video imaging. As has been observed, the types of growth change over the embryogenesis. The linear dimensions slightly but in a statistically significant manner decrease during the stages of cleavage to blastula. Starting from the stage of blastula to trochophore, the embryo diameter remains constant to commence increasing at the stage of middle trochophore. During the larval stages (trochophore and veliger), the growth is synchronous (in Dettlaffs, biological time units) for the embryos in both the same clutch and different clutches. The growth at that time is exponential but later desynchronizes in individual clutches. The embryos in eight clutches grew and developed slower and hatched later as compared with the remaining five egg clutches. An accelerated growth follows an asymptomatic pattern according to the von Bertalanffy equation. A retarded growth is describable with a linear equation. The observed differences are likely to be associated with the number of embryos in a clutch. All types of changes in the linear dimensions observed in the great ramshorn snail embryogenesis can be described with the same united equation.


Assuntos
Blástula/embriologia , Desenvolvimento Embrionário/fisiologia , Caramujos/embriologia , Animais , Blástula/citologia , Caramujos/citologia
8.
Nature ; 457(7232): 1007-11, 2009 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19098895

RESUMO

Many animals display specific internal or external features with left-right asymmetry. In vertebrates, the molecular pathway that leads to this asymmetry uses the signalling molecule Nodal, a member of the transforming growth factor-beta superfamily, which is expressed in the left lateral plate mesoderm, and loss of nodal function produces a randomization of the left-right asymmetry of visceral organs. Orthologues of nodal have also been described in other deuterostomes, including ascidians and sea urchins, but no nodal orthologue has been reported in the other two main clades of Bilateria: Ecdysozoa (including flies and nematodes) and Lophotrochozoa (including snails and annelids). Here we report the first evidence for a nodal orthologue in a non-deuterostome group. We isolated nodal and Pitx (one of the targets of Nodal signalling) in two species of snails and found that the side of the embryo that expresses nodal and Pitx is related to body chirality: both genes are expressed on the right side of the embryo in the dextral (right-handed) species Lottia gigantea and on the left side in the sinistral (left-handed) species Biomphalaria glabrata. We pharmacologically inhibited the Nodal pathway and found that nodal acts upstream of Pitx, and that some treated animals developed with a loss of shell chirality. These results indicate that the involvement of the Nodal pathway in left-right asymmetry might have been an ancestral feature of the Bilateria.


Assuntos
Padronização Corporal/fisiologia , Proteína Nodal/metabolismo , Transdução de Sinais , Caramujos/embriologia , Caramujos/metabolismo , Animais , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Proteína Nodal/genética , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Caramujos/efeitos dos fármacos , Caramujos/genética
9.
Dev Genes Evol ; 224(3): 159-74, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24906576

RESUMO

Spiralian embryogenesis is deeply conserved and seems to have been in place in the last common ancestor of the large assemblage of protostome phyla known as the Lophotrochozoa. While the blastula fate maps of several spiralian embryos have been determined, little is known about the events that link the early embryo and the larva. For all cells in the Ilyanassa blastula, we determined the clonal morphology at four time points between the blastula and veliger stages. We found that ectomesoderm comes mostly from 3a and 3b, but also from 2c and 2b. We also observed the ingression and early proliferation of 3a- and 3b-derived ectomesoderm. We found cells in the 2b clone that marked the anterior edge of the blastopore and later the mouth and cells in the 3c/3d clones that marked the posterior edges of these structures. This demonstrates directly that the mouth forms in the same location as the blastopore. In the development of the shell field, we observed dramatic cell migration events that invert the positions of the 2b and 2d clones that contribute to the shell. Using time-lapse imaging, we followed and described the cleavage pattern of the conserved endomesodermal blast cell, 4d, up to 4d + 45 h, when there were 52 cells in the clone. Our results show the growth and movement of clones derived from cells of the spiralian blastula as they transform into the trochophore-like and veliger stages. They have implications for the evolution of the shell in gastropods, the origins of mesoderm in spiralians, and the evolution of mouth formation in metazoans.


Assuntos
Caramujos/embriologia , Animais , Blástula/citologia , Embrião não Mamífero/citologia , Desenvolvimento Embrionário , Larva/citologia , Caramujos/citologia
10.
Glob Chang Biol ; 20(7): 2108-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24259382

RESUMO

Damaging effects of UVB in conjunction with other stressors associated with global change are well-established, with many studies focused on vulnerable early life stages and immediate effects (e.g., mortality, developmental abnormalities). However, for organisms with complex life cycles, experiences at one life stage can have carry-over effects on later life stages, such that sublethal effects may mediate later vulnerability to further stress. Here, we exposed embryos in benthic egg masses of the New Zealand intertidal gastropod Siphonaria australis to treatments of either periodic stress (e.g., elevated UVB, salinity, and water temperature mimicking tidepool conditions in which egg masses are commonly found during summer) or control conditions (low UVB, ambient salinity, and water temperatures). Although there was high mortality from stressed egg masses, 24% of larvae hatched successfully. We then exposed the hatching larvae from both egg mass treatments to different combinations of water temperature (15 or 20 °C) and light (high UVB or shade) 12 h per day for 10 days. The most stressful larval conditions of 20 °C/high UVB resulted in low survival and stunted growth. Carry-over effects on survival were apparent for shaded larvae exposed to elevated temperature, where those from stressed egg masses had 1.8× higher mortality than those from control egg masses. Shaded larvae were also larger and had longer velar cilia if they were from control egg masses, independent of larval temperature. These results demonstrate that previous experience of environmental stress can influence vulnerability of later life stages to further stress, and that focus on a single life stage will underestimate cumulative effects of agents of global change.


Assuntos
Caramujos/fisiologia , Caramujos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Embrião não Mamífero/embriologia , Embrião não Mamífero/fisiologia , Embrião não Mamífero/efeitos da radiação , Larva/crescimento & desenvolvimento , Larva/fisiologia , Larva/efeitos da radiação , Nova Zelândia , Óvulo/fisiologia , Óvulo/efeitos da radiação , Caramujos/embriologia , Caramujos/crescimento & desenvolvimento , Estresse Fisiológico , Temperatura
11.
Ecotoxicol Environ Saf ; 110: 89-94, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25199587

RESUMO

This study aims to determine various parameters that allow the evaluation of the toxicity of chemicals to embryos of the ubiquitous land snail Cantareus aspersus. For this purpose, we investigated morphological and physiological endpoints in control embryos and in embryos exposed to a solution of 6mg Cd/L (CdCl2) in a liquid phase bioassay: size at days 3, 6 and 10, heart rate at 7 days, delay in hatching, states of development of non-hatched eggs after 17 days and the fresh mass of newly hatched embryos. The kinetics of Cd accumulation in eggs and DNA fragmentation were also measured. The first detectable sign of adverse effects appeared after 7 days of development, when the heart rate decreased in Cd-exposed embryos compared with the control. After 10 days of exposure, Cd-exposed hatchlings exhibited a lower fresh mass than control individuals. The majority (75 percent) of non-hatched embryos at 17 days was dead and presented signs of disaggregation or malformations. The hatching of Cd-exposed eggs was delayed 4 days, and DNA fragmentation was later detected after 20 days of Cd exposure. The measurement of Cd in the eggs showed that concentrations are relatively stable during the exposure period from 3 days (20-27µg Cd/g DW) to the end of exposure. The present study completes the range of endpoints that can be used to study the effects of contaminants and provides new parameters that are readily measured throughout the embryonic development of a terrestrial mollusk.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Caramujos/efeitos dos fármacos , Animais , Fragmentação do DNA/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Óvulo/efeitos dos fármacos , Caramujos/embriologia
12.
Environ Toxicol ; 29(6): 697-704, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22847984

RESUMO

The embryonic and postembryonic developmental toxicity of imidazolium-based ionic liquids (ILs) to the snail Physa acuta was evaluated in this study. The results of embryonic toxicity tests showed that lower concentrations of 1-octyl-3-methylimidazolium bromide ([C8 mim]Br) (1.5 and 2.1 mg/L) inhibited the hatching rate of snail embryos, and partial snails hatched normally and died, while all of the treated embryos died when the exposure concentration was higher than 4.16 mg/L, at which IL caused the deformation, death, and decay of snail embryos. Statistical analyses revealed obvious differences in the hatching rates between three developmental stages in the 2.1 and 2.94 mg/L groups, indicating that the veliger stage is more sensitive to [C8 mim]Br exposure than the blastula and gastrula stages. Furthermore, the 96 h LC50 values of [C8 mim]Br on the tested snails at three developmental stages (juvenile, subadult, and adult) were 70.83 ± 2.99, 97.59 ± 4.05, and 109.3 ± 2.22 mg/L, respectively, indicating that young snails were more sensitive to [C8 mim]Br toxicity than adults. In addition, the 96 h LC50 values of ILs with different alkyl chain lengths, that is, [C12 mim], [C10 mim], [C8 mim], and [C6 mim], in adult snails were 1.35 ± 0.24, 8.96 ± 5.66, 109.3 ± 4, and 359.6 ± 11.6 mg/L, respectively, suggesting that longer alkyl chains can increase the toxicity of imidazolium ILs on snails.


Assuntos
Boratos/toxicidade , Imidazóis/toxicidade , Líquidos Iônicos/toxicidade , Caramujos/efeitos dos fármacos , Animais , Embrião não Mamífero/efeitos dos fármacos , Caramujos/embriologia , Testes de Toxicidade Aguda
13.
Sci Rep ; 14(1): 15888, 2024 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987615

RESUMO

Bulk zinc oxide (ZnO-BPs) and its nanoparticles (ZnO-NPs) are frequently used in various products for humans. Helisoma duryi embryos can serve as effective model organisms for studying the toxicity of NPs. This study aimed to compare the teratogenic potency of ZnO-BPs and ZnO NPs in the embryonic stages of H. duryi to evaluate the utility of this snail as a bioindicator for ZnO-NPs in the aquatic environment. The mechanisms of teratogenesis were evaluated by determination of the LC50, studying the effect of sub-lethal concentrations of both ZnO forms on the embryos, and studying their enzyme activity, oxidative stress, and biochemical analysis. The SDS-PAGE electrophoresis was undertaken to assess the effect of ZnO-BPs and ZnO NPs on protein synthesis. The results revealed that the veliger stage of H. duryi is the specific stage for bulk and nano ZnO. ZnO-NPs proved to be more toxic to snails' embryos than ZnO-BPs. Exposure to ZnO influences specific types of defects in development, which in the case of BPs are far less drastic than those caused by NPs. Thus, the toxicity of ZnO-NPs in embryonic development is due to their unique physicochemical properties. The observed malformations include mainly hydropic malformation, exogastrulation, monophthalmia, shell misshapen, and cell lyses. Almost all tested oxidative biomarkers significantly changed, revealing that ZnONPs display more oxidative stress than ZnO-BPs. Also, the low concentration of ZnO induces many disturbances in the organic substances of veliger larvae, such as a decrease in the total protein and total lipid levels and an increase in the glycogen level. The results indicated that ZnO-BPs increase the number of protein bands. Conversely, ZnO-NPs concealed one band from treated egg masses, which was found in the control group. Embryos of snail are an appropriate model to control freshwater snails. This study demonstrates that H. duryi embryos can serve as effective model organisms to study the toxicity of ZnO-NPs.


Assuntos
Embrião não Mamífero , Estresse Oxidativo , Caramujos , Teratogênicos , Óxido de Zinco , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Animais , Caramujos/embriologia , Caramujos/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Teratogênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Água Doce , Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas/toxicidade , Nanopartículas/química , Poluentes Químicos da Água/toxicidade
14.
BMC Bioinformatics ; 14: 37, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23374982

RESUMO

BACKGROUND: Motion analysis is one of the tools available to biologists to extract biologically relevant information from image datasets and has been applied to a diverse range of organisms. The application of motion analysis during early development presents a challenge, as embryos often exhibit complex, subtle and diverse movement patterns. A method of motion analysis able to holistically quantify complex embryonic movements could be a powerful tool for fields such as toxicology and developmental biology to investigate whole organism stress responses. Here we assessed whether motion analysis could be used to distinguish the effects of stressors on three early developmental stages of each of three species: (i) the zebrafish Danio rerio (stages 19 h, 21.5 h and 33 h exposed to 1.5% ethanol and a salinity of 5); (ii) the African clawed toad Xenopus laevis (stages 24, 32 and 34 exposed to a salinity of 20); and iii) the pond snail Radix balthica (stages E3, E4, E6, E9 and E11 exposed to salinities of 5, 10 and 15). Image sequences were analysed using Sparse Optic Flow and the resultant frame-to-frame motion parameters were analysed using Discrete Fourier Transform to quantify the distribution of energy at different frequencies. This spectral frequency dataset was then used to construct a Bray-Curtis similarity matrix and differences in movement patterns between embryos in this matrix were tested for using ANOSIM. RESULTS: Spectral frequency analysis of these motion parameters was able to distinguish stage-specific effects of environmental stressors in most cases, including Xenopus laevis at stages 24, 32 and 34 exposed to a salinity of 20, Danio rerio at 33 hpf exposed to 1.5% ethanol, and Radix balthica at stages E4, E9 and E11 exposed to salinities of 5, 10 and 15. This technique was better able to distinguish embryos exposed to stressors than analysis of manual quantification of movement and within species distinguished most of the developmental stages studied in the control treatments. CONCLUSION: This innovative use of motion analysis incorporates data quantifying embryonic movements at a range of frequencies and so provides an holistic analysis of an embryo's movement patterns. This technique has potential applications for quantifying embryonic responses to environmental stressors such as exposure to pharmaceuticals or pollutants, and also as an automated tool for developmental staging of embryos.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Imagem Óptica/métodos , Estresse Fisiológico , Animais , Etanol/toxicidade , Movimento (Física) , Salinidade , Caramujos/embriologia , Xenopus laevis , Peixe-Zebra/embriologia
15.
BMC Dev Biol ; 13: 22, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23682742

RESUMO

BACKGROUND: Toxic substances like heavy metals can inhibit and disrupt the normal embryonic development of organisms. Exposure to platinum during embryogenesis has been shown to lead to a "one fell swoop" internalization of the shell in the ramshorn snail Marisa cornuarietis, an event which has been discussed to be possibly indicative of processes in evolution which may result in dramatic changes in body plans. RESULTS: Whereas at usual cultivation temperature, 26°C, platinum inhibits the growth of both shell gland and mantle edge during embryogenesis leading to an internalization of the mantle and, thus, also of the shell, higher temperatures induce a re-start of the differential growth of the mantle edge and the shell gland after a period of inactivity. Here, developing embryos exhibit a broad spectrum of shell forms: in some individuals only the ventral part of the visceral sac is covered while others develop almost "normal" shells. Histological studies and scanning electron microscopy images revealed platinum to inhibit the differential growth of the shell gland and the mantle edge, and elevated temperature (28 - 30°C) to mitigate this platinum effect with varying efficiency. CONCLUSION: We could show that the formation of internal, external, and intermediate shells is realized within the continuum of a developmental gradient defined by the degree of differential growth of the embryonic mantle edge and shell gland. The artificially induced internal and intermediate shells are first external and then partly internalized, similar to internal shells found in other molluscan groups.


Assuntos
Caramujos/fisiologia , Animais , Desenvolvimento Embrionário , Caramujos/embriologia
16.
Dev Genes Evol ; 223(4): 225-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592252

RESUMO

Two primary ciliary bands, the prototroch and metatroch, are required for locomotion and in the feeding larvae of many spiralians. The metatroch has been reported to have different cellular origins in the molluscs Crepidula fornicata and Ilyanassa obsoleta, as well as in the annelid Polygordius lacteus, consistent with multiple independent origins of the spiralian metatroch. Here, we describe in further detail the cell lineage of the ciliary bands in the gastropod mollusc I. obsoleta using intracellular lineage tracing and the expression of an acetylated tubulin antigen that serves as a marker for ciliated cells. We find that the I. obsoleta metatroch is formed primarily by third quartet derivatives as well as a small number of second quartet derivatives. These results differ from the described metatrochal lineage in the mollusc C. fornicata that derives solely from the second quartet or the metatrochal lineage in the annelid P. lacteus that derives solely from the third quartet. The present study adds to a growing body of literature concerning the evolution of the metatroch and the plasticity of cell fates in homologous micromeres in spiralian embryos.


Assuntos
Linhagem da Célula , Caramujos/embriologia , Animais , Larva/citologia
17.
Development ; 137(23): 4039-49, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21041364

RESUMO

Spiralian embryos are found in a large group of invertebrate phyla but are largely uncharacterized at a molecular level. These embryos are thought to be particularly reliant on autonomous cues for patterning, and thus represent potentially useful models for understanding asymmetric cell division. The series of asymmetric divisions that produce the micromere quartets are particularly important for patterning because they subdivide the animal-vegetal axis into tiers of cells with different developmental potentials. In the embryo of the snail Ilyanassa, the IoLR5 RNA is specifically segregated to the first quartet cells during the third cleavage. Here, we show that this RNA, and later the protein, are maintained in the 1q(121) cells and their descendents throughout development. Some IoLR5-expressing cells become internalized and join the developing cerebral ganglia. Knockdown of IoLR5 protein results in loss of the larval eyes, which normally develop in association with these ganglia. Segregation of this RNA to the first quartet cells does not occur if centrosomal localization is bypassed. We show that the specific inheritance of the RNA by the first quartet cells is driven by a discrete RNA sequence in the 3' UTR that is necessary and sufficient for localization and segregation, and that localization of another RNA to the first quartet is mediated by a similar element. These results demonstrate that micromere quartet identity, a hallmark of the ancient spiralian developmental program, is controlled in part by specific RNA localization motifs.


Assuntos
Embrião não Mamífero/metabolismo , RNA/genética , Sequências Reguladoras de Ácido Ribonucleico/genética , Caramujos/embriologia , Caramujos/genética , Animais , Sequência de Bases , Centrossomo/metabolismo , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Larva/citologia , Larva/metabolismo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fenótipo , RNA/química , Transporte de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caramujos/citologia
18.
Proc Biol Sci ; 280(1769): 20131479, 2013 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-23966639

RESUMO

Understanding the link between ontogeny (development) and phylogeny (evolution) remains a key aim of biology. Heterochrony, the altered timing of developmental events between ancestors and descendants, could be such a link although the processes responsible for producing heterochrony, widely viewed as an interspecific phenomenon, are still unclear. However, intraspecific variation in developmental event timing, if heritable, could provide the raw material from which heterochronies originate. To date, however, heritable developmental event timing has not been demonstrated, although recent work did suggest a genetic basis for intraspecific differences in event timing in the embryonic development of the pond snail, Radix balthica. Consequently, here we used high-resolution (temporal and spatial) imaging of the entire embryonic development of R. balthica to perform a parent-offspring comparison of the timing of twelve, physiological and morphological developmental events. Between-parent differences in the timing of all events were good predictors of such timing differences between their offspring, and heritability was demonstrated for two of these events (foot attachment and crawling). Such heritable intraspecific variation in developmental event timing could be the raw material for speciation events, providing a fundamental link between ontogeny and phylogeny, via heterochrony.


Assuntos
Caramujos/embriologia , Caramujos/genética , Animais , Evolução Biológica , Dinamarca , Embrião não Mamífero/embriologia , Óvulo/fisiologia
19.
Dev Biol ; 349(1): 102-12, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20934422

RESUMO

Spiralian embryogenesis is found in a number of animal phyla, but the molecular mechanisms that pattern these embryos remain poorly understood. A hallmark of spiralian development is the production of tiers of cells, called quartets, that share distinct developmental potentials. Many RNAs have been discovered that are segregated into particular quartets, raising the possibility that such RNAs could be involved in establishing quartet-specific developmental potentials. In the spiralian embryo of the mollusc Ilyanassa, the IoTis11 RNA is segregated into the second and third quartets, then decays in nearly all lineages except for the ventral-anterior cells of the third quartet, 3a and 3b. Previously published fate-mapping studies, extended here, show that 3a and 3b make bilaterally symmetrical contributions to the esophagus, head ectoderm, and larval musculature. Deletion of either 3a or 3b has only mild effects on development, but ablating both cells impairs development of the esophagus and several other organs. Knockdown of IoTis11 with a translation-blocking morpholino oligonucleotide causes a very similar set of phenotypes as ablation of 3a and 3b, showing that translation of this transcript is required for normal development of 3a and 3b. These results show that a segregated RNA is necessary for the cells that inherit it in a spiralian embryo. Given that RNAs are asymmetrically segregated in nearly all the early cleavages in this embryo, these results suggest that the embryo is extensively patterned by segregated factors. Our experiments also uncovered two previously unappreciated non-autonomous events during Ilyanassa development. First, we found that the embryo can regulate to develop normal esophagus after deletion of either 3a or 3b. Second, we found that the 3a or 3b lineages are required for normal development of the digestive glands, which arise from the fourth order macromeres.


Assuntos
Padronização Corporal , RNA/genética , Caramujos/embriologia , Caramujos/genética , Tristetraprolina/metabolismo , Animais , Linhagem da Célula , DNA Complementar/genética , Embrião não Mamífero/metabolismo , RNA/metabolismo , Transdução de Sinais , Caramujos/citologia , Caramujos/metabolismo , Tristetraprolina/genética
20.
Ecotoxicol Environ Saf ; 80: 152-60, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22417675

RESUMO

Genotoxic effects on fauna after waterborne pollutant exposure have been demonstrated by numerous research programmes. Less effort has been focused on establishing relationship between genotoxicity and long-term responses at higher levels of biological organization. Taking into account that embryos may be more sensitive indicators of reproductive impairment than alterations in fertility, we have developed two assays in multiwell plates to address correlations between embryo toxicity and genotoxicity. The potential teratogenicity was assessed by analyzing abnormal development and mortality of Physa acuta at embryonic stage. Genotoxicity was measured by the micronucleus (MN) test using embryonic cells. Our results showed that linkage between genotoxicity and embryo toxicity depends on mechanisms of action of compounds under study. Embryo toxic responses showed a clear dose-related tendency whereas no clear dose-dependent effect was observed in micronucleus induction. The higher embryo toxicity was produced by benzo(a)pyrene exposure followed by fluoxetine and bisphenol A. Vinclozolin was the lower embryo toxic compound. Binary mixtures with BaP always resulted in higher embryo toxicity than single exposures but antagonistic effects were observed for MN induction. Benzo(a)pyrene produced the higher MN induction at 0.04 mg/L, which also produced clear embryo toxic effects. Fluoxetine did not induce cytogenetic effects but 0.25mg/L altered embryonic development. Bisphenol A significantly reduced hatchability at 0.5mg/L while MN induction appeared with higher treatments than those that start causing teratogenicity. Much higher concentration of vinclozolin (5mg/L) reduced hatchability and induced maximum MN formation. In conclusion, while validating one biomarker of genotoxicity and employing one ecologically relevant effect, we have evaluated the relative sensitivity of a freshwater mollusc for a range of chemicals. The embryo toxicity test is a starting point for the development of a life cycle test with freshwater snails even for undertaking multigeneration studies focused on transgenerational effects.


Assuntos
Benzo(a)pireno/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Fluoxetina/toxicidade , Oxazóis/toxicidade , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Compostos Benzidrílicos , Dano ao DNA , Água Doce/química , Testes para Micronúcleos , Mutagênicos/toxicidade , Caramujos/embriologia , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA