Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.982
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 187(19): 5238-5252.e20, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39208796

RESUMO

Fanzor (Fz) is an ωRNA-guided endonuclease extensively found throughout the eukaryotic domain with unique gene editing potential. Here, we describe the structures of Fzs from three different organisms. We find that Fzs share a common ωRNA interaction interface, regardless of the length of the ωRNA, which varies considerably across species. The analysis also reveals Fz's mode of DNA recognition and unwinding capabilities as well as the presence of a non-canonical catalytic site. The structures demonstrate how protein conformations of Fz shift to allow the binding of double-stranded DNA to the active site within the R-loop. Mechanistically, examination of structures in different states shows that the conformation of the lid loop on the RuvC domain is controlled by the formation of the guide/DNA heteroduplex, regulating the activation of nuclease and DNA double-stranded displacement at the single cleavage site. Our findings clarify the mechanism of Fz, establishing a foundation for engineering efforts.


Assuntos
Clivagem do DNA , DNA , DNA/metabolismo , DNA/química , Domínio Catalítico , Modelos Moleculares , RNA Guia de Sistemas CRISPR-Cas/metabolismo , RNA Guia de Sistemas CRISPR-Cas/química , Humanos , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Edição de Genes , Sistemas CRISPR-Cas
2.
Cell ; 186(13): 2865-2879.e20, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37301196

RESUMO

Retroelements are the widespread jumping elements considered as major drivers for genome evolution, which can also be repurposed as gene-editing tools. Here, we determine the cryo-EM structures of eukaryotic R2 retrotransposon with ribosomal DNA target and regulatory RNAs. Combined with biochemical and sequencing analysis, we reveal two essential DNA regions, Drr and Dcr, required for recognition and cleavage. The association of 3' regulatory RNA with R2 protein accelerates the first-strand cleavage, blocks the second-strand cleavage, and initiates the reverse transcription starting from the 3'-tail. Removing 3' regulatory RNA by reverse transcription allows the association of 5' regulatory RNA and initiates the second-strand cleavage. Taken together, our work explains the DNA recognition and RNA supervised sequential retrotransposition mechanisms by R2 machinery, providing insights into the retrotransposon and application reprogramming.


Assuntos
RNA , Retroelementos , RNA/metabolismo , Clivagem do DNA , DNA Polimerase Dirigida por RNA/metabolismo , Transcrição Reversa
3.
Annu Rev Biochem ; 89: 309-332, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32186918

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas/efeitos dos fármacos , Edição de Genes/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/genética , Vírus/genética , Archaea/genética , Archaea/imunologia , Archaea/virologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coevolução Biológica , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/antagonistas & inibidores , DNA/química , DNA/genética , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Vírus/metabolismo , Vírus/patogenicidade
4.
Cell ; 175(7): 1856-1871.e21, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30503205

RESUMO

Cas12a, also known as Cpf1, is a type V-A CRISPR-Cas RNA-guided endonuclease that is used for genome editing based on its ability to generate specific dsDNA breaks. Here, we show cryo-EM structures of intermediates of the cleavage reaction, thus visualizing three protein regions that sense the crRNA-DNA hybrid assembly triggering the catalytic activation of Cas12a. Single-molecule FRET provides the thermodynamics and kinetics of the conformational activation leading to phosphodiester bond hydrolysis. These findings illustrate why Cas12a cuts its target DNA and unleashes unspecific cleavage activity, degrading ssDNA molecules after activation. In addition, we show that other crRNAs are able to displace the R-loop inside the protein after target DNA cleavage, terminating indiscriminate ssDNA degradation. We propose a model whereby the conformational activation of the enzyme results in indiscriminate ssDNA cleavage. The displacement of the R-loop by a new crRNA molecule will reset Cas12a specificity, targeting new DNAs.


Assuntos
Proteínas de Bactérias/química , Sistemas CRISPR-Cas , Clivagem do DNA , DNA de Cadeia Simples/química , Francisella/química , RNA Guia de Cinetoplastídeos/química , Proteínas de Bactérias/genética , Catálise , DNA de Cadeia Simples/genética , Francisella/genética , Edição de Genes , RNA Guia de Cinetoplastídeos/genética
5.
Cell ; 173(1): 208-220.e20, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29551265

RESUMO

Conjugative transposition drives the emergence of multidrug resistance in diverse bacterial pathogens, yet the mechanisms are poorly characterized. The Tn1549 conjugative transposon propagates resistance to the antibiotic vancomycin used for severe drug-resistant infections. Here, we present four high-resolution structures of the conserved Y-transposase of Tn1549 complexed with circular transposon DNA intermediates. The structures reveal individual transposition steps and explain how specific DNA distortion and cleavage mechanisms enable DNA strand exchange with an absolute minimum homology requirement. This appears to uniquely allow Tn916-like conjugative transposons to bypass DNA homology and insert into diverse genomic sites, expanding gene transfer. We further uncover a structural regulatory mechanism that prevents premature cleavage of the transposon DNA before a suitable target DNA is found and generate a peptide antagonist that interferes with the transposase-DNA structure to block transposition. Our results reveal mechanistic principles of conjugative transposition that could help control the spread of antibiotic resistance genes.


Assuntos
DNA Bacteriano/metabolismo , Transposases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Clivagem do DNA , Elementos de DNA Transponíveis/genética , DNA Bacteriano/química , Farmacorresistência Bacteriana , Enterococcus faecalis/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Transposases/antagonistas & inibidores , Transposases/química , Transposases/genética
6.
Mol Cell ; 84(16): 3141-3153.e5, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39047725

RESUMO

The metagenome-derived type I-E and type I-F variant CRISPR-associated complex for antiviral defense (Cascade) complexes, fused with HNH domains, precisely cleave target DNA, representing recently identified genome editing tools. However, the underlying working mechanisms remain unknown. Here, structures of type I-FHNH and I-EHNH Cascade complexes at different states are reported. In type I-FHNH Cascade, Cas8fHNH loosely attaches to Cascade head and is adjacent to the 5' end of the target single-stranded DNA (ssDNA). Formation of the full R-loop drives the Cascade head to move outward, allowing Cas8fHNH to detach and rotate ∼150° to accommodate target ssDNA for cleavage. In type I-EHNH Cascade, Cas5eHNH domain is adjacent to the 5' end of the target ssDNA. Full crRNA-target pairing drives the lift of the Cascade head, widening the substrate channel for target ssDNA entrance. Altogether, these analyses into both complexes revealed that crRNA-guided positioning of target DNA and target DNA-induced HNH unlocking are two key factors for their site-specific cleavage of target DNA.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Clivagem do DNA , DNA de Cadeia Simples , Edição de Genes , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/genética , Edição de Genes/métodos , Estruturas R-Loop/genética , Microscopia Crioeletrônica
7.
Mol Cell ; 84(16): 3154-3162.e5, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39111310

RESUMO

Canonical prokaryotic type I CRISPR-Cas adaptive immune systems contain a multicomponent effector complex called Cascade, which degrades large stretches of DNA via Cas3 helicase-nuclease activity. Recently, a highly precise subtype I-F1 CRISPR-Cas system (HNH-Cascade) was found that lacks Cas3, the absence of which is compensated for by the insertion of an HNH endonuclease domain in the Cas8 Cascade component. Here, we describe the cryo-EM structure of Selenomonas sp. HNH-Cascade (SsCascade) in complex with target DNA and characterize its mechanism of action. The Cascade scaffold is complemented by the HNH domain, creating a ring-like structure in which the unwound target DNA is precisely cleaved. This structure visualizes a unique hybrid of two extensible biological systems-Cascade, an evolutionary platform for programmable DNA effectors, and an HNH nuclease, an adaptive domain with a spectrum of enzymatic activity.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Clivagem do DNA , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Proteínas Associadas a CRISPR/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Modelos Moleculares , DNA/metabolismo , DNA/genética , DNA/química , Domínios Proteicos , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Relação Estrutura-Atividade , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Ligação Proteica
8.
Annu Rev Biochem ; 85: 227-64, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27145843

RESUMO

The Cas9 protein (CRISPR-associated protein 9), derived from type II CRISPR (clustered regularly interspaced short palindromic repeats) bacterial immune systems, is emerging as a powerful tool for engineering the genome in diverse organisms. As an RNA-guided DNA endonuclease, Cas9 can be easily programmed to target new sites by altering its guide RNA sequence, and its development as a tool has made sequence-specific gene editing several magnitudes easier. The nuclease-deactivated form of Cas9 further provides a versatile RNA-guided DNA-targeting platform for regulating and imaging the genome, as well as for rewriting the epigenetic status, all in a sequence-specific manner. With all of these advances, we have just begun to explore the possible applications of Cas9 in biomedical research and therapeutics. In this review, we describe the current models of Cas9 function and the structural and biochemical studies that support it. We focus on the applications of Cas9 for genome editing, regulation, and imaging, discuss other possible applications and some technical considerations, and highlight the many advantages that CRISPR/Cas9 technology offers.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA , Endonucleases/genética , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Proteínas de Bactérias/metabolismo , Pareamento de Bases , Proteína 9 Associada à CRISPR , Clivagem do DNA , Endonucleases/metabolismo , Epigênese Genética , Marcação de Genes , Genoma Humano , Humanos , Imagem Molecular , Engenharia de Proteínas , Estrutura Secundária de Proteína , RNA Guia de Cinetoplastídeos/metabolismo
9.
Nature ; 630(8016): 484-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811729

RESUMO

The CRISPR system is an adaptive immune system found in prokaryotes that defends host cells against the invasion of foreign DNA1. As part of the ongoing struggle between phages and the bacterial immune system, the CRISPR system has evolved into various types, each with distinct functionalities2. Type II Cas9 is the most extensively studied of these systems and has diverse subtypes. It remains uncertain whether members of this family can evolve additional mechanisms to counter viral invasions3,4. Here we identify 2,062 complete Cas9 loci, predict the structures of their associated proteins and reveal three structural growth trajectories for type II-C Cas9. We found that novel associated genes (NAGs) tended to be present within the loci of larger II-C Cas9s. Further investigation revealed that CbCas9 from Chryseobacterium species contains a novel ß-REC2 domain, and forms a heterotetrameric complex with an NAG-encoded CRISPR-Cas-system-promoting (pro-CRISPR) protein of II-C Cas9 (PcrIIC1). The CbCas9-PcrIIC1 complex exhibits enhanced DNA binding and cleavage activity, broader compatibility for protospacer adjacent motif sequences, increased tolerance for mismatches and improved anti-phage immunity, compared with stand-alone CbCas9. Overall, our work sheds light on the diversity and 'growth evolutionary' trajectories of II-C Cas9 proteins at the structural level, and identifies many NAGs-such as PcrIIC1, which serves as a pro-CRISPR factor to enhance CRISPR-mediated immunity.


Assuntos
Bactérias , Bacteriófagos , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Bactérias/virologia , Bactérias/genética , Bactérias/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Chryseobacterium/genética , Chryseobacterium/imunologia , Chryseobacterium/virologia , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Clivagem do DNA , Loci Gênicos/genética , Modelos Moleculares , Domínios Proteicos
10.
Nature ; 629(8011): 467-473, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471529

RESUMO

Prokaryotes have evolved intricate innate immune systems against phage infection1-7. Gabija is a highly widespread prokaryotic defence system that consists of two components, GajA and GajB8. GajA functions as a DNA endonuclease that is inactive in the presence of ATP9. Here, to explore how the Gabija system is activated for anti-phage defence, we report its cryo-electron microscopy structures in five states, including apo GajA, GajA in complex with DNA, GajA bound by ATP, apo GajA-GajB, and GajA-GajB in complex with ATP and Mg2+. GajA is a rhombus-shaped tetramer with its ATPase domain clustered at the centre and the topoisomerase-primase (Toprim) domain located peripherally. ATP binding at the ATPase domain stabilizes the insertion region within the ATPase domain, keeping the Toprim domain in a closed state. Upon ATP depletion by phages, the Toprim domain opens to bind and cleave the DNA substrate. GajB, which docks on GajA, is activated by the cleaved DNA, ultimately leading to prokaryotic cell death. Our study presents a mechanistic landscape of Gabija activation.


Assuntos
Bacillus cereus , Proteínas de Bactérias , Bacteriófagos , Microscopia Crioeletrônica , Imunidade Inata , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Apoproteínas/química , Apoproteínas/imunologia , Apoproteínas/metabolismo , Apoproteínas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/ultraestrutura , Bacteriófagos/imunologia , DNA/metabolismo , DNA/química , Clivagem do DNA , Magnésio/química , Magnésio/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Viabilidade Microbiana , Bacillus cereus/química , Bacillus cereus/imunologia , Bacillus cereus/metabolismo , Bacillus cereus/ultraestrutura , Estrutura Quaternária de Proteína , DNA Primase/química , DNA Primase/metabolismo , DNA Primase/ultraestrutura , DNA Topoisomerases/química , DNA Topoisomerases/metabolismo , DNA Topoisomerases/ultraestrutura
11.
Mol Cell ; 82(24): 4727-4740.e6, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36525956

RESUMO

Structural maintenance of chromosome (SMC) complexes fold DNA by loop extrusion to support chromosome segregation and genome maintenance. Wadjet systems (JetABCD/MksBEFG/EptABCD) are derivative SMC complexes with roles in bacterial immunity against selfish DNA. Here, we show that JetABCD restricts circular plasmids with an upper size limit of about 100 kb, whereas a linear plasmid evades restriction. Purified JetABCD complexes cleave circular DNA molecules, regardless of the DNA helical topology; cleavage is DNA sequence nonspecific and depends on the SMC ATPase. A cryo-EM structure reveals a distinct JetABC dimer-of-dimers geometry, with the two SMC dimers facing in opposite direction-rather than the same as observed with MukBEF. We hypothesize that JetABCD is a DNA-shape-specific endonuclease and propose the "total extrusion model" for DNA cleavage exclusively when extrusion of an entire plasmid has been completed by a JetABCD complex. Total extrusion cannot be achieved on the larger chromosome, explaining how self-DNA may evade processing.


Assuntos
Adenosina Trifosfatases , Clivagem do DNA , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Plasmídeos/genética , Cromossomos/metabolismo , DNA/genética , Proteínas de Ciclo Celular/genética , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo
12.
Nature ; 622(7984): 863-871, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758954

RESUMO

Insertion sequences are compact and pervasive transposable elements found in bacteria, which encode only the genes necessary for their mobilization and maintenance1. IS200- and IS605-family transposons undergo 'peel-and-paste' transposition catalysed by a TnpA transposase2, but they also encode diverse, TnpB- and IscB-family proteins that are evolutionarily related to the CRISPR-associated effectors Cas12 and Cas9, respectively3,4. Recent studies have demonstrated that TnpB and IscB function as RNA-guided DNA endonucleases5,6, but the broader biological role of this activity has remained enigmatic. Here we show that TnpB and IscB are essential to prevent permanent transposon loss as a consequence of the TnpA transposition mechanism. We selected a family of related insertion sequences from Geobacillus stearothermophilus that encode several TnpB and IscB orthologues, and showed that a single TnpA transposase was broadly active for transposon mobilization. The donor joints formed upon religation of transposon-flanking sequences were efficiently targeted for cleavage by RNA-guided TnpB and IscB nucleases, and co-expression of TnpB and TnpA led to substantially greater transposon retention relative to conditions in which TnpA was expressed alone. Notably, TnpA and TnpB also stimulated recombination frequencies, surpassing rates observed with TnpB alone. Collectively, this study reveals that RNA-guided DNA cleavage arose as a primal biochemical activity to bias the selfish inheritance and spread of transposable elements, which was later co-opted during the evolution of CRISPR-Cas adaptive immunity for antiviral defence.


Assuntos
Elementos de DNA Transponíveis , Endonucleases , Geobacillus stearothermophilus , RNA , Transposases , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/genética , Clivagem do DNA , Elementos de DNA Transponíveis/genética , Endonucleases/genética , Endonucleases/metabolismo , Geobacillus stearothermophilus/enzimologia , Geobacillus stearothermophilus/genética , RNA/genética , RNA/metabolismo , Transposases/genética , Transposases/metabolismo , Evolução Molecular
13.
Nature ; 609(7925): 191-196, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002571

RESUMO

Cas9 is a CRISPR-associated endonuclease capable of RNA-guided, site-specific DNA cleavage1-3. The programmable activity of Cas9 has been widely utilized for genome editing applications4-6, yet its precise mechanisms of target DNA binding and off-target discrimination remain incompletely understood. Here we report a series of cryo-electron microscopy structures of Streptococcus pyogenes Cas9 capturing the directional process of target DNA hybridization. In the early phase of R-loop formation, the Cas9 REC2 and REC3 domains form a positively charged cleft that accommodates the distal end of the target DNA duplex. Guide-target hybridization past the seed region induces rearrangements of the REC2 and REC3 domains and relocation of the HNH nuclease domain to assume a catalytically incompetent checkpoint conformation. Completion of the guide-target heteroduplex triggers conformational activation of the HNH nuclease domain, enabled by distortion of the guide-target heteroduplex, and complementary REC2 and REC3 domain rearrangements. Together, these results establish a structural framework for target DNA-dependent activation of Cas9 that sheds light on its conformational checkpoint mechanism and may facilitate the development of novel Cas9 variants and guide RNA designs with enhanced specificity and activity.


Assuntos
Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Microscopia Crioeletrônica , Domínios Proteicos , Estruturas R-Loop , Streptococcus pyogenes , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/ultraestrutura , Catálise , DNA/metabolismo , Clivagem do DNA , Ativação Enzimática , Edição de Genes , RNA Guia de Cinetoplastídeos/metabolismo , Streptococcus pyogenes/enzimologia , Especificidade por Substrato
14.
Mol Cell ; 77(4): 723-733.e6, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31932164

RESUMO

Bacteria possess an array of defenses against foreign invaders, including a broadly distributed bacteriophage defense system termed CBASS (cyclic oligonucleotide-based anti-phage signaling system). In CBASS systems, a cGAS/DncV-like nucleotidyltransferase synthesizes cyclic di- or tri-nucleotide second messengers in response to infection, and these molecules activate diverse effectors to mediate bacteriophage immunity via abortive infection. Here, we show that the CBASS effector NucC is related to restriction enzymes but uniquely assembles into a homotrimer. Binding of NucC trimers to a cyclic tri-adenylate second messenger promotes assembly of a NucC homohexamer competent for non-specific double-strand DNA cleavage. In infected cells, NucC activation leads to complete destruction of the bacterial chromosome, causing cell death prior to completion of phage replication. In addition to CBASS systems, we identify NucC homologs in over 30 type III CRISPR/Cas systems, where they likely function as accessory nucleases activated by cyclic oligoadenylate second messengers synthesized by these systems' effector complexes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Desoxirribonuclease I/química , Desoxirribonuclease I/metabolismo , Escherichia coli/virologia , Regulação Alostérica , Bacteriófago lambda/genética , Bacteriófago lambda/fisiologia , Sistemas CRISPR-Cas , Clivagem do DNA , Enzimas de Restrição do DNA/química , Escherichia coli/enzimologia , Escherichia coli/imunologia , Genoma Viral , Multimerização Proteica , Sistemas do Segundo Mensageiro
15.
Mol Cell ; 75(3): 498-510.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256988

RESUMO

In addition to defense against foreign DNA, the CRISPR-Cas9 system of Francisella novicida represses expression of an endogenous immunostimulatory lipoprotein. We investigated the specificity and molecular mechanism of this regulation, demonstrating that Cas9 controls a highly specific regulon of four genes that must be repressed for bacterial virulence. Regulation occurs through a protospacer adjacent motif (PAM)-dependent interaction of Cas9 with its endogenous DNA targets, dependent on a non-canonical small RNA (scaRNA) and tracrRNA. The limited complementarity between scaRNA and the endogenous DNA targets precludes cleavage, highlighting the evolution of scaRNA to repress transcription without lethally targeting the chromosome. We show that scaRNA can be reprogrammed to repress other genes, and with engineered, extended complementarity to an exogenous target, the repurposed scaRNA:tracrRNA-FnoCas9 machinery can also direct DNA cleavage. Natural Cas9 transcriptional interference likely represents a broad paradigm of regulatory functionality, which is potentially critical to the physiology of numerous Cas9-encoding pathogenic and commensal organisms.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Francisella/genética , Virulência/genética , DNA/genética , Clivagem do DNA , Regulação Bacteriana da Expressão Gênica/genética , Lipoproteínas/biossíntese , Lipoproteínas/genética , RNA/genética , Transcrição Gênica
16.
PLoS Biol ; 21(3): e3002023, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36917574

RESUMO

Cas12a is a programmable nuclease for adaptive immunity against invading nucleic acids in CRISPR-Cas systems. Here, we report the crystal structures of apo Cas12a from Lachnospiraceae bacterium MA2020 (Lb2) and the Lb2Cas12a+crRNA complex, as well as the cryo-EM structure and functional studies of the Lb2Cas12a+crRNA+DNA complex. We demonstrate that apo Lb2Cas12a assumes a unique, elongated conformation, whereas the Lb2Cas12a+crRNA binary complex exhibits a compact conformation that subsequently rearranges to a semi-open conformation in the Lb2Cas12a+crRNA+DNA ternary complex. Notably, in solution, apo Lb2Cas12a is dynamic and can exist in both elongated and compact forms. Residues from Met493 to Leu523 of the WED domain undergo major conformational changes to facilitate the required structural rearrangements. The REC lobe of Lb2Cas12a rotates 103° concomitant with rearrangement of the hinge region close to the WED and RuvC II domains to position the RNA-DNA duplex near the catalytic site. Our findings provide insight into crRNA recognition and the mechanism of target DNA cleavage.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Clivagem do DNA , RNA/química , DNA/química , Proteínas de Bactérias/metabolismo
17.
Nature ; 586(7828): 292-298, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32999459

RESUMO

The RecQ DNA helicase WRN is a synthetic lethal target for cancer cells with microsatellite instability (MSI), a form of genetic hypermutability that arises from impaired mismatch repair1-4. Depletion of WRN induces widespread DNA double-strand breaks in MSI cells, leading to cell cycle arrest and/or apoptosis. However, the mechanism by which WRN protects MSI-associated cancers from double-strand breaks remains unclear. Here we show that TA-dinucleotide repeats are highly unstable in MSI cells and undergo large-scale expansions, distinct from previously described insertion or deletion mutations of a few nucleotides5. Expanded TA repeats form non-B DNA secondary structures that stall replication forks, activate the ATR checkpoint kinase, and require unwinding by the WRN helicase. In the absence of WRN, the expanded TA-dinucleotide repeats are susceptible to cleavage by the MUS81 nuclease, leading to massive chromosome shattering. These findings identify a distinct biomarker that underlies the synthetic lethal dependence on WRN, and support the development of therapeutic agents that target WRN for MSI-associated cancers.


Assuntos
Quebras de DNA de Cadeia Dupla , Expansão das Repetições de DNA/genética , Repetições de Dinucleotídeos/genética , Neoplasias/genética , Helicase da Síndrome de Werner/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , Cromotripsia , Clivagem do DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/metabolismo , Instabilidade Genômica , Humanos , Recombinases/metabolismo
18.
Nature ; 586(7830): 618-622, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32814904

RESUMO

During prophase of the first meiotic division, cells deliberately break their DNA1. These DNA breaks are repaired by homologous recombination, which facilitates proper chromosome segregation and enables the reciprocal exchange of DNA segments between homologous chromosomes2. A pathway that depends on the MLH1-MLH3 (MutLγ) nuclease has been implicated in the biased processing of meiotic recombination intermediates into crossovers by an unknown mechanism3-7. Here we have biochemically reconstituted key elements of this pro-crossover pathway. We show that human MSH4-MSH5 (MutSγ), which supports crossing over8, binds branched recombination intermediates and associates with MutLγ, stabilizing the ensemble at joint molecule structures and adjacent double-stranded DNA. MutSγ directly stimulates DNA cleavage by the MutLγ endonuclease. MutLγ activity is further stimulated by EXO1, but only when MutSγ is present. Replication factor C (RFC) and the proliferating cell nuclear antigen (PCNA) are additional components of the nuclease ensemble, thereby triggering crossing-over. Saccharomyces cerevisiae strains in which MutLγ cannot interact with PCNA present defects in forming crossovers. Finally, the MutLγ-MutSγ-EXO1-RFC-PCNA nuclease ensemble preferentially cleaves DNA with Holliday junctions, but shows no canonical resolvase activity. Instead, it probably processes meiotic recombination intermediates by nicking double-stranded DNA adjacent to the junction points9. As DNA nicking by MutLγ depends on its co-factors, the asymmetric distribution of MutSγ and RFC-PCNA on meiotic recombination intermediates may drive biased DNA cleavage. This mode of MutLγ nuclease activation might explain crossover-specific processing of Holliday junctions or their precursors in meiotic chromosomes4.


Assuntos
Troca Genética , Endonucleases/metabolismo , Meiose , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Cromossomos Humanos/genética , Sequência Conservada , DNA/metabolismo , Clivagem do DNA , Enzimas Reparadoras do DNA/metabolismo , DNA Cruciforme/metabolismo , Exodesoxirribonucleases/metabolismo , Humanos , Proteína 1 Homóloga a MutL/química , Proteínas MutL/química , Proteínas MutS/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação C/metabolismo
19.
Mol Cell ; 71(5): 816-824.e3, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30078724

RESUMO

Class 2 CRISPR-Cas nucleases are programmable genome editing tools with promising applications in human health and disease. However, DNA cleavage at off-target sites that resemble the target sequence is a pervasive problem that remains poorly understood mechanistically. Here, we use quantitative kinetics to dissect the reaction steps of DNA targeting by Acidaminococcus sp Cas12a (also known as Cpf1). We show that Cas12a binds DNA tightly in two kinetically separable steps. Protospacer-adjacent motif (PAM) recognition is followed by rate-limiting R-loop propagation, leading to inevitable DNA cleavage of both strands. Despite functionally irreversible binding, Cas12a discriminates strongly against mismatches along most of the DNA target sequence. This result implies substantial reversibility during R-loop formation-a late transition state-and defies common descriptions of a "seed" region. Our results provide a quantitative basis for the DNA cleavage patterns measured in vivo and observations of greater reported target specificity for Cas12a than for the Cas9 nuclease.


Assuntos
Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA/genética , RNA Guia de Cinetoplastídeos/genética , Acidaminococcus/genética , Proteínas de Bactérias/genética , Clivagem do DNA , Edição de Genes/métodos , Humanos , Cinética , Conformação de Ácido Nucleico , Ligação Proteica
20.
Mol Cell ; 71(4): 487-497.e3, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30078723

RESUMO

DNA-RNA hybrids associated with R-loops promote DNA damage and genomic instability. The capacity of hybrids at different genomic sites to cause DNA damage was not known, and the mechanisms leading from hybrid to damage were poorly understood. Here, we adopt a new strategy to map and characterize the sites of hybrid-induced damage genome-wide in budding yeast. We show that hybrid removal is essential for life because persistent hybrids cause irreparable DNA damage and cell death. We identify that a subset of hybrids is prone to cause damage, and the chromosomal context of hybrids dramatically impacts their ability to induce damage. Furthermore, persistent hybrids affect the repair pathway, generating large regions of single-stranded DNA (ssDNA) by two distinct mechanisms, likely resection and re-replication. These damaged regions may act as potential precursors to gross chromosomal rearrangements like deletions and duplications that are associated with R-loops and cancers.


Assuntos
DNA de Cadeia Simples/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Instabilidade Genômica , RNA/genética , Saccharomyces cerevisiae/genética , Clivagem do DNA , Dano ao DNA , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Hidroxiureia/farmacologia , Ácidos Indolacéticos/farmacologia , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA/química , RNA/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA