Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 170: 722-731, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30580167

RESUMO

Waste biomass and sewage sludge were used to obtain an adsorbent material with excellent performance qualities by adopting a KOH activation process via one-stage (ACone) or two-stage (ACtwo) co-pyrolysis. The main purpose of this work was to investigate the effects of both methods in terms of the physicochemical properties and adsorption capacities for methylene blue (MB). Textural analyses revealed that the surface area (Stot= 683.82 m2/g) and total pore volume (Vtot= 0.72 cm3/g) of ACtwo were more than two-fold compared with ACone (Stot= 285.33 m2/g; Vtot= 0.35 cm3/g). Thus, two-stage co-pyrolysis produced activated carbon with increased porosity, which was favorable for MB adsorption. Nevertheless, the intensity of the surface functional groups of ACtwo was weaker than for ACone, which could be due to the pore-forming mechanism. Two-stage co-pyrolysis increased the yield and aromaticity of activated carbon, but sufficient activation caused more functional groups to decompose. For the adsorbate MB, the maximum adsorption capacity of ACtwo (602.80 mg/g) was more than five-fold greater than that of ACone (101.88 mg/g), due to its excellent porosity properties. Furthermore, the interactions of MB molecules with activated carbon were via hydrogen bonds and electrostatic attraction. The adsorption process of MB onto activated carbon was accurately described by the pseudo-second-order kinetic model. Adsorption equilibrium evaluated Langmuir isotherms demonstrated that MB formed a monolayer by adsorption onto the activated carbon. Adsorption thermodynamics was used to investigate the influence of temperature on the adsorption process. Thermodynamic parameters indicated that MB adsorption onto activated carbon was spontaneous and endothermic. In conclusion, our results showed that two-stage co-pyrolysis improves the adsorption capabilities of activated carbon, so achieving better economic value from waste materials.


Assuntos
Carvão Vegetal/química , Cocos/química , Pirólise , Esgotos/química , Adsorção , Carbono/química , Carvão Vegetal/síntese química , Frutas , Ligação de Hidrogênio , Cinética , Azul de Metileno/química , Porosidade , Termodinâmica
2.
Molecules ; 24(19)2019 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-31590393

RESUMO

Coal-based porous materials for supercapacitors were successfully prepared using Taixi anthracite (TXA) by multi-stage activation. The characterization and electrochemical tests of activated carbons (ACs) prepared in different stages demonstrated that the AC from the third-stage activation (ACIII) shows good porous structures and excellent electrochemical performances. ACIII exhibited a fine specific capacitance of 199 F g-1 at a current density of 1 A g-1 in the three-electrode system, with 6 mol L-1 KOH as the electrolyte. The specific capacitance of ACIII remained 190 F g-1 even despite increasing the current density to 5 A g-1, indicating a good rate of electrochemical performance. Moreover, its specific capacitance remained at 98.1% of the initial value after 5000 galvanostatic charge-discharge (GCD) cycle tests at a current density of 1 A g-1, suggesting that the ACIII has excellent cycle performance as electrode materials for supercapacitors. This study provides a promising approach for fabricating high performance electrode materials from high-rank coals, which could facilitate efficient and clean utilization of high-rank coals.


Assuntos
Carvão Vegetal/síntese química , Carvão Mineral/análise , Carvão Vegetal/química , Capacitância Elétrica , Eletroquímica/instrumentação , Eletrodos , Microscopia de Força Atômica , Tamanho da Partícula , Porosidade , Propriedades de Superfície
3.
Ecotoxicol Environ Saf ; 139: 36-42, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28109901

RESUMO

Activated carbons were derived from Enteromorpha prolifera immersed in H3PO4 solution or the H3PO4 solution mixed with sodium benzenesulfonate (SBS), producing AC and AC-SBS. NaOH solution was employed in regeneration of ciprofloxacin (CIP)-loaded AC and AC-SBS to obtain RAC and RAC-SBS. The properties of the original and regenerated activated carbons were characterized by thermo-gravimetric analysis (TGA), scanning electron microscopy (SEM), N2 adsorption/desorption isotherms and Fourier transform infrared spectroscopy (FTIR). Batched adsorption studies were carried out to compare CIP adsorption behaviors of the four carbons. The results suggested that the four samples exhibited higher proportions of mesopores and similar functional groups. Although AC displayed much higher specific surface area (SBET) (1045.79m2/g) than AC-SBS (738.03m2/g), its CIP adsorption capacity was much less than AC-SBS. The maximum adsorption capacity for AC, AC-SBS, RAC and RAC-SBS were found to be 250mg/g, 286mg/g, 233mg/g and 256mg/g, respectively, with the isotherms adhering to Langmuir isotherm model. The electrostatic attraction and cation exchange between CIP and the four carbons were the dominant adsorption mechanisms. Moreover, the thermodynamic parameters represented that the adsorption process had been confirmed to be a spontaneous and endothermic reaction.


Assuntos
Benzenossulfonatos , Carvão Vegetal/síntese química , Clorófitas/química , Ciprofloxacina/química , Ácidos Fosfóricos , Poluentes Químicos da Água/química , Adsorção , Carbono/química , Carvão Vegetal/química , Troca Iônica , Cinética , Microscopia Eletrônica de Varredura , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Termodinâmica , Gerenciamento de Resíduos/métodos
4.
Water Sci Technol ; 75(7-8): 1539-1547, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28402294

RESUMO

A novel magnetic biochar from sewage sludge (MSBC) using SrFe12O19 as magnetic substrate was successfully synthesized under high-temperature and oxygen-free conditions. Several techniques and methodologies (X-ray diffraction, Fourier transform infrared spectroscopy and vibrating sample magnetometer) were used to determine the surface functional groups and physicochemical properties of MSBC, which showed that the MSBC combined the features of both SrFe12O19 and sludge biochar (SBC). And then the adsorption behavior of methyl orange (MO) from aqueous solution onto the MSBC was investigated. And the influence of variables including pH, initial concentration of MO, adsorbent dosage and contact time was studied in detail. The optimal adsorption amount of MO (149.18 mg·g-1) was obtained with 600 MO mg·L-1, 2 MSBC g·L-1, at pH of 5 for 40 min. The equilibrium data were evaluated using Langmuir and Freundlich isotherms. The Langmuir model better described the absorption of MO. Besides, the kinetic data were analyzed using pseudo-first-order and pseudo-second-order equations, and the pseudo-second order exhibited the better fit for the kinetic studies (R2 = 0.9982). This study showed that MSBC could be utilized as an efficient, magnetically separable adsorbent for the environmental cleanup.


Assuntos
Compostos Azo/química , Carvão Vegetal/química , Esgotos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Adsorção , Carvão Vegetal/síntese química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Purificação da Água/instrumentação , Difração de Raios X
5.
Water Sci Technol ; 73(1): 21-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744931

RESUMO

Phenol, chromium, and dyes are continuously dumped into water bodies; the adsorption of these contaminants on activated carbon is a low-cost alternative for water remediation. We synthesized activated carbons from industrial waste of palm oil seed husks (kernel shells), sawdust, and tannery leather scraps. These materials were heated for 24 h at 600, 700 or 800°C, activated at 900°C with CO2 and characterized by proximate analysis and measurement of specific surface area (Brunauer-Emmett-Teller (BET) and Langmuir), and microporosity (t-plot). Isotherms showed micropores and mesopores in activated carbons. Palm seed activated carbon showed the highest fixed carbon content (96%), and Langmuir specific surface areas up to 1,268 m2/g, higher than those from sawdust (581 m2/g) and leather scraps (400 m2/g). The carbons were applied to adsorption of Cr(VI), phenol, and methylene blue dye from aqueous solutions. Phenol adsorption on activated carbons was 78-82 mg/g; on palm seed activated carbons, Cr(VI) adsorption at pH 7 was 0.35-0.37 mg/g, and methylene blue adsorption was 40-110 mg/g, higher than those from sawdust and leather scraps. Activated carbons from palm seed are promising materials to remove contaminants from the environment and represent an alternative application for vegetal wastes instead of dumping into landfills.


Assuntos
Carvão Vegetal/síntese química , Cromo/isolamento & purificação , Azul de Metileno/isolamento & purificação , Fenol/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Arecaceae , Carbono , Corantes , Resíduos Industriais , Fenóis , Curtume , Água , Madeira
6.
J Environ Sci (China) ; 41: 235-243, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26969070

RESUMO

Low-cost activated carbons (ACs) were prepared from four kinds of solid wastes: petroleum coke, Enteromorpha prolifera, lignin from papermaking black liquid and hair, by pyrophosphoric acid (H4P2O7) activation. Thermo-gravimetric analysis of the pyrolysis of H4P2O7-precursor mixtures implied that H4P2O7 had different influences on the pyrolysis behavior of the four raw materials. N2 adsorption/desorption isotherms, scanning electron microscopy, Fourier transform infrared spectroscopy and adsorption capacities for dyes were used to characterize the prepared activated carbons. AC derived from E. prolifera exhibited the highest surface area (1094m(2)/g) and maximum monolayer adsorption capacity for malachite green (1250mg/g). Kinetic studies showed that the experimental data were in agreement with the pseudo-second-order model. The adsorption isotherms were well described by the Langmuir isotherm model, indicating the adsorption of dye onto the ACs proceeded by monolayers.


Assuntos
Carvão Vegetal/análise , Difosfatos/química , Adsorção , Carvão Vegetal/síntese química , Coque , Cabelo/química , Lignina/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Ulva/química
7.
Water Sci Technol ; 67(8): 1688-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23579821

RESUMO

Mixtures of novolac resin and olive stone biomass (20/80 and 40/60 w/w) were cured, pyrolyzed up to 1,000 °C and activated with CO2 under a continuous flow operation (named N20B-cCa and N40B-cCa respectively). Commercial activated charcoal was similarly re-activated with CO2 and used for comparison reasons (AC-a). The characterization of these materials was performed by Fourier transform Infrared (FTIR) analysis and their specific surface area was determined according to DIN 66132. The materials were tested for their adsorption abilities at different temperatures (298, 333 K) and initial dye concentrations (0.01-0.35 g/L) using 1 L of methylene blue (MB) solution in 10 g of activated carbon. MB adsorption kinetic was also studied. The FTIR spectra of all activated carbons show absorption peaks which correspond to -OH, -CH, -C-O-C- groups and to aromatic ring. The presence of the absorption peak at about 1,400 cm(-1) for N20B-cCa, N40B-cCa indicates more acidic groups on them compared to the commercial AC-a. The specific surface area of N20B-cCa, N40B-cCa and AC-a has values equal to 352, 342 and 760 m(2)/g respectively. From the applied kinetic models, pseudo-second-order equation could best describe MB adsorption. Consequently, such adsorbents can be used as filters to adsorb dyes from wastewaters.


Assuntos
Carvão Vegetal/síntese química , Azul de Metileno/química , Olea , Adsorção , Agricultura , Cinética , Sementes , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
8.
Artigo em Inglês | MEDLINE | ID: mdl-23705617

RESUMO

This article presents a highly integrated hybrid process for the advanced treatment of drinking water in dealing with the micro-polluted raw water. A flat sheet ceramic membrane with the pore size of 50∼60 nm for ultrafiltration (UF) is used to integrate coagulation and ozonation together. At the same time, biological activated carbon filtration (BAC) is used to remove the ammonia and organic pollutants in raw water. A pilot study in the scale of 120 m(3)/d has been conducted in Southern China. The mainly-analyzed parameters include turbidity, particle counts, ammonia, total organic carbon (TOC), UV254, biological dissolved organic carbon (BDOC), dissolved oxygen (DO) as well as trans-membrane pressure (TMP). The experiments demonstrated that ceramic UF-membrane was able to remove most of turbidity and suspended particulate matters. The final effluent turbidity reached to 0.14 NTU on average. BAC was effective in removing ammonia and organic matters. Dissolved oxygen (DO) is necessary for the biodegradation of ammonia at high concentration. The removal efficiencies reached to 90% for ammonia with the initial concentration of 3.6 mg/L and 76% for TOC with the initial concentration of 3.8 mg/L. Ozonation can alter the molecular structure of organics in terms of UV254, reduce membrane fouling, and extend the operation circle. It is believed the hybrid treatment process developed in this article can achieve high performance with less land occupation and lower cost compared with the conventional processes. It is especially suitable for the developing countries in order to obtain high-quality drinking water in a cost-effective way.


Assuntos
Cerâmica , Membranas Artificiais , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Abastecimento de Água/análise , Carvão Vegetal/síntese química , Filtração/métodos
10.
J Air Waste Manag Assoc ; 62(5): 489-99, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22696799

RESUMO

UNLABELLED: To increase U.S. petroleum energy-independence, the University of Texas at Arlington (UT Arlington) has developed a coal liquefaction process that uses a hydrogenated solvent and a proprietary catalyst to convert lignite coal to crude oil. This paper reports on part of the environmental evaluation of the liquefaction process: the evaluation of the solid residual from liquefying the coal, called inertinite, as a potential adsorbent for air and water purification. Inertinite samples derived from Arkansas and Texas lignite coals were used as test samples. In the activated carbon creation process, inertinite samples were heated in a tube furnace (Lindberg, Type 55035, Arlington, UT) at temperatures ranging between 300 and 850 degrees C for time spans of 60, 90, and 120 min, using steam and carbon dioxide as oxidizing gases. Activated inertinite samples were then characterized by ultra-high-purity nitrogen adsorption isotherms at 77 K using a high-speed surface area and pore size analyzer (Quantachrome, Nova 2200e, Kingsville, TX). Surface area and total pore volume were determined using the Brunauer Emmet, and Teller method, for the inertinite samples, as well as for four commercially available activated carbons (gas-phase adsorbents Calgon Fluepac-B and BPL 4 x 6; liquid-phase adsorbents Filtrasorb 200 and Carbsorb 30). In addition, adsorption isotherms were developed for inertinite and the two commercially available gas-phase carbons, using methyl ethyl ketone (MEK) as an example compound. Adsorption capacity was measured gravimetrically with a symmetric vapor sorption analyzer (VTI, Inc., Model SGA-100, Kingsville, TX). Also, liquid-phase adsorption experiments were conducted using methyl orange as an example organic compound. The study showed that using inertinite from coal can be beneficially reused as an adsorbent for air or water pollution control, although its surface area and adsorption capacity are not as high as those for commercially available activated carbons. IMPLICATIONS: The United States currently imports two-thirds of its crude oil, leaving its transportation system especially vulnerable to disruptions in international crude supplies. UT Arlington has developed a liquefaction process that converts coal, abundant in the United States, to crude oil. This work demonstrated that the undissolvable solid coal residual from the liquefaction process, called inertinite, can be converted to an activated carbon adsorbent. Although its surface area and adsorption capacity are not as high as those for commercially available carbons, the inertinite source material would be available at no cost, and its beneficial reuse would avoid the need for disposal.


Assuntos
Carvão Vegetal/química , Recuperação e Remediação Ambiental/métodos , Purificação da Água/métodos , Adsorção , Poluentes Atmosféricos/química , Carvão Vegetal/síntese química , Carvão Vegetal/economia , Carvão Vegetal/provisão & distribuição , Carvão Mineral , Compostos Orgânicos/química , Porosidade , Propriedades de Superfície
11.
J Air Waste Manag Assoc ; 61(5): 543-51, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21608494

RESUMO

Activated carbons with diverse physical and chemical properties were produced from four agriculture residues, including raw barley husk, biotreated barley husk, rice husk, and pistachio shell. Results showed that with adequate steam activation (30-90 min, 50% H2O(g),/50% N2), activated carbons with surface areas between 360 and 950 m2 g(-1) were developed. Further increases in the activation time destroyed the pore structure of activated carbons, which resulted in a decrease in the surface area and pore volume. Biotreated agricultural residues were found to be suitable precursors for producing mesoporous activated carbons. The oxygen content of activated carbons increased with increasing activation time. Results from X-ray photoelectron spectroscopy examination further suggested that H2O molecules react with the carbon surface, enhancing the deconvoluted peak area of carbonyl and carboxyl groups. Equilibrium adsorption of toluene indicated that the adsorption capacities increased with an increase in the inlet toluene concentration and a decrease in temperature. The adsorption isotherms were successfully fitted with Freundlich, Langmuir, and Dubinin-Radushkevich equations. Activated carbons derived from agricultural residues appear to be more applicable to adsorb volatile organic compounds at a low concentration and high-temperature environment.


Assuntos
Agricultura , Carvão Vegetal/síntese química , Compostos Orgânicos Voláteis/química , Resíduos , Adsorção , Carvão Vegetal/análise , Química Verde/métodos , Temperatura Alta , Humanos , Espectroscopia Fotoeletrônica , Vapor , Tolueno/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-21961696

RESUMO

The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well.


Assuntos
Ácidos Alcanossulfônicos/isolamento & purificação , Carvão Vegetal/química , Carvão Vegetal/síntese química , Fluorocarbonos/isolamento & purificação , Magnetismo , Níquel/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Ácidos Alcanossulfônicos/química , Fluorocarbonos/química , Cinética , Modelos Químicos , Poluentes Químicos da Água/química , Difração de Raios X
13.
Int J Biol Macromol ; 180: 299-310, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33737183

RESUMO

Effects of Elm tree sawdust pretreatments using alkali and alkaline earth metals (NaCl, KCl, CaCl2, MgCl2 and Elm tree ash) and deashing solutions (water, HCl, HNO3 and aqua regia) before the carbonization process on the porosity of produced activated carbons and Pb (II) and Cr (VI) adsorption were studied. The activated carbons were characterized by pore size distribution, surface area, FTIR, and SEM-EDX analysies. Based on the results, HCl leaching pretreatment of the biomass increased the activated carbon adsorption capacity of Cr (VI) from 114 to 190 mg g-1. The treatment of biomass with alkali and alkali earth metal salts, especially MgCl2, remarkably increased the activated carbon adsorption capacity of Pb (II) from 233 to 1430 mg g-1. The results indicated that Pb (II) adsorption was attributed to both the mesoporous structure of activated carbon and the abundance of Mg on the activated carbon's surface. On the other hand, the micropores played a major role in Cr (VI) adsorption capacity. The development of the micro- or mesoporous structure of activated carbons through pretreatment of lignocellulosic precursor could be an approach for providing high performance activated carbons for Pb (II) and Cr (VI) removal from aqueous solutions.


Assuntos
Carvão Vegetal/química , Carvão Vegetal/síntese química , Cromo/química , Chumbo/química , Lignina/química , Poluentes Químicos da Água/química , Água/química , Adsorção , Biomassa , Ácido Clorídrico/química , Concentração de Íons de Hidrogênio , Cinética , Cloreto de Magnésio/química , Modelos Químicos , Porosidade , Soluções , Ulmus/química , Purificação da Água/métodos
14.
Environ Technol ; 31(1): 53-61, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20232679

RESUMO

Activated carbon was produced by fast precarbonization of cornstalk lignin in a fluidized bed followed by K2CO3 activation. The results showed that the product is essentially microporous carbon whose Brunauer-Emmett-Teller surface area and pore volume when the carbon was activated at 800 degrees C were 1410 m2/g and 0.77 mL/g, respectively. The potential usefulness of the resultant carbons for removal of phenol from water and their subsequent bioregeneration capabilities were also investigated. The kinetics study showed that all the carbons exhibited a fast adsorption rate and the carbon activated at 800 degrees C had the largest amount of phenol adsorbed due to its greater specific surface area and pore volume. The adsorption isotherms by applying the Langmuir method showed that the monolayer adsorption capacity of carbon activated at 800 degrees C could reach 110.9 mg/g.


Assuntos
Reatores Biológicos/microbiologia , Carbonatos/química , Carvão Vegetal/síntese química , Lignina/química , Fenol/isolamento & purificação , Fenol/metabolismo , Potássio/química , Zea mays/química , Absorção , Biodegradação Ambiental , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Ultrafiltração/métodos
15.
Environ Sci Pollut Res Int ; 27(9): 9214-9226, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31916154

RESUMO

The chitosan-stabilized ferrous sulfide nanoparticles were loaded on biochar to prepare a composite material FeS-CS-BC for effective removal of hexavalent chromium in water. BC and FeS-CS-BC were characterized by Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. Batch experiments were employed to evaluate the Cr(VI) removal performance. The experimental results showed that the removal rate of Cr(VI) by FeS-CS-BC(FeS:CS:BC = 2:2:1) reached 98.34%, which was significantly higher than that of BC (44.58%) and FeS (79.91%). In the pH range of 2-10, the removal of Cr(VI) by FeS-CS-BC was almost independent of pH. The limitation of coexisting anions (Cl-、SO42-、NO3-) on Cr(VI) removal was not too obvious. The removal of Cr(VI) by FeS-CS-BC was fitted with the pseudo-second-order dynamics, which was a hybrid chemical-adsorption reaction. The X-ray photoelectron spectroscopy (XPS) analysis result showed that Cr(VI) was reduced, and the reduced Cr(VI) was fixed on the surface of the material in the form of Cr(VI)-Fe(III). Graphical abstract Removal of hexavalent chromium from wastewater by FeS-CS-BC composite synthesized by impregnation.


Assuntos
Carvão Vegetal/síntese química , Cromo/química , Ferro/química , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Água
16.
J Hazard Mater ; 394: 122255, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32251903

RESUMO

In this study, we developed an innovative spherical biochar with high porosity and excellent paracetamol (PRC) adsorption capacity. The optimal pyrolysis temperatures for the preparation of spherical biochar (derived from pure glucose) and non-spherical biochar (from pomelo peel wastes) were obtained at 900 °C and 700 °C, respectively. Various advanced techniques were applied to characterize the prepared biochars. Spherical and non-spherical biochars exhibited large specific surface area (1292 and 1033 m2/g) and high total pore volume (0.704 and 1.074 cm3/g), respectively. The adsorption behavior of PRC onto two biochars was conducted utilizing batch experiments. Results demonstrated that the adsorption process was slightly affected by the change of solution pH (2-11) and addition of NaCl (0.05-1.0 M) and was able to achieve fast equilibrium (∼120 min). The maximum adsorption capacity of spherical biochar (286 mg/g) for PRC was approximately double that of non-spherical biochar (147 mg/g). The signal of thermodynamic parameters was negative ΔG° and ΔH° values, but positive ΔS° value. The adsorption mechanism consisted of pore-filling, hydrogen bonding formations, n-π and π-π interactions, and van der Waals force. The adsorption capacities of two biochars were insignificantly dependent on different real water samples containing PRC. Consequently, the biochars can serve as a green and promising material for efficiently removing PRC from water.


Assuntos
Acetaminofen/isolamento & purificação , Carvão Vegetal/química , Poluentes Químicos da Água/isolamento & purificação , Água/química , Acetaminofen/química , Adsorção , Carvão Vegetal/síntese química , Concentração de Íons de Hidrogênio , Cinética , Concentração Osmolar , Termodinâmica , Poluentes Químicos da Água/química , Purificação da Água/métodos
17.
Chemosphere ; 247: 125847, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069709

RESUMO

The effective removal and recovery of phosphorus from aquatic environments are highly important for successful eutrophication control and phosphorus recycling. Herein, we prepared biochar containing MgO nanoparticles (MgO-biochar) by fast pyrolysis of MgCl2-impregnated corn stalks, probed its phosphate adsorption performance. Through the fast pyrolysis, the MgCl2 promoted the formation of micropores and mesoporous, and decomposed into MgO nanoparticles with the size smaller than 100 nm. The adsorption experiments showed that the adsorption property increased with the increase of Mg content, and had a strong correlation with the external surface area. And the phosphate adsorption was well described by the Langmuir-Freundlich model (maximum adsorption capacity was determined as 60.95 mg P/g). Kinetic analysis and characterization analysis of MgO-biochar for different adsorption time indicated that phosphate adsorption onto MgO-biochar was mainly controlled by rapid binding to the external surface (about 75% of the equilibrium adsorption amount), and the uptake rate was limited by the slow diffusion of phosphate into the biochar interior (about 25% of the equilibrium adsorption amount). The results suggested that the synthesized MgO-biochar with enough MgO active site dispersed on a higher external surface can be used as a potential adsorbent for phosphate removal and recovery from aqueous solution.


Assuntos
Carvão Vegetal/síntese química , Óxido de Magnésio/química , Fósforo/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cinética , Nanopartículas/química , Fosfatos/química , Fósforo/química , Reciclagem , Água , Poluentes Químicos da Água/análise
18.
J Hazard Mater ; 384: 121272, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31581014

RESUMO

Magnetic and nonmagnetic biochar (MBC & BC) were produced from biosolids under hydrothermal conditions and characterized in order to understand surface chemistry impacts on enzyme immobilization and activity. Peak surface pore size of MBC was 180 nm and that of BC was 17 nm. Despite similar surface area (≈ 49 m2/g) MBC immobilized more laccase (99 mg/g) than biochar (31 mg/g). For horseradish peroxidase (HRP), the two biochars had similar immobilization capacity (≈ 65 mg/g). Laccase and HRP on MBC had 47.1 and 18.0% higher specific activity than on BC, respectively. The matrix activity of MBC-laccase (33.3 U/mg support) was 3.7-fold higher than BC-laccase (8.8 U/mg support) and higher than the same amount of free laccase (30.2 U) at pH 3.0 (P < 0.05). Although MBC had its own peroxide oxidation activity (104.1 and 165.9 U/mg biochar at pHs 5&6) this only accounted for 16.7 and 20.4% of the total MBC-H RP activity respectively. After 10 wash cycles, MBC still retained 79.3% and 60.3% of laccase and HRP activity, respectively. Additionally, MBC had lower acute toxicity, suggesting that it is relative benign from an environmental perspective.


Assuntos
Carvão Vegetal/química , Enzimas Imobilizadas/química , Aliivibrio fischeri/efeitos dos fármacos , Armoracia/enzimologia , Biossólidos , Carvão Vegetal/síntese química , Carvão Vegetal/toxicidade , Peroxidase do Rábano Silvestre/química , Cinética , Lacase/química , Fenômenos Magnéticos , Polyporaceae/enzimologia
19.
J Hazard Mater ; 387: 121675, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31767503

RESUMO

Over the past decades, extensive efforts have been made to use biomass-based-materials for wastewater-treatment. The first purpose of this study was to develop and characterize regenerated-reed/reed-charcoal (RR-ChR), an enhanced biosorbent from Tunisian-reed (Phragmites-australis). The second aim was to assess and optimize the RR-ChR use for the removal of binary ciprofloxacin antibiotic (CIP) and methylene blue dye (MB), using Central Composite Design under Response Surface methodology. The third purpose was to explain the mechanisms involved in the biosorption-process. The study revealed that the highest removal-percentages (76.66 % for the CIP and 100 % for the MB) were obtained under optimum conditions: 1.55 g/L of adsorbent, 35 mg/L of CIP, 75 mg/L of MB, a pH of 10.42 and 115.28 min contact time. It showed that the CIP biosorption mechanism was described by Brouers-Sotolongo-fractal model, with regression-coefficient (R2) of 0.9994 and a Person's Chi-square (X2) of 0.01. The Hill kinetic model better described the MB biosorption (R2 = 1 and X2 = 1.0E-4). The isotherm studies showed that the adsorbent surface was heterogeneous and the best nonlinear-fit was obtained with the Jovanovich (R2 = 0.9711), and Brouers-Sotolongo (R2 = 0.9723) models, for the CIP and MB adsorption, respectively. Finally, the RR-ChR lignocellulosic-biocomposite-powder could be adopted as efficient and cost-effective adsorbent.


Assuntos
Antibacterianos/química , Carvão Vegetal/química , Ciprofloxacina/química , Corantes/química , Azul de Metileno/química , Poluentes Químicos da Água/química , Adsorção , Carvão Vegetal/síntese química , Poaceae/química , Termodinâmica , Águas Residuárias/química , Purificação da Água/métodos
20.
Chemosphere ; 221: 175-183, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30639813

RESUMO

The potential energy recovery during sludge activated carbon (SAC) preparation by co-pyrolysis of sewage sludge and biomass has recently gained significant attention. This study firstly evaluated the distribution of pyrolysis products including SAC, oils and gases during sludge pyrolysis at different temperatures (400 °C-800 °C) and corncob addition proportions (0-50%, w/w). The results demonstrated that with the increase of pyrolysis temperature, yield of SAC declined dramatically, while yields of pyrolysis oils and gases increased. With increasing addition of corncob, the yields of SAC and pyrolysis oils declined slightly, while the yield of gases generally increased. Then, the potential energy recovery during sludge pyrolysis was calculated, and the highest energy recovery value was 10.21 kJ/g achieved at 800 °C and 50% corncob addition. However, higher pyrolysis temperature over 600 °C resulted in lower yield and iodine adsorption capacity of SAC. Therefore, the suitable conditions were suggested to be at 600 °C with 50% corncob addition considering both adsorption performance of SAC and potential energy recovery efficiency.


Assuntos
Carvão Vegetal/síntese química , Temperatura Alta , Pirólise , Esgotos , Adsorção , Biomassa , Óleos de Plantas , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA