RESUMO
The chelation of protein-bound metal ions is typically thought to follow either a dissociative (D) or an associative (A) path. While the former mechanism involves the spontaneous dissociation of the metal from the protein prior to chelation, the latter route is characterized by the formation of an intermediate protein-metal-chelator ternary complex. Using the prototypical zinc protease carboxypeptidase A (CPA) and a variety of charged and neutral chelating agents, we demonstrate that inactivation of the enzyme (and likely other metalloproteins) proceeds through a split pathway with contributions from both D- and A-type mechanisms. In the case of charged chelators such as ethylenediaminetetraacetic acid (EDTA), the proportions of both paths could be tuned over a wide range through variation of the chelator concentration and the ionic strength, I (from â¼95% A type at low I values to â¼5% at high I values). By measuring the EDTA concentration and time dependence of CPA inactivation and fitting the obtained kinetic data to a modified time-dependent inhibition model, we obtained the rate constants for the A and D paths (kinact and koff, respectively) and the inhibition constant (KI) for the formation of the CPA-Zn2+-EDTA ternary complex, indicating that the decreased contribution of the A-type mechanism at high ionic strengths originates from a large (40-fold; at I = 0.5 M) increase in KI. This observation might be related to a triarginine motif in CPA that electrostatically steers negatively charged substrates into the active site and may therefore also guide carboxylate-bearing chelators toward the Zn2+ ion.
Assuntos
Carboxipeptidases A , Quelantes , Ácido Edético , Quelantes/química , Quelantes/metabolismo , Ácido Edético/química , Carboxipeptidases A/metabolismo , Carboxipeptidases A/química , Carboxipeptidases A/antagonistas & inibidores , Cinética , Zinco/metabolismo , Zinco/química , Animais , Concentração OsmolarRESUMO
It is generally accepted that the primary specificity of metallocarboxypeptidases is mainly determined by the structure of the so-called primary specificity pocket. However, the G215S/A251G/T257A/D260G/T262D mutant of carboxypeptidase T from Thermoactinomyces vulgaris (CPT) with the primary specificity pocket fully reproducing the one in pancreatic carboxypeptidase B (CPB) retained the broad, mainly hydrophobic substrate specificity of the wild-type enzyme. In order to elucidate factors affecting substrate specificity of metallocarboxypeptidases and the reasons for the discrepancy with the established views, we have solved the structure of the complex of the CPT G215S/A251G/T257A/D260G/T262D mutant with the transition state analogue N-sulfamoyl-L-phenylalanine at a resolution of 1.35 Å and compared it with the structure of similar complex formed by CPB. The comparative study revealed a previously underestimated structural determinant of the substrate specificity of metallocarboxypeptidases and showed that even if substitution of five amino acid residues in the primary specificity pocket results in its almost complete structural correspondence to the analogous pocket in CPB, this does not lead to fundamental changes in the substrate specificity of the mutant enzyme due to the differences in the structure of the mobile loop located at the active site entrance that affects the substrate-induced conformational rearrangements of the active site.
Assuntos
Carboxipeptidase B/química , Carboxipeptidase B/metabolismo , Carboxipeptidases A/química , Carboxipeptidases A/metabolismo , Domínio Catalítico , Especificidade por Substrato , Thermoactinomyces/enzimologiaRESUMO
Computational metalloenzyme design is a multi-scale problem. It requires treating the metal coordination quantum mechanically, extensive sampling of the protein backbone, and additionally accounting for the polarization of the active site by both the metal cation and the surrounding protein (a phenomenon called electrostatic preorganization). We bring together a combination of theoretical methods that jointly offer these desired qualities: QM/DMD for mixed quantum-classical dynamic sampling, quantum theory of atoms in molecules (QTAIM) for the assessment of electrostatic preorganization, and Density Functional Theory (DFT) for mechanistic studies. Within this suite of principally different methods, there are both complementarity of capabilities and cross-validation. Using these methods, predictions can be made regarding the relative activities of related enzymes, as we show on the native Zn2+-dependent carboxypeptidase A (CPA), and its mutant proteins, which are hypothesized to hydrolyze modified substrates. For the native CPA, we replicated the catalytic mechanism and the rate in close agreement with the experiment, giving validity to the QM/DMD predicted structure, the DFT mechanism, and the QTAIM assessment of catalytic activity. For most sequences of the modified substrate and tried CPA mutants, substantially worsened activity is predicted. However, for the substrate mutant that contains Asp instead of Phe at the C-terminus, one CPA mutant exhibits a reasonable activity, as predicted across the theoretical methods. CPA is a well-studied system, and here it serves as a testing ground for the offered methods.
Assuntos
Carboxipeptidases A/química , Engenharia de Proteínas/métodos , Substituição de Aminoácidos , Domínio Catalítico , Modelos Químicos , Simulação de Dinâmica Molecular , Teoria Quântica , Água/químicaRESUMO
The structural characterization of low populated states of proteins with accuracy comparable to that achievable for native states is important for understanding the mechanisms of protein folding and function, as well as misfolding and aggregation. Because of the transient nature of these low populated states, they are seldom detected directly under conditions that favor folding. The activation domain of human procarboxypeptidase A2 (ADA2h) is an α/ß-protein that forms amyloid fibrils at low pH, presumably initiated from a denatured state with a considerable amount of residual structure. Here we used Carr-Parcell-Meiboom-Gill relaxation dispersion (CPMG RD) nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the denatured state of the ADA2h I71V mutant under conditions that favor folding. Under these conditions, the lifetime of the denatured state of I71V ADA2h is on the order of milliseconds and its population is approximately several percent, which makes this mutant amenable to studies by CPMG RD methods. The nearly complete set of CPMG RD-derived backbone (15)N, (13)C, and (1)H NMR chemical shifts in the I71V ADA2h denatured state reveals that it retains a significant fraction (up to 50-60%) of nativelike α-helical structure, while the regions encompassing native ß-strands are structured to a much lesser extent. The nativelike α-helical structure of the denatured state can bring together hydrophobic residues on the same sides of α-helices, making them available for intra- or intermolecular interactions. CPMG RD data analysis thus allowed a detailed structural characterization of the ADA2h denatured state under folding conditions not previously achieved for this protein.
Assuntos
Carboxipeptidases A/química , Desnaturação Proteica , Substituição de Aminoácidos , Carboxipeptidases A/genética , Humanos , Mutação de Sentido Incorreto , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de ProteínaRESUMO
The folding mechanisms of proteins with multi-state transitions, the role of the intermediate states, and the precise mechanism how each transition occurs are significant on-going research issues. In this study, we investigate ferredoxin-like fold proteins which have a simple topology and multi-state transitions. We analyze the folding processes by means of a coarse-grained Go model. We are able to reproduce the differences in the folding mechanisms between U1A, which has a high-free-energy intermediate state, and ADA2h and S6, which fold into the native structure through two-state transitions. The folding pathways of U1A, ADA2h, S6, and the S6 circular permutant, S6_p54-55, are reproduced and compared with experimental observations. We show that the ferredoxin-like fold contains two common regions consisting folding cores as predicted in other studies and that U1A produces an intermediate state due to the distinct cooperative folding of each core. However, because one of the cores of S6 loses its cooperativity and the two cores of ADA2h are tightly coupled, these proteins fold into the native structure through a two-state mechanism.
Assuntos
Ferredoxinas/química , Modelos Moleculares , Dobramento de Proteína , Carboxipeptidases A/química , Simulação por Computador , Humanos , Cinética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ribonucleoproteína Nuclear Pequena U1/química , Proteína S6 Ribossômica/química , TermodinâmicaRESUMO
NvCI is a novel exogenous proteinaceous inhibitor of metallocarboxypeptidases from the marine snail Nerita versicolor. The complex between human carboxypeptidase A4 and NvCI has been crystallized and determined at 1.7 Å resolution. The NvCI structure defines a distinctive protein fold basically composed of a two-stranded antiparallel ß-sheet connected by three loops and the inhibitory C-terminal tail and stabilized by three disulfide bridges. NvCI is a tight-binding inhibitor that interacts with the active site of the enzyme in a substrate-like manner. NvCI displays an extended and novel interface with human carboxypeptidase A4, responsible for inhibitory constants in the picomolar range for some members of the M14A subfamily of carboxypeptidases. This makes NvCI the strongest inhibitor reported so far for this family. The structural homology displayed by the C-terminal tails of different carboxypeptidase inhibitors represents a relevant example of convergent evolution.
Assuntos
Carboxipeptidases A/antagonistas & inibidores , Carboxipeptidases A/química , Inibidores Enzimáticos/química , Caramujos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Caramujos/metabolismoRESUMO
Carboxypeptidase A6 (CPA6) is a member of the A/B subfamily of M14 metallocarboxypeptidases that is expressed in brain and many other tissues during development. Recently, two mutations in human CPA6 were associated with febrile seizures and/or temporal lobe epilepsy. In this study we screened for additional CPA6 mutations in patients with febrile seizures and focal epilepsy, which encompasses the temporal lobe epilepsy subtype. Mutations found from this analysis as well as CPA6 mutations reported in databases of single nucleotide polymorphisms were further screened by analysis of the modeled proCPA6 protein structure and the functional role of the mutated amino acid. The point mutations predicted to affect activity and/or protein folding were tested by expression of the mutant in HEK293 cells and analysis of the resulting CPA6 protein. Common polymorphisms in CPA6 were also included in this analysis. Several mutations resulted in reduced enzyme activity or CPA6 protein levels in the extracellular matrix. The mutants with reduced extracellular CPA6 protein levels showed normal levels of 50-kDa proCPA6 in the cell, and this could be converted into 37-kDa CPA6 by trypsin, suggesting that protein folding was not greatly affected by the mutations. Interestingly, three of the mutations that reduced extracellular CPA6 protein levels were found in patients with epilepsy. Taken together, these results provide further evidence for the involvement of CPA6 mutations in human epilepsy and reveal additional rare mutations that inactivate CPA6 and could, therefore, also be associated with epileptic phenotypes.
Assuntos
Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Epilepsia/enzimologia , Epilepsia/genética , Predisposição Genética para Doença , Mutação/genética , Adolescente , Adulto , Alelos , Carboxipeptidases A/química , Estudos de Casos e Controles , Criança , Demografia , Precursores Enzimáticos/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Família , Feminino , Testes Genéticos , Células HEK293 , Temperatura Alta , Humanos , Peróxido de Hidrogênio/farmacologia , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Tripsina/metabolismoRESUMO
The impressive efficiency and selectivity of biological catalysts has engendered a long-standing effort to understand the details of enzyme action. It is widely accepted that enzymes accelerate reactions through their steric and electronic complementarity to the reactants in the rate-determining transition states. Thus, tight binding to the transition state of a reactant (rather than to the corresponding substrate) lowers the activation energy of the reaction, providing strong catalytic activity. Debates concerning the fundamentals of enzyme catalysis continue, however, and non-natural enzyme mimics offer important additional insight in this area. Molecular structures that mimic enzymes through the design of a predetermined binding site that stabilizes the transition state of a desired reaction are invaluable in this regard. Catalytic antibodies, which can be quite active when raised against stable transition state analogues of the corresponding reaction, represent particularly successful examples. Recently, synthetic chemistry has begun to match nature's ability to produce antibody-like binding sites with high affinities for the transition state. Thus, synthetic, molecularly imprinted polymers have been engineered to provide enzyme-like specificity and activity, and they now represent a powerful tool for creating highly efficient catalysts. In this Account, we review recent efforts to develop enzyme models through the concept of transition state stabilization. In particular, models for carboxypeptidase A were prepared through the molecular imprinting of synthetic polymers. On the basis of successful experiments with phosphonic esters as templates to arrange amidinium groups in the active site, the method was further improved by combining the concept of transition state stabilization with the introduction of special catalytic moieties, such as metal ions in a defined orientation in the active site. In this way, the imprinted polymers were able to provide both an electrostatic stabilization for the transition state through the amidinium group as well as a synergism of transition state recognition and metal ion catalysis. The result was an excellent catalyst for carbonate hydrolysis. These enzyme mimics represent the most active catalysts ever prepared through the molecular imprinting strategy. Their catalytic activity, catalytic efficiency, and catalytic proficiency clearly surpass those of the corresponding catalytic antibodies. The active structures in natural enzymes evolve within soluble proteins, typically by the refining of the folding of one polypeptide chain. To incorporate these characteristics into synthetic polymers, we used the concept of transition state stabilization to develop soluble, nanosized carboxypeptidase A models using a new polymerization method we term the "post-dilution polymerization method". With this methodology, we were able to prepare soluble, highly cross-linked, single-molecule nanoparticles. These particles have controlled molecular weights (39 kDa, for example) and, on average, one catalytically active site per particle. Our strategies have made it possible to obtain efficient new enzyme models and further advance the structural and functional analogy with natural enzymes. Moreover, this bioinspired design based on molecular imprinting in synthetic polymers offers further support for the concept of transition state stabilization in catalysis.
Assuntos
Biomimética , Impressão Molecular/métodos , Polímeros/química , Conformação Proteica , Carboxipeptidases A/química , Carboxipeptidases A/metabolismo , Catálise , Domínio Catalítico , Modelos Moleculares , Estrutura Molecular , Nanoestruturas/química , Nanoestruturas/ultraestruturaRESUMO
BACKGROUND: Water is an integral part of protein complexes. It shapes protein binding sites by filling cavities and it bridges local contacts by hydrogen bonds. However, water molecules are usually not included in protein interface models in the past, and few distribution profiles of water molecules in protein binding interfaces are known. RESULTS: In this work, we use a tripartite protein-water-protein interface model and a nested-ring atom re-organization method to detect hydration trends and patterns from an interface data set which involves immobilized interfacial water molecules. This data set consists of 206 obligate interfaces, 160 non-obligate interfaces, and 522 crystal packing contacts. The two types of biological interfaces are found to be drier than the crystal packing interfaces in our data, agreeable to a hydration pattern reported earlier although the previous definition of immobilized water is pure distance-based. The biological interfaces in our data set are also found to be subject to stronger water exclusion in their formation. To study the overall hydration trend in protein binding interfaces, atoms at the same burial level in each tripartite protein-water-protein interface are organized into a ring. The rings of an interface are then ordered with the core atoms placed at the middle of the structure to form a nested-ring topology. We find that water molecules on the rings of an interface are generally configured in a dry-core-wet-rim pattern with a progressive level-wise solvation towards to the rim of the interface. This solvation trend becomes even sharper when counterexamples are separated. CONCLUSIONS: Immobilized water molecules are regularly organized in protein binding interfaces and they should be carefully considered in the studies of protein hydration mechanisms.
Assuntos
Proteínas/química , Proteínas/metabolismo , Água/química , 3',5'-GMP Cíclico Fosfodiesterases/química , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Complexo Antígeno-Anticorpo/química , Sítios de Ligação , Carboxipeptidases A/química , Carboxipeptidases A/metabolismo , Cristalografia por Raios X , Dessecação , Ligação de Hidrogênio , Modelos Moleculares , Muramidase/química , Muramidase/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas , Software , Transducina/química , Transducina/metabolismo , Água/metabolismoRESUMO
Human digestive carboxypeptidases CPA1, CPA2, and CPB1 are secreted by the pancreas as inactive proenzymes containing a 94-96-amino acid-long propeptide. Activation of procarboxypeptidases is initiated by proteolytic cleavage at the C-terminal end of the propeptide by trypsin. Here, we demonstrate that subsequent cleavage of the propeptide by chymotrypsin C (CTRC) induces a nearly 10-fold increase in the activity of trypsin-activated CPA1 and CPA2, whereas CPB1 activity is unaffected. Other human pancreatic proteases such as chymotrypsin B1, chymotrypsin B2, chymotrypsin-like enzyme-1, elastase 2A, elastase 3A, or elastase 3B are inactive or markedly less effective at promoting procarboxypeptidase activation. On the basis of these observations, we propose that CTRC is a physiological co-activator of proCPA1 and proCPA2. Furthermore, the results confirm and extend the notion that CTRC is a key regulator of digestive zymogen activation.
Assuntos
Carboxipeptidases A/química , Quimotripsina/química , Ativadores de Enzimas/química , Pâncreas/enzimologia , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Quimotripsina/genética , Quimotripsina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Ativadores de Enzimas/metabolismo , Células HEK293 , Humanos , Tripsina/química , Tripsina/genética , Tripsina/metabolismoRESUMO
When mast cells are activated they can respond by releasing their secretory granule compounds, including mast cell-specific proteases of chymase, tryptase and carboxypeptidase A (MC-CPA) type. MC-CPA is a dominant protein component of the mast cell granule and the MC-CPA gene is extremely highly expressed. Despite this, relatively little has been known of its biological function. However, the recent generation of mouse strains lacking MC-CPA has opened up new possibilities for investigations related to this protease. This recent development has revealed a role for MC-CPA in regulating innate immunity responses, including the degradation of harmful substances such as the vasoconstrictive factor endothelin 1 and snake venom toxins. Here, we summarize the current knowledge of MC-CPA.
Assuntos
Carboxipeptidases A , Imunidade Inata/fisiologia , Mastócitos/enzimologia , Vesículas Secretórias/metabolismo , Animais , Carboxipeptidases A/química , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Carboxipeptidases A/fisiologia , Humanos , Camundongos , Ratos , Especificidade por SubstratoRESUMO
The carboxypeptidase A enzyme from Metarhizium anisopliae (MeCPA) has broader specificity than the mammalian A-type carboxypeptidases, making it a more useful reagent for the removal of short affinity tags and disordered residues from the C-termini of recombinant proteins. When secreted from baculovirus-infected insect cells, the yield of pure MeCPA was 0.25mg per liter of conditioned medium. Here, we describe a procedure for the production of MeCPA in the cytosol of Escherichia coli that yields approximately 0.5mg of pure enzyme per liter of cell culture. The bacterial system is much easier to scale up and far less expensive than the insect cell system. The expression strategy entails maintaining the proMeCPA zymogen in a soluble state by fusing it to the C-terminus of maltose-binding protein (MBP) while simultaneously overproducing the protein disulfide isomerase DsbC in the cytosol from a separate plasmid. Unexpectedly, we found that the yield of active and properly oxidized MeCPA was highest when coexpressed with DsbC in BL21(DE3) cells that do not also contain mutations in the trxB and gor genes. Moreover, the formation of active MeCPA was only partially dependent on the disulfide-isomerase activity of DsbC. Intriguingly, we observed that most of the active MeCPA was generated after cell lysis and amylose affinity purification of the MBP-proMeCPA fusion protein, during the time that the partially purified protein was held overnight at 4°C prior to activation with thermolysin. Following removal of the MBP-propeptide by thermolysin digestion, active MeCPA (with a C-terminal polyhistidine tag) was purified to homogeneity by immobilized metal affinity chromatography (IMAC), ion exchange chromatography and gel filtration.
Assuntos
Carboxipeptidases A/isolamento & purificação , Escherichia coli/genética , Metarhizium/enzimologia , Sequência de Aminoácidos , Baculoviridae/genética , Carboxipeptidases A/química , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Proteínas Ligantes de Maltose/química , Proteínas Ligantes de Maltose/genética , Proteínas Ligantes de Maltose/isolamento & purificação , Proteínas Ligantes de Maltose/metabolismo , Metarhizium/química , Metarhizium/genética , Metarhizium/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , SolubilidadeRESUMO
Roundworms of the genus Ascaris are common parasites of the human gastrointestinal tract. A battery of selective inhibitors protects them from host enzymes and the immune system. Here, a metallocarboxypeptidase (MCP) inhibitor, ACI, was identified in protein extracts from Ascaris by intensity-fading MALDI-TOF mass spectrometry. The 67-residue amino acid sequence of ACI showed no significant homology with any known protein. Heterologous overexpression and purification of ACI rendered a functional molecule with nanomolar equilibrium dissociation constants against MCPs, which denoted a preference for digestive and mast cell A/B-type MCPs. Western blotting and immunohistochemistry located ACI in the body wall, intestine, female reproductive tract, and fertilized eggs of Ascaris, in accordance with its target specificity. The crystal structure of the complex of ACI with human carboxypeptidase A1, one of its potential targets in vivo, revealed a protein with a fold consisting of two tandem homologous domains, each containing a beta-ribbon and two disulfide bonds. These domains are connected by an alpha-helical segment and a fifth disulfide bond. Binding and inhibition are exerted by the C-terminal tail, which enters the funnel-like active-site cavity of the enzyme and approaches the catalytic zinc ion. The findings reported provide a basis for the biological function of ACI, which may be essential for parasitic survival during infection.
Assuntos
Ascaris/química , Carboxipeptidases A/química , Inibidores Enzimáticos/química , Metaloproteases/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Ascaris/fisiologia , Clonagem Molecular , Cristalografia por Raios X , Feminino , Humanos , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Distribuição TecidualRESUMO
A universally applicable labelling and purification process was established to prepare biologically active proteins with a stoichiometric 1:1 ratio of attached dye-label. The dye-label is linked to a specific DNA sequence, which acts as a barcode-like tag for affinity purification. The DNA-dye tag is covalently bound to the target protein, which is present in excess to assure the binding of not more than one dye per molecule. Affinity purification occurs at magnetic beads that are functionalized with oligonucleotides that are complementary to the DNA-tag of the labelled proteins but for one or two mismatches. Washing removes all unbound, unlabelled molecules. The labelled protein is subsequently released by the addition of a fully complementary oligonucleotide. This process allows a gentle purification of a protein fraction that has exactly one label attached to each molecule under conditions that preserve protein structure.
Assuntos
DNA/química , Proteínas/isolamento & purificação , Coloração e Rotulagem/métodos , Sequência de Bases , Carboxipeptidases A/química , Ativação Enzimática , Escherichia coli/enzimologia , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas/química , Sensibilidade e Especificidade , beta-Galactosidase/químicaRESUMO
CPA4 (carboxypeptidase A4) is a member of the metallocarboxypeptidase family. CPA4 was originally found in a screen of mRNAs up-regulated by sodium butyrate-induced differentiation of cancer cells. Further studies suggested a relation between CPA4 and prostate cancer aggressiveness. In the present study, we determined that CPA4 is secreted from cells as a soluble proenzyme (pro-CPA4) that can be activated by endoproteases, such as trypsin. Three complementary approaches were used to study the substrate specificity of CPA4; kinetic analysis was performed using a new series of chromogenic substrates and some biologically relevant peptides, the cleavage of synthetic peptides was tested individually, and the cleavage of a mixture of >100 mouse brain peptides was examined using a quantitative peptidomics mass spectrometry-based approach. CPA4 was able to cleave hydrophobic C-terminal residues with a preference for Phe, Leu, Ile, Met, Tyr, and Val. However, not all peptides with C-terminal hydrophobic residues were cleaved, indicating the importance of additional residues within the peptide. Aliphatic, aromatic, and basic residues in the P1 position have a positive influence on the cleavage specificity. In contrast, acidic residues, Pro, and Gly have a negative influence in the P1 position. Some of the peptides identified as CPA4 substrates (such as neurotensin, granins, and opioid peptides) have been previously shown to function in cell proliferation and differentiation, potentially explaining the link between CPA4 and cancer aggressiveness. Taken together, these studies suggest that CPA4 functions in neuropeptide processing and regulation in the extracellular environment.
Assuntos
Carboxipeptidases A/química , Animais , Encéfalo/metabolismo , Carboxipeptidases/química , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Células HeLa , Humanos , Cinética , Camundongos , Peptídeos/química , Pichia/metabolismo , Estrutura Terciária de Proteína , Proteômica/métodos , Especificidade por SubstratoRESUMO
Carboxypeptidase A6 (CPA6) is an extracellular matrix-bound metallocarboxypeptidase (CP) that has been implicated in Duane syndrome, a neurodevelopmental disorder in which the lateral rectus extraocular muscle is not properly innervated. Consistent with a role in Duane syndrome, CPA6 is expressed in a number of chondrocytic and nervous tissues during embryogenesis. To better characterize the enzymatic function and specificity of CPA6 and to compare this with other CPs, CPA6 was expressed in HEK293 cells and purified. Kinetic parameters were determined using a panel of synthetic carboxypeptidase substrates, indicating a preference of CPA6 for large hydrophobic C-terminal amino acids and only very weak activity toward small amino acids and histidine. A quantitative peptidomics approach using a mixture of peptides representative of the neuropeptidome allowed the characterization of CPA6 preferences at the P1 substrate position and suggested that small and acidic P1 residues significantly inhibit CPA6 cleavage. Finally, a comparison of available kinetic data for CPA enzymes shows a gradient of specificity across the subfamily, from the very restricted specificity of CPA2 to the very broad activity of CPA4. Structural data and modeling for all CPA/B subfamily members suggests the structural basis for the unique specificities observed for each member of the CPA/B subfamily of metallocarboxypeptidases.
Assuntos
Carboxipeptidases A/química , Modelos Moleculares , Peptídeos/química , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Síndrome da Retração Ocular/enzimologia , Síndrome da Retração Ocular/genética , Células HEK293 , Humanos , Cinética , Peptídeos/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato/genéticaRESUMO
Carboxypeptidases may serve as tools for removal of C-terminal affinity tags. In the present study, we describe the expression and purification of an A-type carboxypeptidase from the fungal pathogen Metarhizium anisopliae (MeCPA) that has been genetically engineered to facilitate the removal of polyhistidine tags from the C-termini of recombinant proteins. A complete, systematic analysis of the specificity of MeCPA in comparison with that of bovine carboxypeptidase A (BoCPA) was carried out. Our results indicate that the specificity of the two enzymes is similar but not identical. Histidine residues are removed more efficiently by MeCPA. The very inefficient digestion of peptides with C-terminal lysine or arginine residues, along with the complete inability of the enzyme to remove a C-terminal proline, suggests a strategy for designing C-terminal affinity tags that can be trimmed by MeCPA (or BoCPA) to produce a digestion product with a homogeneous endpoint.
Assuntos
Marcadores de Afinidade/metabolismo , Carboxipeptidases A/metabolismo , Bovinos/metabolismo , Histidina/metabolismo , Metarhizium/enzimologia , Marcadores de Afinidade/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Carboxipeptidases A/química , Histidina/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Cloreto de Sódio , Especificidade por SubstratoRESUMO
Metallocarboxypeptidases (MCPs) in the mosquito midgut play crucial roles in infection, as well as in mosquito dietary digestion, reproduction, and development. MCPs are also part of the digestive system of plant-feeding insects, representing key targets for inhibitor development against mosquitoes/mosquito-borne pathogens or as antifeedant molecules against plant-feeding insects. Notably, some non-mosquito insect B-type MCPs are primarily insensitive to plant protease inhibitors (PPIs) such as the potato carboxypeptidase inhibitor (PCI; MW 4 kDa), an inhibitor explored for cancer treatment and insecticide design. Here, we report the crystal structure of Aedes aegypti carboxypeptidase-B1 (CPBAe1)-PCI complex and compared the binding with that of PCI-insensitive CPBs. We show that PCI accommodation is determined by key differences in the active-site regions of MCPs. In particular, the loop regions α6-α7 (Leu242 -Ser250 ) and ß8-α8 (Pro269 -Pro280 ) of CPBAe1 are replaced by α-helices in PCI-insensitive insect Helicoverpa zea CPBHz. These α-helices protrude into the active-site pocket of CPBHz, restricting PCI insertion and rendering the enzyme insensitive. We further compared our structure with the only other PCI complex available, bovine CPA1-PCI. The potency of PCI against CPBAe1 (Ki = 14.7 nM) is marginally less than that of bovine CPA1 (Ki = 5 nM). Structurally, the above loop regions that accommodate PCI binding in CPBAe1 are similar to that of bovine CPA1, although observed changes in proteases residues that interact with PCI could account for the differences in affinity. Our findings suggest that PCI sensitivity is largely dictated by structural interference, which broadens our understanding of carboxypeptidase inhibition as a mosquito population/parasite control strategy.
Assuntos
Aedes/enzimologia , Carboxipeptidase B/química , Carboxipeptidases A/química , Proteínas de Insetos/química , Inibidores de Proteases/química , Sequência de Aminoácidos , Animais , Carboxipeptidase B/antagonistas & inibidores , Carboxipeptidase B/genética , Carboxipeptidase B/metabolismo , Carboxipeptidases A/antagonistas & inibidores , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Domínio Catalítico , Bovinos , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Cinética , Modelos Moleculares , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por SubstratoRESUMO
Carboxypeptidase A (EC.3.4.17.1) is a zinc-containing proteolytic enzyme that removes the C-terminal amino acid from a peptide chain with the free carboxylate-terminal. In this study, the effect of spermine interaction on the structure and thermal stability of Carboxypeptidase A was investigated by ultraviolet - visible spectroscopy, fluorescence spectroscopy, circular dichroism, Kinetic measurement, molecular docking and simulation studies have also been followed at the pH of 7.5. The transition temperature of Carboxypeptidase A, as a criterion of protein thermal stability, in the presence of spermine was enhanced by increasing the concentration of spermine. The results of fluorescence intensity changes, at two temperatures of 308 and 318 K, also suggested that spermine had a great ability to quench the fluorescence of Carboxypeptidase A through the static quenching procedure. The thermodynamic parameters changes, including standard Gibbs free-energy, entropy and enthalpy, showed that the binding of spermine to Carboxypeptidase A was spontaneous and the hydrogen bonding and van der Waals interactions played a major role in stabilizing the Carboxypeptidase A-spermine complex. The changes in the content of the α-helix and the ß-sheet of the Carboxypeptidase A with binding to spermine were shown by the CD spectra method. Further, kinetic studies revealed that by increasing concentration of spermine, the activity of Carboxypeptidase A was enhanced. Also, the docking study revealed that the hydrogen bonding and van der Waals interactions played a major role in stabilizing the Carboxypeptidase A-spermine complex. As a result, spermine could be considered as an activator and a stabilizer for Carboxypeptidase A.Communicated by Ramaswamy H. Sarma.
Assuntos
Carboxipeptidases A/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Análise Espectral , Espermina/química , Algoritmos , Sítios de Ligação , Catálise , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Análise Espectral/métodos , Espermina/farmacologia , TermodinâmicaRESUMO
Ochratoxin A (OTA) is a toxic secondary metabolite produced mainly by Penicillium spp. and Aspergillus spp. and commonly found in foodstuffs and feedstuffs. Carboxypeptidase A (CPA) can hydrolyze OTA into the non-toxic product ochratoxin α, with great potential to realize industrialized production and detoxify OTA in contaminated foods and feeds. This study constructed a P. pastoris expression vector of mature CPA (M-CPA) without propeptide and signal peptide. The results showed that the degradation rate of OTA by M-CPA was up to 93.36%. Its optimum pH was 8, the optimum temperature was 40 °C, the value of Km was 0.126 mmol/L, and the maximum reaction rate was 0.0219 mol/min. Compared with commercial CPA (S-CPA), the recombinant M-CPA had an improve stability, for which its optimum temperature increased by 10 °C and stability at a wide range pH, especially at pH 3-4 and pH 11. M-CPA could effectively degrade OTA in red wine. M-CPA has the potential for industrial applications, such as can be used as a detoxification additive for foods and feeds.