Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.810
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(3): 695-708.e13, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30293865

RESUMO

We have uncovered the existence of extracellular vesicle (EV)-mediated signaling between cell types within the adipose tissue (AT) proper. This phenomenon became evident in our attempts at generating an adipocyte-specific knockout of caveolin 1 (cav1) protein. Although we effectively ablated the CAV1 gene in adipocytes, cav1 protein remained abundant. With the use of newly generated mouse models, we show that neighboring endothelial cells (ECs) transfer cav1-containing EVs to adipocytes in vivo, which reciprocate by releasing EVs to ECs. AT-derived EVs contain proteins and lipids capable of modulating cellular signaling pathways. Furthermore, this mechanism facilitates transfer of plasma constituents from ECs to the adipocyte. The transfer event is physiologically regulated by fasting/refeeding and obesity, suggesting EVs participate in the tissue response to changes in the systemic nutrient state. This work offers new insights into the complex signaling mechanisms that exist among adipocytes, stromal vascular cells, and, potentially, distal organs.


Assuntos
Adipócitos/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Jejum/metabolismo , Transdução de Sinais , Animais , Caveolina 1/genética , Caveolina 1/metabolismo , Linhagem Celular , Células Cultivadas , Endotélio Vascular/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Nat Immunol ; 18(10): 1150-1159, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805811

RESUMO

Caveolin-1 (Cav1) regulates the nanoscale organization and compartmentalization of the plasma membrane. Here we found that Cav1 controlled the distribution of nanoclusters of isotype-specific B cell antigen receptors (BCRs) on the surface of B cells. In mature B cells stimulated with antigen, the immunoglobulin M BCR (IgM-BCR) gained access to lipid domains enriched for GM1 glycolipids, by a process that was dependent on the phosphorylation of Cav1 by the Src family of kinases. Antigen-induced reorganization of nanoclusters of IgM-BCRs and IgD-BCRs regulated BCR signaling in vivo. In immature Cav1-deficient B cells, altered nanoscale organization of IgM-BCRs resulted in a failure of receptor editing and a skewed repertoire of B cells expressing immunoglobulin-µ heavy chains with hallmarks of poly- and auto-reactivity, which ultimately led to autoimmunity in mice. Thus, Cav1 emerges as a cell-intrinsic regulator that prevents B cell-induced autoimmunity by means of its role in plasma-membrane organization.


Assuntos
Linfócitos B/imunologia , Linfócitos B/metabolismo , Caveolina 1/metabolismo , Tolerância Imunológica , Receptores de Antígenos de Linfócitos B/metabolismo , Animais , Autoimunidade/genética , Autoimunidade/imunologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Caveolina 1/genética , Expressão Gênica , Tolerância Imunológica/genética , Imunoglobulina D/imunologia , Imunoglobulina D/metabolismo , Imunoglobulina M/imunologia , Imunoglobulina M/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fosforilação , Ligação Proteica , Receptores de Antígenos de Linfócitos B/genética
3.
Proc Natl Acad Sci U S A ; 121(30): e2319267121, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39008679

RESUMO

Migrasomes, vesicular organelles generated on the retraction fibers of migrating cells, play a crucial role in migracytosis, mediating intercellular communication. The cargoes determine the functional specificity of migrasomes. Migrasomes harbor numerous intraluminal vesicles, a pivotal component of their cargoes. The mechanism underlying the transportation of these intraluminal vesicles to the migrasomes remains enigmatic. In this study, we identified that Rab10 and Caveolin-1 (CAV1) mark the intraluminal vesicles in migrasomes. Transport of Rab10-CAV1 vesicles to migrasomes required the motor protein Myosin Va and adaptor proteins RILPL2. Notably, the phosphorylation of Rab10 by the kinase LRRK2 regulated this process. Moreover, CSF-1 can be transported to migrasomes through this mechanism, subsequently fostering monocyte-macrophage differentiation in skin wound healing, which served as a proof of the physiological importance of this transporting mechanism.


Assuntos
Caveolina 1 , Movimento Celular , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Humanos , Caveolina 1/metabolismo , Caveolina 1/genética , Macrófagos/metabolismo , Fosforilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Camundongos , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Transporte Biológico , Cicatrização/fisiologia , Organelas/metabolismo
4.
J Cell Sci ; 137(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660993

RESUMO

Zika virus (ZIKV) has gained notoriety in recent years because there are no targeted therapies or vaccines available so far. Caveolin-1 (Cav-1) in host cells plays crucial functions in the invasion of many viruses. However, its specific involvement in ZIKV infection has remained unclear. Here, we reveal that depleting Cav-1 leads to a substantial reduction in ZIKV RNA levels, protein expression and viral particle production, indicating that ZIKV exploits Cav-1 for its infection. By dissecting each stage of the viral life cycle, we unveil that, unlike its invasion role in many other viruses, Cav-1 depletion selectively impairs ZIKV replication, resulting in altered replication dynamics and reduced strand-specific RNA levels, but does not affect viral entry, maturation and release. These results reveal an unforeseen function of Cav-1 in facilitating ZIKV replication, which provides new insights into the intricate interaction between Cav-1 and ZIKV and underscores Cav-1 as a potential candidate for anti-ZIKV approaches.


Assuntos
Caveolina 1 , RNA Viral , Replicação Viral , Infecção por Zika virus , Zika virus , Caveolina 1/metabolismo , Caveolina 1/genética , Zika virus/fisiologia , Zika virus/metabolismo , Humanos , Infecção por Zika virus/virologia , Infecção por Zika virus/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , Interações Hospedeiro-Patógeno , Chlorocebus aethiops , Células Vero , Células HEK293 , Internalização do Vírus , Replicação do RNA
5.
EMBO Rep ; 25(5): 2441-2478, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649663

RESUMO

Ago2 differentially regulates oncogenic and tumor-suppressive miRNAs in cancer cells. This discrepancy suggests a secondary event regulating Ago2/miRNA action in a context-dependent manner. We show here that a positive charge of Ago2 K212, that is preserved by SIR2-mediated Ago2 deacetylation in cancer cells, is responsible for the direct interaction between Ago2 and Caveolin-1 (CAV1). Through this interaction, CAV1 sequesters Ago2 on the plasma membranes and regulates miRNA-mediated translational repression in a compartment-dependent manner. Ago2/CAV1 interaction plays a role in miRNA-mediated mRNA suppression and in miRNA release via extracellular vesicles (EVs) from tumors into the circulation, which can be used as a biomarker of tumor progression. Increased Ago2/CAV1 interaction with tumor progression promotes aggressive cancer behaviors, including metastasis. Ago2/CAV1 interaction acts as a secondary event in miRNA-mediated suppression and increases the complexity of miRNA actions in cancer.


Assuntos
Proteínas Argonautas , Caveolina 1 , MicroRNAs , Metástase Neoplásica , Animais , Humanos , Camundongos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Caveolina 1/metabolismo , Caveolina 1/genética , Linhagem Celular Tumoral , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , MicroRNAs/genética , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica , Sirtuína 2/metabolismo , Sirtuína 2/genética
6.
Cell ; 146(1): 148-63, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21729786

RESUMO

Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional cultures and promotes Rho- and force-dependent contraction, matrix alignment, and microenvironment stiffening through regulation of p190RhoGAP. In turn, microenvironment remodeling by Cav1 fibroblasts forces cell elongation. Cav1-deficient mice have disorganized stromal tissue architecture. Stroma associated with human carcinomas and melanoma metastases is enriched in Cav1-expressing carcinoma-associated fibroblasts (CAFs). Cav1 expression in breast CAFs correlates with low survival, and Cav1 depletion in CAFs decreases CAF contractility. Consistently, fibroblast expression of Cav1, through p190RhoGAP regulation, favors directional migration and invasiveness of carcinoma cells in vitro. In vivo, stromal Cav1 remodels peri- and intratumoral microenvironments to facilitate tumor invasion, correlating with increased metastatic potency. Thus, Cav1 modulates tissue responses through force-dependent architectural regulation of the microenvironment.


Assuntos
Caveolina 1/metabolismo , Metástase Neoplásica/patologia , Neoplasias/patologia , Animais , Movimento Celular , Fibroblastos/patologia , Humanos , Melanoma/patologia , Camundongos , Camundongos Knockout
7.
Traffic ; 24(2): 76-94, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36519961

RESUMO

Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.


Assuntos
Vesículas Extracelulares , Melanoma , Humanos , Caveolina 1/metabolismo , Autofagossomos/metabolismo , Vesículas Extracelulares/metabolismo , Colesterol/metabolismo
8.
FASEB J ; 38(1): e23343, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38071602

RESUMO

Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho-associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA-MB-231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae-independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA-MB-231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1-ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild-type MDA-MB-231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK-dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.


Assuntos
Caveolina 1 , Neoplasias da Próstata , Masculino , Humanos , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Mecanotransdução Celular , Mitocôndrias/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proteínas Mitocondriais/metabolismo , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismo
9.
EMBO Rep ; 24(3): e54701, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36683567

RESUMO

Transmembrane proteins are internalized by clathrin- and caveolin-dependent endocytosis. Both pathways converge on early endosomes and are thought to share the small GTPase Rab5 as common regulator. In contrast to this notion, we show here that the clathrin- and caveolin-mediated endocytic pathways are differentially regulated. Rab5 and Rab21 localize to distinct populations of early endosomes in cortical neurons and preferentially regulate clathrin- and caveolin-mediated pathways, respectively, suggesting heterogeneity in the early endosomes, rather than a converging point. Suppression of Rab21, but not Rab5, results in decreased plasma membrane localization and total protein levels of caveolin-1, which perturbs immature neurite pruning of cortical neurons, an in vivo-specific step of neuronal maturation. Taken together, our data indicate that clathrin- and caveolin-mediated endocytic pathways run in parallel in early endosomes, which show different molecular regulation and physiological function.


Assuntos
Caveolina 1 , Endossomos , Caveolina 1/metabolismo , Endossomos/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Endocitose , Clatrina/metabolismo
10.
J Mol Cell Cardiol ; 193: 25-35, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38768805

RESUMO

The YTH-domain family (YTHDF) of RNA binding proteins can control gene expression at the post-transcriptional level by regulating mRNAs with N6-methyladenosine (m6A) modifications. Despite the established importance of m6A in the heart, the cardiac role of specific m6A-binding proteins remains unclear. Here, we characterized the function of YTHDF1 in cardiomyocytes using a newly generated cardiac-restricted mouse model. Deletion of YTHDF1 in adult cardiomyocytes led to hypertrophy, fibrosis, and dysfunction. Using mass spectrometry, we identified the necessity of YTHDF1 for the expression of cardiomyocyte membrane raft proteins. Specifically, YTHDF1 bound to m6A-modified Caveolin 1 (Cav1) mRNA and favored its translation. We further demonstrated that YTHDF1 regulates downstream ERK signaling. Altogether, our findings highlight a novel role for YTHDF1 as a post-transcriptional regulator of caveolar proteins which is necessary for the maintenance of cardiac function.


Assuntos
Homeostase , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Miócitos Cardíacos/metabolismo , Camundongos , Caveolina 1/metabolismo , Caveolina 1/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Miocárdio/metabolismo , Regulação da Expressão Gênica , Adenosina/análogos & derivados , Adenosina/metabolismo , Camundongos Knockout , Biossíntese de Proteínas
11.
Am J Physiol Cell Physiol ; 326(1): C125-C142, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37955123

RESUMO

The ionotropic purinergic P2X7 receptor responds to extracellular ATP and can trigger proinflammatory immune signaling in macrophages. Caveolin-1 (Cav-1) is known to modulate functions of macrophages and innate immunity. However, it is unknown how Cav-1 modulates P2X7 receptor activity in macrophages. We herein examined P2X7 receptor activity and macrophage functions using bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Cav-1 knockout (KO) mice. ATP (1 mM) application caused biphasic increase in cytosolic [Ca2+] and sustained decrease in cytosolic [K+]. A specific P2X7 receptor blocker, A-740003, inhibited the maintained cytosolic [Ca2+] increase and cytosolic [K+] decrease. Total internal reflection fluorescent imaging and proximity ligation assays revealed a novel molecular complex formation between P2X7 receptors and Cav-1 in WT BMDMs that were stimulated with lipopolysaccharides. This molecular coupling was increased by ATP application. Specifically, the ATP-induced Ca2+ influx and K+ efflux through P2X7 receptors were increased in Cav-1 KO BMDMs, even though the total and surface protein levels of P2X7 receptors in WT and Cav-1 KO BMDMs were unchanged. Cell-impermeable dye (TO-PRO3) uptake analysis revealed that macropore formation of P2X7 receptors was enhanced in Cav-1 KO BMDMs. Cav-1 KO BMDMs increased ATP-induced IL-1ß secretion, reactive oxygen species production, Gasdermin D (GSDMD) cleavage, and lactate dehydrogenase release indicating pyroptosis. A-740003 completely prevented ATP-induced pyroptosis. In combination, these datasets show that Cav-1 has a negative effect on P2X7 receptor activity in BMDMs and that Cav-1 in macrophages may contribute to finely tuned immune responses by preventing excessive IL-1ß secretion and pyroptosis.NEW & NOTEWORTHY In bone marrow-derived macrophages, Cav-1 suppresses the macropore formation of P2X7 receptors through their direct or indirect interactions, resulting in reduced membrane permeability of cations (Ca2+ and K+) and large cell-impermeable dye (TO-PRO3) induced by ATP. Cav-1 also inhibits ATP-induced IL-1ß secretion, ROS production, GSDMD cleavage, and pyroptosis. Cav-1 contributes to the maintenance of proper immune responses by finely tuning IL-1ß secretion and cell death in macrophages.


Assuntos
Caveolina 1 , Receptores Purinérgicos P2X7 , Animais , Camundongos , Trifosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos P2X7/metabolismo
12.
Am J Physiol Cell Physiol ; 327(1): C48-C64, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708522

RESUMO

Deficiencies in mice and in humans have brought to the fore the importance of the caveolar network in key aspects of adipocyte biology. The conserved N-terminal caveolin-binding motif (CBM) of the ubiquitous Na/K-ATPase (NKA) α1 isoform, which allows NKA/caveolin-1 (Cav1) interaction, influences NKA signaling and caveolar distribution. It has been shown to be critical for animal development and ontogenesis, as well as lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs). However, its role in postnatal adipogenesis has not been fully examined. Using a genetic approach to alter CBM in hiPSC-derived adipocytes (iAdi-mCBM) and in mice (mCBM), we investigated the regulatory function of NKA CBM signaling in adipogenesis. Seahorse XF cell metabolism analyses revealed impaired glycolysis and decreased ATP synthesis-coupled respiration in iAdi-mCBM. These metabolic dysfunctions were accompanied by evidence of extensive remodeling of the extracellular matrix (ECM), including increased collagen staining, overexpression of ECM marker genes, and heightened TGF-ß signaling uncovered by RNAseq analysis. Rescue of mCBM by lentiviral delivery of WT NKA α1 or treatment of mCBM hiPSCs with the TGF-ß inhibitor SB431542 normalized ECM, suggesting that NKA CBM signaling integrity is required for adequate control of TGF-ß signaling and ECM stiffness during adipogenesis. The physiological impact was revealed in mCBM male mice with reduced fat mass accompanied by histological and transcriptional evidence of elevated adipose fibrosis and decreased adipocyte size. Based on these findings, we propose that the genetic alteration of the NKA/Cav1 regulatory path uncovered in human iAdi leads to lipodystrophy in mice.NEW & NOTEWORTHY A Na/K-ATPase α1 caveolin-binding motif regulates adipogenesis. Mutation of this binding motif in the mouse leads to reduced fat with increased extracellular matrix production and inflammation. RNA-seq analysis and pharmacological interventions in human iPSC-derived adipocytes revealed that TGF-ß signal, rather than Na/K-ATPase-mediated ion transport, is a key mediator of NKA regulation of adipogenesis.


Assuntos
Adipócitos , Adipogenia , Caveolina 1 , Células-Tronco Pluripotentes Induzidas , ATPase Trocadora de Sódio-Potássio , Adipogenia/genética , Animais , Caveolina 1/metabolismo , Caveolina 1/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Humanos , Camundongos , Adipócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais , Diferenciação Celular , Masculino , Matriz Extracelular/metabolismo , Motivos de Aminoácidos , Camundongos Endogâmicos C57BL
13.
J Cell Mol Med ; 28(3): e18110, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164042

RESUMO

BACKGROUND AND AIMS: The secretion of bile salts transported by the bile salt export pump (BSEP) is the primary driving force for the generation of bile flow; thus, it is closely related to the formation of cholesterol stones. Caveolin-1 (Cav-1), an essential player in cell signalling and endocytosis, is known to co-localize with cholesterol-rich membrane domains. This study illustrates the role of Cav-1 and BSEP in cholesterol stone formation. METHODS: Adult male C57BL/6 mice were used as an animal model. HepG2 cells were cultured under different cholesterol concentrations and BSEP, Cav-1, p-PKCα and Hax-1 expression levels were determined via Western blotting. Expression levels of BSEP and Cav-1 mRNA were detected using real-time PCR. Immunofluorescence and immunoprecipitation assays were performed to study BSEP and Hax-1 distribution. Finally, an ATPase activity assay was performed to detect BSEP transport activity under different cholesterol concentrations in cells. RESULTS: Under low-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels significantly increased, PKCα phosphorylation significantly decreased, BSEP binding capacity to Hax-1 weakened, and BSEP function increased. Under high-concentration stimulation with cholesterol, Cav-1 and BSEP protein and mRNA expression levels decreased, PKCα phosphorylation increased, BSEP binding capacity to Hax-1 rose, and BSEP function decreased. CONCLUSION: Cav-1 regulates the bile salt export pump on the canalicular membrane of hepatocytes via PKCα-associated signalling under cholesterol stimulation.


Assuntos
Caveolina 1 , Proteína Quinase C-alfa , Animais , Masculino , Camundongos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácidos e Sais Biliares/metabolismo , Caveolina 1/metabolismo , Colesterol/metabolismo , Hepatócitos/metabolismo , Camundongos Endogâmicos C57BL , Proteína Quinase C-alfa/metabolismo , RNA Mensageiro/metabolismo , Humanos
14.
J Biol Chem ; 299(4): 104574, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870682

RESUMO

Caveolin-1 (CAV1) is a membrane-sculpting protein that oligomerizes to generate flask-shaped invaginations of the plasma membrane known as caveolae. Mutations in CAV1 have been linked to multiple diseases in humans. Such mutations often interfere with oligomerization and the intracellular trafficking processes required for successful caveolae assembly, but the molecular mechanisms underlying these defects have not been structurally explained. Here, we investigate how a disease-associated mutation in one of the most highly conserved residues in CAV1, P132L, affects CAV1 structure and oligomerization. We show that P132 is positioned at a major site of protomer-protomer interactions within the CAV1 complex, providing a structural explanation for why the mutant protein fails to homo-oligomerize correctly. Using a combination of computational, structural, biochemical, and cell biological approaches, we find that despite its homo-oligomerization defects P132L is capable of forming mixed hetero-oligomeric complexes with WT CAV1 and that these complexes can be incorporated into caveolae. These findings provide insights into the fundamental mechanisms that control the formation of homo- and hetero-oligomers of caveolins that are essential for caveolae biogenesis, as well as how these processes are disrupted in human disease.


Assuntos
Caveolina 1 , Caveolinas , Doença , Humanos , Cavéolas/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolinas/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Mutação , Subunidades Proteicas/metabolismo , Doença/genética
15.
Am J Physiol Lung Cell Mol Physiol ; 327(2): L150-L159, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38771147

RESUMO

Alteration in the normal mechanical forces of breathing can contribute to changes in contractility and remodeling characteristic of airway diseases, but the mechanisms that mediate these effects in airway cells are still under investigation. Airway smooth muscle (ASM) cells contribute to both contractility and extracellular matrix (ECM) remodeling. In this study, we explored ASM mechanisms activated by mechanical stretch, focusing on mechanosensitive piezo channels and the key Ca2+ regulatory protein stromal interaction molecule 1 (STIM1). Expression of Ca2+ regulatory proteins, including STIM1, Orai1, and caveolin-1, mechanosensitive ion channels Piezo-1 and Piezo-2, and NLRP3 inflammasomes were upregulated by 10% static stretch superimposed on 5% cyclic stretch. These effects were blunted by STIM1 siRNA. Histamine-induced [Ca2+]i responses and inflammasome activation were similarly blunted by STIM1 knockdown. These data show that the effects of mechanical stretch in human ASM cells are mediated through STIM1, which activates multiple pathways, including Piezo channels and the inflammasome, leading to potential downstream changes in contractility and ECM remodeling.NEW & NOTEWORTHY Mechanical forces on the airway can contribute to altered contractility and remodeling in airway diseases, but the mechanisms are not clearly understood. Using human airway smooth muscle cells exposed to cyclic forces with static stretch to mimic breathing and static pressure, we found that the effects of stretch are mediated through STIM1, resulting in the activation of multiple pathways, including Piezo channels and the inflammasome, with potential downstream influences on contractility and remodeling.


Assuntos
Miócitos de Músculo Liso , Molécula 1 de Interação Estromal , Humanos , Molécula 1 de Interação Estromal/metabolismo , Molécula 1 de Interação Estromal/genética , Miócitos de Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Inflamassomos/metabolismo , Estresse Mecânico , Mecanotransdução Celular , Músculo Liso/metabolismo , Canais Iônicos/metabolismo , Caveolina 1/metabolismo , Caveolina 1/genética , Transdução de Sinais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Cálcio/metabolismo , Células Cultivadas , Contração Muscular/fisiologia , Remodelação das Vias Aéreas/fisiologia , Proteína ORAI1/metabolismo , Proteína ORAI1/genética
16.
J Virol ; 97(8): e0068123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37493545

RESUMO

Feline herpesvirus type 1 (FHV-1) is an enveloped dsDNA virus belonging to the Herpesviridae family and is considered one of the two primary viral etiological factors of feline upper respiratory tract disease. In this study, we investigated the entry of FHV-1 into host cells using two models: the AK-D cell line and primary feline skin fibroblasts (FSFs). We employed confocal microscopy, siRNA silencing, and selective inhibitors of various entry pathways. Our observations revealed that the virus enters cells via pH and dynamin-dependent endocytosis, as the infection was significantly inhibited by NH4Cl, bafilomycin A1, dynasore, and mitmab. Additionally, genistein, nystatin, and filipin treatments, siRNA knock-down of caveolin-1, as well as FHV-1 and caveolin-1 colocalization suggest the involvement of caveolin-mediated endocytosis during the entry process. siRNA knock-down of clathrin heavy chain and analysis of virus particle colocalization with clathrin indicated that clathrin-mediated endocytosis also takes part in the primary cells. This is the first study to systematically examine FHV-1 entry into host cells, and for the first time, we describe FHV-1 replication in AK-D and FSFs. IMPORTANCE Feline herpesvirus 1 (FHV-1) is one of the most prevalent viruses in cats, causing feline viral rhinotracheitis, which is responsible for over half of viral upper respiratory diseases in cats and can lead to ocular lesions resulting in loss of sight. Although the available vaccine reduces the severity of the disease, it does not prevent infection or limit virus shedding. Despite the clinical relevance, the entry mechanisms of FHV-1 have not been thoroughly studied. Considering the limitations of commonly used models based on immortalized cells, we sought to verify our findings using primary feline skin fibroblasts, the natural target for infection in cats.


Assuntos
Doenças do Gato , Endocitose , Infecções por Herpesviridae , Varicellovirus , Animais , Gatos , Doenças do Gato/virologia , Caveolina 1/metabolismo , Clatrina/metabolismo , Infecções por Herpesviridae/veterinária , RNA Interferente Pequeno/genética , Varicellovirus/metabolismo
17.
Biochem Soc Trans ; 52(2): 947-959, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38526159

RESUMO

Caveolin-1 (Cav1) is a 22 kDa intracellular protein that is the main protein constituent of bulb-shaped membrane invaginations known as caveolae. Cav1 can be also found in functional non-caveolar structures at the plasma membrane called scaffolds. Scaffolds were originally described as SDS-resistant oligomers composed of 10-15 Cav1 monomers observable as 8S complexes by sucrose velocity gradient centrifugation. Recently, cryoelectron microscopy (cryoEM) and super-resolution microscopy have shown that 8S complexes are interlocking structures composed of 11 Cav1 monomers each, which further assemble modularly to form higher-order scaffolds and caveolae. In addition, Cav1 can act as a critical signaling regulator capable of direct interactions with multiple client proteins, in particular, the endothelial nitric oxide (NO) synthase (eNOS), a role believed by many to be attributable to the highly conserved and versatile scaffolding domain (CSD). However, as the CSD is a hydrophobic domain located by cryoEM to the periphery of the 8S complex, it is predicted to be enmeshed in membrane lipids. This has led some to challenge its ability to interact directly with client proteins and argue that it impacts signaling only indirectly via local alteration of membrane lipids. Here, based on recent advances in our understanding of higher-order Cav1 structure formation, we discuss how the Cav1 CSD may function through both lipid and protein interaction and propose an alternate view in which structural modifications to Cav1 oligomers may impact exposure of the CSD to cytoplasmic client proteins, such as eNOS.


Assuntos
Caveolina 1 , Transdução de Sinais , Animais , Humanos , Cavéolas/metabolismo , Caveolina 1/metabolismo , Caveolina 1/química , Membrana Celular/metabolismo , Microscopia Crioeletrônica , Óxido Nítrico Sintase Tipo III/metabolismo , Domínios Proteicos
18.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664801

RESUMO

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Assuntos
Caveolina 1 , Dieta Hiperlipídica , Células Endoteliais , Endotélio Vascular , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo III , Vasodilatação , Animais , Masculino , Camundongos , Aorta/enzimologia , Aorta/fisiopatologia , Aorta/metabolismo , Aorta/efeitos dos fármacos , Aorta/patologia , Caveolina 1/metabolismo , Caveolina 1/deficiência , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/fisiopatologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Endotélio Vascular/metabolismo , Endotélio Vascular/enzimologia , Endotélio Vascular/efeitos dos fármacos , Camundongos Knockout , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/enzimologia , Obesidade/fisiopatologia , Obesidade/metabolismo , Transdução de Sinais , Esterol Esterase/metabolismo , Esterol Esterase/genética , Ubiquitinação , Vasodilatação/efeitos dos fármacos
19.
FASEB J ; 37(12): e23300, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37997673

RESUMO

Primary cilium is a specialized sensory organelle that transmits environmental information into cells. Its length is tightly controlled by various mechanisms such as the frequency or the cargo size of the intraflagellar transport trains which deliver the building materials such as tubulin subunits essential for the growing cilia. Here, we show the sialoglycan interacting galectin 8 regulates the process of primary ciliogenesis. As the epithelia become polarized, there are more galectin 8 being apically secreted and these extracellular galectin 8 molecules apparently bind to a lipid raft enriched domain at the base of the primary cilia through interacting with lipid raft components, such as GD3 ganglioside and scaffold protein caveolin 1. Furthermore, the binding of galectin 8 at this critical region triggers rapid growth of primary cilia by perturbing the barrier function of the transition zone (TZ). Our study also demonstrates the functionality of this barrier depends on intact organization of lipid rafts at the cilia as genetically knockout of Cav1 and pharmacologically inhibition of lipid raft both phenocopy the effect of apical addition of recombinant galectin 8; that is, rapid elongation of primary cilia and redistribution of cilia proteins from TZ to the growing axoneme. Indeed, as cilia elongated, endogenous galectin 8, caveolin 1, and TZ component, TMEM231, also transited from the TZ to the growing axoneme. We also noted that the interaction between caveolin 1 and TMEM231 could be perturbed by exogenous galectin 8. Taken together, we proposed that galectin 8 promoted primary cilia elongation through impeding the barrier function of the TZ by interfering with the interaction between caveolin 1 and TMEM231.


Assuntos
Caveolina 1 , Cílios , Caveolina 1/metabolismo , Cílios/metabolismo , Transporte Biológico , Tubulina (Proteína)/metabolismo , Microdomínios da Membrana/metabolismo
20.
Circ Res ; 130(9): 1321-1341, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382554

RESUMO

BACKGROUND: Cerebral small vessel injury, including loss of endothelial tight junctions, endothelial dysfunction, and blood-brain barrier breakdown, is an early and typical pathology for Alzheimer's disease, cerebral amyloid angiopathy, and hypertension-related cerebral small vessel disease. Whether there is a common mechanism contributing to these cerebrovascular alterations remains unclear. Studies have shown an elevation of BACE1 (ß-site amyloid precursor protein cleaving enzyme 1) in cerebral vessels from cerebral amyloid angiopathy or Alzheimer's disease patients, suggesting that vascular BACE1 may involve in cerebral small vessel injury. METHODS: To understand the contribution of vascular BACE1 to cerebrovascular impairments, we combined cellular and molecular techniques, mass spectrometry, immunostaining approaches, and functional testing to elucidate the potential pathological mechanisms. RESULTS: We observe a 3.71-fold increase in BACE1 expression in the cerebral microvessels from patients with hypertension. Importantly, we discover that an endothelial tight junction protein, occludin, is a completely new substrate for endothelial BACE1. BACE1 cleaves occludin with full-length occludin reductions and occludin fragment productions. An excessive cleavage by elevated BACE1 induces membranal accumulation of caveolin-1 and subsequent caveolin-1-mediated endocytosis, resulting in lysosomal degradation of other tight junction proteins. Meanwhile, membranal caveolin-1 increases the binding to eNOS (endothelial nitric oxide synthase), together with raised circulating Aß (ß-amyloid peptides) produced by elevated BACE1, leading to an attenuation of eNOS activity and resultant endothelial dysfunction. Furthermore, the initial endothelial damage provokes chronic reduction of cerebral blood flow, blood-brain barrier leakage, microbleeds, tau hyperphosphorylation, synaptic loss, and cognitive impairment in endothelial-specific BACE1 transgenic mice. Conversely, inhibition of aberrant BACE1 activity ameliorates tight junction loss, endothelial dysfunction, and memory deficits. CONCLUSIONS: Our findings establish a novel and direct relationship between endothelial BACE1 and cerebral small vessel damage, indicating that abnormal elevation of endothelial BACE1 is a new mechanism for cerebral small vessel disease pathogenesis.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doenças de Pequenos Vasos Cerebrais , Hipertensão , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide , Animais , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/metabolismo , Humanos , Hipertensão/complicações , Camundongos , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/metabolismo , Ocludina/metabolismo , Proteínas de Junções Íntimas , Junções Íntimas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA