Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2032): 20240428, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39353557

RESUMO

Mutualistic relationships with photosynthetic organisms are common in cnidarians, which form an intracellular symbiosis with dinoflagellates in the family Symbiodiniaceae. The establishment and maintenance of these symbionts are associated with the suppression of key host immune factors. Because of this, there are potential trade-offs between the nutrition that cnidarian hosts gain from their symbionts and their ability to successfully defend themselves from pathogens. To investigate these potential trade-offs, we utilized the facultatively symbiotic polyps of the upside-down jellyfish Cassiopea xamachana and exposed aposymbiotic and symbiotic polyps to the pathogen Serratia marcescens. Symbiotic polyps had a lower probability of survival following S. marcescens exposure. Gene expression analyses 24 hours following pathogen exposure indicate that symbiotic animals mounted a more damaging immune response, with higher levels of inflammation and oxidative stress likely resulting in more severe disruptions to cellular homeostasis. Underlying this more damaging immune response may be differences in constitutive and pathogen-induced expression of immune transcription factors between aposymbiotic and symbiotic polyps rather than broadscale immune suppression during symbiosis. Our findings indicate that in facultatively symbiotic polyps, hosting symbionts limits C. xamachana's ability to survive pathogen exposure, indicating a trade-off between symbiosis and immunity that has potential implications for coral disease research.


Assuntos
Imunidade Inata , Serratia marcescens , Simbiose , Animais , Serratia marcescens/fisiologia , Dinoflagellida/fisiologia , Dinoflagellida/imunologia , Cifozoários/microbiologia , Cifozoários/imunologia , Cifozoários/fisiologia , Cnidários/imunologia , Cnidários/fisiologia , Fotossíntese
2.
J Exp Biol ; 227(9)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38738313

RESUMO

A hydrostatic skeleton allows a soft body to transmit muscular force via internal pressure. A human's tongue, an octopus' arm and a nematode's body illustrate the pervasive presence of hydrostatic skeletons among animals, which has inspired the design of soft engineered actuators. However, there is a need for a theoretical basis for understanding how hydrostatic skeletons apply mechanical work. We therefore modeled the shape change and mechanics of natural and engineered hydrostatic skeletons to determine their mechanical advantage (MA) and displacement advantage (DA). These models apply to a variety of biological structures, but we explicitly consider the tube feet of a sea star and the body segments of an earthworm, and contrast them with a hydraulic press and a McKibben actuator. A helical winding of stiff, elastic fibers around these soft actuators plays a critical role in their mechanics by maintaining a cylindrical shape, distributing forces throughout the structure and storing elastic energy. In contrast to a single-joint lever system, soft hydrostats exhibit variable gearing with changes in MA generated by deformation in the skeleton. We found that this gearing is affected by the transmission efficiency of mechanical work (MA×DA) or, equivalently, the ratio of output to input work. The transmission efficiency changes with the capacity to store elastic energy within helically wrapped fibers or associated musculature. This modeling offers a conceptual basis for understanding the relationship between the morphology of hydrostatic skeletons and their mechanical performance.


Assuntos
Oligoquetos , Animais , Fenômenos Biomecânicos , Oligoquetos/fisiologia , Modelos Biológicos , Cifozoários/fisiologia , Cifozoários/anatomia & histologia , Esqueleto/fisiologia
3.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836589

RESUMO

For organisms to have robust locomotion, their neuromuscular organization must adapt to constantly changing environments. In jellyfish, swimming robustness emerges when marginal pacemakers fire action potentials throughout the bell's motor nerve net, which signals the musculature to contract. The speed of the muscle activation wave is dictated by the passage times of the action potentials. However, passive elastic material properties also influence the emergent kinematics, with time scales independent of neuromuscular organization. In this multimodal study, we examine the interplay between these two time scales during turning. A three-dimensional computational fluid-structure interaction model of a jellyfish was developed to determine the resulting emergent kinematics, using bidirectional muscular activation waves to actuate the bell rim. Activation wave speeds near the material wave speed yielded successful turns, with a 76-fold difference in turning rate between the best and worst performers. Hyperextension of the margin occurred only at activation wave speeds near the material wave speed, suggesting resonance. This hyperextension resulted in a 34-fold asymmetry in the circulation of the vortex ring between the inside and outside of the turn. Experimental recording of the activation speed confirmed that jellyfish actuate within this range, and flow visualization using particle image velocimetry validated the corresponding fluid dynamics of the numerical model. This suggests that neuromechanical wave resonance plays an important role in the robustness of an organism's locomotory system and presents an undiscovered constraint on the evolution of flexible organisms. Understanding these dynamics is essential for developing actuators in soft body robotics and bioengineered pumps.


Assuntos
Cifozoários/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Módulo de Elasticidade , Hidrodinâmica , Modelos Biológicos , Músculos/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301888

RESUMO

Water mixing is a critical mechanism in marine habitats that governs many important processes, including nutrient transport. Physical mechanisms, such as winds or tides, are primarily responsible for mixing effects in shallow coastal systems, but the sheltered habitats adjacent to mangroves experience very low turbulence and vertical mixing. The significance of biogenic mixing in pelagic habitats has been investigated but remains unclear. In this study, we show that the upside-down jellyfish Cassiopea sp. plays a significant role with respect to biogenic contributions to water column mixing within its shallow natural habitat ([Formula: see text] m deep). The mixing contribution was determined by high-resolution flow velocimetry methods in both the laboratory and the natural environment. We demonstrate that Cassiopea sp. continuously pump water from the benthos upward in a vertical jet with flow velocities on the scale of centimeters per second. The volumetric flow rate was calculated to be 212 L⋅h-1 for average-sized animals (8.6 cm bell diameter), which translates to turnover of the entire water column every 15 min for a median population density (29 animals per m2). In addition, we found Cassiopea sp. are capable of releasing porewater into the water column at an average rate of 2.64 mL⋅h-1 per individual. The release of nutrient-rich benthic porewater combined with strong contributions to water column mixing suggests a role for Cassiopea sp. as an ecosystem engineer in mangrove habitats.


Assuntos
Ecossistema , Meio Ambiente , Cifozoários/fisiologia , Água/fisiologia , Animais , Densidade Demográfica
5.
Ecotoxicol Environ Saf ; 285: 117112, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39332202

RESUMO

OBJECTIVE: Our research aims to investigate the specific mechanisms by which copper inhibits the asexual proliferation of Aurelia coerulea polyps. METHODS: Aurelia coerulea polyps were exposed to various CuSO4 concentrations to study metamorphosis and budding proliferation. Oxidative stress markers (ROS, MDA, CAT, H2O2, T-AOC, SOD) were measured in polyps and early strobilae. Transcriptomic analysis were used to compare differences in gene expression and enrichment pathways between untreated and copper-exposed polyps. Additionally, RT-qPCR was used to analyze the expression of key molecules. Antioxidant L-Ascorbic acid was applied to determine the role of oxidative stress in asexual reproduction of Aurelia coerulea polyps when exposed to copper. RESULTS: Copper inhibited strobilization and budding of Aurelia coerulea polyps in a dose-dependent manner, in which oxidative stress was involved. Transcriptomic data suggested that the DNA replication pathway was significantly enriched in early strobilae compared to polyps. However, copper treatment repealed the difference of DNA replication pathway between early strobilae compared and polyps. Transcriptomic data suggested that alanine, aspartate, and glutamate metabolism pathways were enriched in untreated budding polyps compared to copper-exposed polyps. After applying the antioxidant L-Ascorbic acid to copper-exposed polyps, various oxidative indicators changed to different extents, with increases in ROS, MDA, CAT, H2O2, and SOD and a decrease in T-AOC. Further more, the time required for polyps to develop into early strobila was shortened, indicating that the delay in metamorphosis caused by copper exposure was effectively alleviated. And the budding rate increased, indicating that the inhibition of budding proliferation caused by copper exposure was effectively alleviated. The expression of key genes were consist with the transcriptomic sequencing results. CONCLUSION: Copper exposure causes oxidative stress resulting in the inhibition of asexual reproduction in Aurelia coerulea polyps, including metamorphosis and budding.


Assuntos
Cobre , Estresse Oxidativo , Reprodução Assexuada , Estresse Oxidativo/efeitos dos fármacos , Reprodução Assexuada/efeitos dos fármacos , Cobre/toxicidade , Cifozoários/efeitos dos fármacos , Cifozoários/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Peróxido de Hidrogênio/toxicidade , Metamorfose Biológica/efeitos dos fármacos , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/efeitos dos fármacos , Sulfato de Cobre/toxicidade
6.
Ecotoxicology ; 32(5): 618-627, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37269410

RESUMO

The aim of this study is to investigate for the first time the uptake and ecotoxicological effects of nanoplastics (NPs) in a marine cnidarian. Ephyrae of the moon jellyfish Aurelia sp. of different ages (0 and 7 days old) were exposed to negatively charged polystyrene NPs for 24 h; then, the uptake was assessed through traditional and novel techniques, namely microscopy and three-dimensional (3D) holotomography. Immobility and behavioral responses (frequency of pulsations) of ephyrae were also investigated to clarify if NP toxicity differed along the first life stages. NP uptake was observed in ephyrae thanks to the 3D technique. Such internalization did not affect survival, but it temporarily impaired the pulsation mode only in 0 day old ephyrae. This may be ascribed to the negative charged NPs, contributing to jellyfish behavioral alteration. These findings promote 3D holotomography as a suitable tool to detect NPs in marine organisms. Moreover, this study recommends the use of cnidarians of different ages to better assess NP ecotoxicological effects in these organisms, key components of the marine food web.


Assuntos
Cifozoários , Animais , Cifozoários/fisiologia , Microplásticos/farmacologia , Poliestirenos/farmacologia , Ecotoxicologia
7.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258622

RESUMO

Although neural tissues in cnidarian hydroids have a nerve net structure, some cnidarian medusae contain well-defined nerve tracts. As an example, the hydrozoan medusa Aglantha digitale has neural feeding circuits that show an alignment and condensation, which is absent in its relatives Aequorea victoria and Clytia hemisphaerica. In some cases, neural condensations take the form of fast propagating giant axons concerned with escape or evasion. Such giant axons appear to have developed from the fusion of many, much finer units. Ribosomal DNA analysis has identified the lineage leading to giant axon-based escape swimming in Aglantha and other members of the Aglaura clade of trachymedusan jellyfish. The Aglaura, along with sister subclades that include species such as Colobonema sericeum, have the distinctive ability to perform dual swimming, i.e. to swim at either high or low speeds. However, the form of dual swimming exhibited by Colobonema differs both biomechanically and physiologically from that in Aglantha and is not giant axon based. Comparisons between the genomes of such closely related species might provide a means to determine the molecular basis of giant axon formation and other neural condensations. The molecular mechanism responsible may involve 'fusogens', small molecules possibly derived from viruses, which draw membranes together prior to fusion. Identifying these fusogen-based mechanisms using genome analysis may be hindered by the many changes in anatomy and physiology that followed giant axon evolution, but the genomic signal-to-noise ratio may be improved by examining the convergent evolution of giant axons in other hydrozoa, such as the subclass Siphonophora.


Assuntos
Hidrozoários , Cifozoários , Animais , Axônios/fisiologia , Hidrozoários/genética , Filogenia , Cifozoários/fisiologia , Natação
8.
Proc Biol Sci ; 287(1941): 20202393, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33323078

RESUMO

The upside-down jellyfish Cassiopea engages in symbiosis with photosynthetic microalgae that facilitate uptake and recycling of inorganic nutrients. By contrast to most other symbiotic cnidarians, algal endosymbionts in Cassiopea are not restricted to the gastroderm but are found in amoebocyte cells within the mesoglea. While symbiont-bearing amoebocytes are highly abundant, their role in nutrient uptake and cycling in Cassiopea remains unknown. By combining isotopic labelling experiments with correlated scanning electron microscopy, and Nano-scale secondary ion mass spectrometry (NanoSIMS) imaging, we quantified the anabolic assimilation of inorganic carbon and nitrogen at the subcellular level in juvenile Cassiopea medusae bell tissue. Amoebocytes were clustered near the sub-umbrella epidermis and facilitated efficient assimilation of inorganic nutrients. Photosynthetically fixed carbon was efficiently translocated between endosymbionts, amoebocytes and host epidermis at rates similar to or exceeding those observed in corals. The Cassiopea holobionts efficiently assimilated ammonium, while no nitrate assimilation was detected, possibly reflecting adaptation to highly dynamic environmental conditions of their natural habitat. The motile amoebocytes allow Cassiopea medusae to distribute their endosymbiont population to optimize access to light and nutrients, and transport nutrition between tissue areas. Amoebocytes thus play a vital role for the assimilation and translocation of nutrients in Cassiopea, providing an interesting new model for studies of metabolic interactions in photosymbiotic marine organisms.


Assuntos
Dinoflagellida/fisiologia , Cifozoários/fisiologia , Simbiose/fisiologia , Compostos de Amônio , Animais , Antozoários , Ecossistema , Nitrogênio/metabolismo , Nutrientes , Fotossíntese
9.
J Theor Biol ; 494: 110237, 2020 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-32151621

RESUMO

There are many marine animals that employ a form of jet propulsion to move through the water, often creating the jets by expanding and collapsing internal fluid cavities. Due to the unsteady nature of this form of locomotion and complex body/nozzle geometries, standard modeling techniques prove insufficient at capturing internal pressure dynamics, and hence swimming forces. This issue has been resolved with a novel technique for predicting the pressure inside deformable jet producing cavities (M. Krieg and K. Mohseni, J. Fluid Mech., 769, 2015), which is derived from evolution of the surrounding fluid circulation. However, this model was only validated for an engineered jet thruster with simple geometry and relatively high Reynolds number (Re) jets. The purpose of this manuscript is twofold: (i) to demonstrate how the circulation based pressure model can be used to analyze different animal body motions as they relate to propulsive output, for multiple species of jetting animals, (ii) and to quantitatively validate the pressure modeling for biological jetting organisms (typically characterized by complicated cavity geometry and low/intermediate Re flows). Using jellyfish (Sarsia tubulosa) as an example, we show that the pressure model is insensitive to complex cavity geometry, and can be applied to lower Re swimming. By breaking down the swimming behavior of the jellyfish, as well as that of squid and dragonfly larvae, according to circulation generating mechanisms, we demonstrate that the body motions of Sarsia tubulosa are optimized for acceleration at the beginning of pulsation as a survival response. Whereas towards the end of jetting, the velar morphology is adjusted to decrease the energetic cost. Similarly, we show that mantle collapse rates in squid maximize propulsive efficiency. Finally, we observe that the hindgut geometry of dragonfly larvae minimizes the work required to refill the cavity. Date Received: 10-18-2019, Date Accepted: 99-99-9999 *kriegmw@hawaii.edu, UHM Ocean and Res Eng, 2540 Dole St, Honolulu, HI 96822.


Assuntos
Organismos Aquáticos , Decapodiformes , Modelos Biológicos , Cifozoários , Natação , Animais , Fenômenos Biomecânicos , Decapodiformes/fisiologia , Larva/anatomia & histologia , Larva/fisiologia , Odonatos/fisiologia , Pressão , Cifozoários/fisiologia
10.
Ecotoxicol Environ Saf ; 189: 109983, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31785944

RESUMO

For the first time, we report a correspondence between microplastics (MP) ingestion and ecotoxicological effects in gelatinous zooplankton (Cnidarian jellyfish). The ephyra stage of the jellyfish Aurelia sp. was exposed to both environmental and high concentrations of fluorescent 1-4 µm polyethylene MP (0.01-10 mg/L). After 24 and 48 h, MP accumulation, acute (Immobility) and behavioral (Frequency pulsation) endpoints were investigated. MP were detected by confocal and tomographic investigations on gelatinous body and mouth, either attached on the surface or ingested. This interaction was responsible for impairing ephyrae survival and behavior at all tested concentrations after 24 h. Acute and behavioral effects were also related to mechanical disturbance, caused by MP, triggering a loss of radial symmetry. Contaminated ephyrae exposed to clean seawater showed full recovery after 72 h highlighting the organisms without the microspheres, attached on body jellyfish surface around the mouth and lappets. In conclusion, short-term exposure to MP affects ephyrae jellyfish health, impairing both their survival and behavior. Polyethylene MP temporarily affect both Immobility and Frequency of pulsation of Aurelia sp. jellyfish. This study provides a first step towards understanding and clarifying the potential impacts of MP contamination in gelatinous zooplankton.


Assuntos
Comportamento Animal/efeitos dos fármacos , Microplásticos/toxicidade , Cifozoários/fisiologia , Poluentes Químicos da Água/toxicidade , Zooplâncton/fisiologia , Animais , Ingestão de Alimentos , Ecotoxicologia , Polietileno/toxicidade , Cifozoários/efeitos dos fármacos , Testes de Toxicidade Aguda , Zooplâncton/efeitos dos fármacos
11.
BMC Biol ; 17(1): 28, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30925871

RESUMO

BACKGROUND: Unique among cnidarians, jellyfish have remarkable morphological and biochemical innovations that allow them to actively hunt in the water column and were some of the first animals to become free-swimming. The class Scyphozoa, or true jellyfish, are characterized by a predominant medusa life-stage consisting of a bell and venomous tentacles used for hunting and defense, as well as using pulsed jet propulsion for mobility. Here, we present the genome of the giant Nomura's jellyfish (Nemopilema nomurai) to understand the genetic basis of these key innovations. RESULTS: We sequenced the genome and transcriptomes of the bell and tentacles of the giant Nomura's jellyfish as well as transcriptomes across tissues and developmental stages of the Sanderia malayensis jellyfish. Analyses of the Nemopilema and other cnidarian genomes revealed adaptations associated with swimming, marked by codon bias in muscle contraction and expansion of neurotransmitter genes, along with expanded Myosin type II family and venom domains, possibly contributing to jellyfish mobility and active predation. We also identified gene family expansions of Wnt and posterior Hox genes and discovered the important role of retinoic acid signaling in this ancient lineage of metazoans, which together may be related to the unique jellyfish body plan (medusa formation). CONCLUSIONS: Taken together, the Nemopilema jellyfish genome and transcriptomes genetically confirm their unique morphological and physiological traits, which may have contributed to the success of jellyfish as early multi-cellular predators.


Assuntos
Evolução Molecular , Genoma/fisiologia , Comportamento Predatório , Cifozoários/fisiologia , Animais , Evolução Biológica , Filogenia , Cifozoários/genética
12.
Sensors (Basel) ; 20(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204330

RESUMO

During the past decades, the composition and distribution of marine species have changed due to multiple anthropogenic pressures. Monitoring these changes in a cost-effective manner is of high relevance to assess the environmental status and evaluate the effectiveness of management measures. In particular, recent studies point to a rise of jellyfish populations on a global scale, negatively affecting diverse marine sectors like commercial fishing or the tourism industry. Past monitoring efforts using underwater video observations tended to be time-consuming and costly due to human-based data processing. In this paper, we present Jellytoring, a system to automatically detect and quantify different species of jellyfish based on a deep object detection neural network, allowing us to automatically record jellyfish presence during long periods of time. Jellytoring demonstrates outstanding performance on the jellyfish detection task, reaching an F1 score of 95.2%; and also on the jellyfish quantification task, as it correctly quantifies the number and class of jellyfish on a real-time processed video sequence up to a 93.8% of its duration. The results of this study are encouraging and provide the means towards a efficient way to monitor jellyfish, which can be used for the development of a jellyfish early-warning system, providing highly valuable information for marine biologists and contributing to the reduction of jellyfish impacts on humans.


Assuntos
Aprendizado Profundo , Ecossistema , Monitoramento Ambiental , Cifozoários/fisiologia , Animais , Humanos , Tempo
13.
Evol Dev ; 21(2): 72-81, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30623570

RESUMO

Stinging cells called cnidocytes are a defining trait of the cnidarians (sea anemones, corals, jellyfish, and their relatives). In hydrozoan cnidarians such as Hydra, cnidocytes develop from interstitial stem cells set aside in the ectoderm. It is less clear how cnidocytes develop outside the Hydrozoa, as other cnidarians appear to lack interstitial stem cells. We addressed this question by studying cnidogenesis in the moon jellyfish (Aurelia) through the visualization of minicollagen-a protein associated with cnidocyte development-as well as transmission electron microscopy. We discovered that developing cnidoblasts are rare or absent in feeding structures rich in mature cnidocytes, such as tentacles and lappets. Using transmission electron microscopy, we determined that the progenitors of cnidocytes have traits consistent with epitheliomuscular cells. Our data suggests a dynamic where cnidocytes develop at high concentrations in the epithelium of more proximal regions, and subsequently migrate to more distal regions where they exhibit high usage and turnover. Similar to some anthozoans, cnidocytes in Aurelia do not appear to be generated by interstitial stem cells; instead, epitheliomuscular cells appear to be the progenitor cell type. This observation polarizes the evolution of cnidogenesis, and raises the question of how interstitial stem cells came to regulate cnidogenesis in hydrozoans.


Assuntos
Diferenciação Celular , Cifozoários/fisiologia , Animais , Colágeno/metabolismo , Cifozoários/ultraestrutura
14.
Proc Biol Sci ; 286(1899): 20182325, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30890095

RESUMO

Fish-jellyfish interactions are important factors contributing to fish stock success. Jellyfish can compete with fish for food resources, or feed on fish eggs and larvae, which works to reduce survivorship and recruitment of fish species. However, jellyfish also provide habitat and space for developing larval and juvenile fish which use their hosts as means of protection from predators and feeding opportunities, helping to reduce fish mortality and increase recruitment. Yet, relatively little is known about the evolutionary dynamics and drivers of such associations which would allow for their more effective incorporation into ecosystem models. Here, we found that jellyfish association is a probable adaptive anti-predator strategy for juvenile fish, more likely to evolve in benthic (fish living on the sea floor), benthopelagic (fish living just above the bottom of the seafloor), and reef-associating species than those adapted to other marine habitats. We also found that jellyfish association likely preceded the evolution of a benthic, benthopelagic, and reef-associating lifestyle rather than its evolutionary consequence, as we originally hypothesized. Considering over two-thirds of the associating fish identified here are of economic importance, and the wide-scale occurrence and diversity of species involved, it is clear the formation of fish-jellyfish associations is an important but complex process in relation to the success of fish stocks globally.


Assuntos
Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Cifozoários/fisiologia , Animais
15.
J Exp Biol ; 222(Pt 16)2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31371399

RESUMO

Zooplankton play critical roles in marine ecosystems, yet their fine-scale behavior remains poorly understood because of the difficulty in studying individuals in situ Here, we combine biologging with supervised machine learning (ML) to propose a pipeline for studying in situ behavior of larger zooplankton such as jellyfish. We deployed the ITAG, a biologging package with high-resolution motion sensors designed for soft-bodied invertebrates, on eight Chrysaora fuscescens in Monterey Bay, using the tether method for retrieval. By analyzing simultaneous video footage of the tagged jellyfish, we developed ML methods to: (1) identify periods of tag data corrupted by the tether method, which may have compromised prior research findings, and (2) classify jellyfish behaviors. Our tools yield characterizations of fine-scale jellyfish activity and orientation over long durations, and we conclude that it is essential to develop behavioral classifiers on in situ rather than laboratory data.


Assuntos
Hidrobiologia/instrumentação , Características de História de Vida , Cifozoários/fisiologia , Aprendizado de Máquina Supervisionado , Zoologia/instrumentação , Animais , Zooplâncton/fisiologia
16.
J Zoo Wildl Med ; 50(1): 123-126, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31120670

RESUMO

Immersion euthanasia methods reported over the most recent decades for aquatic invertebrates use organic alcohols or halogenated hydrocarbons that can interfere with nuclear magnetic resonance (NMR) analysis. A rolling study design evaluated potassium chloride (KCl), magnesium chloride (MgCl2), and magnesium sulfate (MgSO4) as potential ion-based euthanasia methods for moon jellyfish (Aurelia aurita) destined for metabolomic analysis by NMR spectroscopy. Death was defined as the cessation of autonomous bell pulsing and response to external stimulus. MgCl2 applied at a dose of 142 g/L provided euthanasia within 32 sec of applications without the untoward effects observed with the other two salts. Euthanasia with KCl at the doses tested was associated with abnormal behavior and tissue degradation during dissection. MgSO4 at the doses tested resulted in abnormal behavior and failed to provide rapid euthanasia.


Assuntos
Eutanásia Animal/métodos , Cloreto de Magnésio/administração & dosagem , Sulfato de Magnésio/administração & dosagem , Cloreto de Potássio/administração & dosagem , Cifozoários/efeitos dos fármacos , Animais , Íons/administração & dosagem , Íons/farmacologia , Cloreto de Magnésio/farmacologia , Sulfato de Magnésio/farmacologia , Cloreto de Potássio/farmacologia , Cifozoários/fisiologia
17.
J Proteome Res ; 17(11): 3904-3913, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30223649

RESUMO

Jellyfish are a type of poisonous cnidarian invertebrate that secrete lethal venom for predation or defense. Human beings often become victims of jellyfish stings accidentally while swimming or fishing and suffer severe pain, itching, swelling, inflammation, shock, and even death. Jellyfish venom is composed of various toxins, and the lethal toxin is the most toxic and hazardous component of the venom, which is responsible for deaths caused by jellyfish stings and envenomation. Our previous study revealed many toxins in jellyfish venom, including phospholipase A2, metalloproteinase, and protease inhibitors. However, it is still unknown which type of toxin is lethal and how it works. Herein a combined toxicology analysis, proteome strategy, and purification approach was employed to investigate the lethality of the venom of the jellyfish Cyanea nozakii. Toxicity analysis revealed that cardiotoxicity including acute myocardial infarction and a significant decrease in both heart rate and blood pressure is the primary cause of death. Purified lethal toxin containing a fraction of jellyfish venom was subsequently subjected to proteome analysis and bioinformation analysis. A total of 316 and 374 homologous proteins were identified, including phospholipase A2-like toxins and metalloprotease-like toxins. Furthermore, we confirmed that the lethality of the jellyfish venom is related to metalloproteinase activity but without any phospholipase A2 activity or hemolytic activity. Altogether, this study not only provides a comprehensive understanding of the lethal mechanism of jellyfish venom but also provides very useful information for the therapeutic or rescue strategy for severe jellyfish stings.


Assuntos
Venenos de Cnidários/química , Metaloproteases/isolamento & purificação , Infarto do Miocárdio/induzido quimicamente , Fosfolipases A2/isolamento & purificação , Proteoma/isolamento & purificação , Cifozoários/química , Animais , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Cromatografia Líquida , Venenos de Cnidários/toxicidade , Feminino , Ontologia Genética , Coração/efeitos dos fármacos , Coração/fisiopatologia , Frequência Cardíaca/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Espectrometria de Massas , Metaloproteases/química , Metaloproteases/toxicidade , Camundongos , Anotação de Sequência Molecular , Infarto do Miocárdio/fisiopatologia , Fosfolipases A2/química , Fosfolipases A2/toxicidade , Proteoma/química , Proteoma/classificação , Proteoma/toxicidade , Proteômica/métodos , Cifozoários/patogenicidade , Cifozoários/fisiologia , Baço/efeitos dos fármacos , Baço/fisiopatologia
18.
Dev Genes Evol ; 228(6): 243-254, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374762

RESUMO

Strobilation is a unique asexual reproduction mode of scyphozoan jellyfish, through which benthic polyp develops into pelagic medusa. It is an orderly metamorphosis process triggered by environmental signals. However, the knowledges of molecular mechanisms under the drastic morphological and physiological changes are still limited. In this study, the transcriptomes from polyps to juvenile medusae at different stages were characterized by RNA-seq in scyphozoan jellyfish Rhopilema esculentum. Among 96,076 de novo assembled unigenes, 7090 differentially expressed genes (DEGs) were identified during the developmental stages. The co-expression pattern analysis of DEGs yielded 15 clusters with different expression patterns. Among them, a cluster with 388 unigenes was related to strobila. In this specific cluster, the GO terms related to "sequence-specific DNA binding transcription factor activity" and "sequence-specific DNA binding" were significantly enriched. Transcription factors, including segmentation protein even-skipped-like, segmentation polarity protein engrailed-like, homeobox proteins Otx-like, Twist-like and Cnox2-Pc-like, as well as genes such as RxR-like and Dmrtf-like, were identified to be potentially involved in strobilation. Their expression patterns and the other 11 TFs/genes involved in strobilation were confirmed with qRT-PCR methods. The present study pointed out the role of transcription factors in strobilation and produced a list of novel candidate genes for further studies. It could provide valuable information for understanding the molecular mechanisms of jellyfish strobilation.


Assuntos
Cifozoários/genética , Cifozoários/fisiologia , Animais , Filogenia , Reação em Cadeia da Polimerase , Reprodução Assexuada , Cifozoários/classificação , Fatores de Transcrição/genética , Transcriptoma
19.
Am Nat ; 192(1): 72-80, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29897801

RESUMO

Many living organisms in terrestrial and aquatic ecosystems rely on multiple reproductive strategies to reduce the risk of extinction in variable environments. Examples are provided by the polyp stage of several bloom-forming jellyfish species, which can reproduce asexually using different budding strategies. These strategies broadly fall into three categories: (1) fast localized reproduction, (2) dormant cysts, or (3) motile and dispersing buds. Similar functional strategies are also present in other groups of species. However, mechanisms leading to the evolution of this rich reproductive diversity are yet to be clarified. Here we model how risk of local population extinction and differential fitness of alternative modes of asexual reproduction could drive the evolution of multiple reproductive modes as seen in jellyfish polyps. Depending on environmental parameters, we find that evolution leads to a unique evolutionarily stable strategy, wherein multiple reproductive strategies generally coexist. As the extinction risk increases, this strategy shifts from a pure budding mode to a dual strategy and finally to one characterized by allocation into all three modes. We identify relative fitness-dependent thresholds in extinction risk where these transitions can occur and discuss our predictions in light of observations on polyp reproduction in laboratory and natural systems.


Assuntos
Evolução Biológica , Modelos Biológicos , Reprodução Assexuada , Cifozoários/fisiologia , Animais
20.
Mol Phylogenet Evol ; 124: 50-59, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29518561

RESUMO

Loss or stark reduction of the free-swimming medusa or jellyfish stage is common in the cnidarian class Hydrozoa. In the hydrozoan clade Trachylina, however, many species do not possess a sessile polyp or hydroid stage. Trachylines inhabiting freshwater and coastal ecosystems (i.e., Limnomedusae) possess a metagenetic life cycle involving benthic, sessile polyp and free-swimming medusa. In contrast, the paradigm is that open ocean inhabiting, oceanic trachylines (in the orders Narcomedusae and Trachymedusae) develop from zygote to medusa via a free-swimming larva, forgoing the polyp stage. In some open-ocean trachylines, development includes a sessile stage that is an ecto- or endoparasite of other oceanic organisms. We expand the molecular-based phylogenetic hypothesis of trachylines significantly, increasing taxon and molecular marker sampling. Using this comprehensive phylogenetic hypothesis in conjunction with character state reconstructions we enhance understanding of the evolution of life cycles in trachyline hydrozoans. We find that the polyp stage was lost at least twice independently, concurrent with a transition to an oceanic life style. Further, a sessile, polypoid parasitic stage arose once, rather than twice as current classification would imply, in the open ocean inhabiting Narcomedusae. Our results also support the hypothesis that interstitial species of the order Actinulida are directly descended from direct developing, oceanic trachylines.


Assuntos
Evolução Biológica , Estágios do Ciclo de Vida , Oceanos e Mares , Cifozoários/crescimento & desenvolvimento , Cifozoários/fisiologia , Animais , Larva/fisiologia , Funções Verossimilhança , Parasitos/crescimento & desenvolvimento , Filogenia , Probabilidade , Cifozoários/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA