Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.566
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 92: 351-384, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37068769

RESUMO

Thiolases are CoA-dependent enzymes that catalyze the thiolytic cleavage of 3-ketoacyl-CoA, as well as its reverse reaction, which is the thioester-dependent Claisen condensation reaction. Thiolases are dimers or tetramers (dimers of dimers). All thiolases have two reactive cysteines: (a) a nucleophilic cysteine, which forms a covalent intermediate, and (b) an acid/base cysteine. The best characterized thiolase is the Zoogloea ramigera thiolase, which is a bacterial biosynthetic thiolase belonging to the CT-thiolase subfamily. The thiolase active site is also characterized by two oxyanion holes, two active site waters, and four catalytic loops with characteristic amino acid sequence fingerprints. Three thiolase subfamilies can be identified, each characterized by a unique sequence fingerprint for one of their catalytic loops, which causes unique active site properties. Recent insights concerning the thiolase reaction mechanism, as obtained from recent structural studies, as well as from classical and recent enzymological studies, are addressed, and open questions are discussed.


Assuntos
Coenzima A , Cisteína , Coenzima A/química , Coenzima A/metabolismo , Cisteína/metabolismo , Modelos Moleculares , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Domínio Catalítico
2.
Mol Cell ; 82(14): 2650-2665.e12, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35662397

RESUMO

Coenzyme A (CoA) is essential for metabolism and protein acetylation. Current knowledge holds that each cell obtains CoA exclusively through biosynthesis via the canonical five-step pathway, starting with pantothenate uptake. However, recent studies have suggested the presence of additional CoA-generating mechanisms, indicating a more complex system for CoA homeostasis. Here, we uncovered pathways for CoA generation through inter-organismal flows of CoA precursors. Using traceable compounds and fruit flies with a genetic block in CoA biosynthesis, we demonstrate that progeny survive embryonal and early larval development by obtaining CoA precursors from maternal sources. Later in life, the microbiome can provide the essential CoA building blocks to the host, enabling continuation of normal development. A flow of stable, long-lasting CoA precursors between living organisms is revealed. This indicates the presence of complex strategies to maintain CoA homeostasis.


Assuntos
Coenzima A , Microbiota , Animais , Coenzima A/genética , Coenzima A/metabolismo , Drosophila/metabolismo , Feminino , Humanos , Mães , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Zigoto/metabolismo
3.
Nature ; 621(7977): 171-178, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648867

RESUMO

Triacylglycerols (TAGs) are the main source of stored energy in the body, providing an important substrate pool for mitochondrial beta-oxidation. Imbalances in the amount of TAGs are associated with obesity, cardiac disease and various other pathologies1,2. In humans, TAGs are synthesized from excess, coenzyme A-conjugated fatty acids by diacylglycerol O-acyltransferases (DGAT1 and DGAT2)3. In other organisms, this activity is complemented by additional enzymes4, but whether such alternative pathways exist in humans remains unknown. Here we disrupt the DGAT pathway in haploid human cells and use iterative genetics to reveal an unrelated TAG-synthesizing system composed of a protein we called DIESL (also known as TMEM68, an acyltransferase of previously unknown function) and its regulator TMX1. Mechanistically, TMX1 binds to and controls DIESL at the endoplasmic reticulum, and loss of TMX1 leads to the unconstrained formation of DIESL-dependent lipid droplets. DIESL is an autonomous TAG synthase, and expression of human DIESL in Escherichia coli endows this organism with the ability to synthesize TAG. Although both DIESL and the DGATs function as diacylglycerol acyltransferases, they contribute to the cellular TAG pool under specific conditions. Functionally, DIESL synthesizes TAG at the expense of membrane phospholipids and maintains mitochondrial function during periods of extracellular lipid starvation. In mice, DIESL deficiency impedes rapid postnatal growth and affects energy homeostasis during changes in nutrient availability. We have therefore identified an alternative TAG biosynthetic pathway driven by DIESL under potent control by TMX1.


Assuntos
Aciltransferases , Triglicerídeos , Animais , Humanos , Camundongos , Aciltransferases/metabolismo , Coenzima A/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Escherichia coli/metabolismo , Homeostase , Triglicerídeos/biossíntese , Metabolismo Energético , Nutrientes/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo
4.
Nature ; 607(7920): 816-822, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831507

RESUMO

Wnt signalling is essential for regulation of embryonic development and adult tissue homeostasis1-3, and aberrant Wnt signalling is frequently associated with cancers4. Wnt signalling requires palmitoleoylation on a hairpin 2 motif by the endoplasmic reticulum-resident membrane-bound O-acyltransferase Porcupine5-7 (PORCN). This modification is indispensable for Wnt binding to its receptor Frizzled, which triggers signalling8,9. Here we report four cryo-electron microscopy structures of human PORCN: the complex with the palmitoleoyl-coenzyme A (palmitoleoyl-CoA) substrate; the complex with the PORCN inhibitor LGK974, an anti-cancer drug currently in clinical trials10; the complex with LGK974 and WNT3A hairpin 2 (WNT3Ap); and the complex with a synthetic palmitoleoylated WNT3Ap analogue. The structures reveal that hairpin 2 of WNT3A, which is well conserved in all Wnt ligands, inserts into PORCN from the lumenal side, and the palmitoleoyl-CoA accesses the enzyme from the cytosolic side. The catalytic histidine triggers the transfer of the unsaturated palmitoleoyl group to the target serine on the Wnt hairpin 2, facilitated by the proximity of the two substrates. The inhibitor-bound structure shows that LGK974 occupies the palmitoleoyl-CoA binding site to prevent the reaction. Thus, this work provides a mechanism for Wnt acylation and advances the development of PORCN inhibitors for cancer treatment.


Assuntos
Aciltransferases , Proteínas de Membrana , Via de Sinalização Wnt , Acilação/efeitos dos fármacos , Aciltransferases/antagonistas & inibidores , Aciltransferases/metabolismo , Antineoplásicos , Sítios de Ligação , Coenzima A/metabolismo , Microscopia Crioeletrônica , Histidina , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Palmitoil Coenzima A , Pirazinas/farmacologia , Piridinas/farmacologia , Serina , Especificidade por Substrato , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A
5.
EMBO J ; 41(11): e110324, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451091

RESUMO

The mechanisms underlying cancer metastasis remain poorly understood. Here, we report that TFAM deficiency rapidly and stably induced spontaneous lung metastasis in mice with liver cancer. Interestingly, unexpected polymerization of nuclear actin was observed in TFAM-knockdown HCC cells when cytoskeleton was examined. Polymerization of nuclear actin is causally linked to the high-metastatic ability of HCC cells by modulating chromatin accessibility and coordinating the expression of genes associated with extracellular matrix remodeling, angiogenesis, and cell migration. Mechanistically, TFAM deficiency blocked the TCA cycle and increased the intracellular malonyl-CoA levels. Malonylation of mDia2, which drives actin assembly, promotes its nuclear translocation. Importantly, inhibition of malonyl-CoA production or nuclear actin polymerization significantly impeded the spread of HCC cells in mice. Moreover, TFAM was significantly downregulated in metastatic HCC tissues and was associated with overall survival and time to tumor recurrence of HCC patients. Taken together, our study connects mitochondria to the metastasis of human cancer via uncovered mitochondria-to-nucleus retrograde signaling, indicating that TFAM may serve as an effective target to block HCC metastasis.


Assuntos
Carcinoma Hepatocelular , Proteínas de Ligação a DNA , Neoplasias Hepáticas , Proteínas Mitocondriais , Fatores de Transcrição , Actinas/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Coenzima A/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Metástase Neoplásica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant Cell ; 35(6): 1984-2005, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36869652

RESUMO

Plant lipids are important as alternative sources of carbon and energy when sugars or starch are limited. Here, we applied combined heat and darkness or extended darkness to a panel of ∼300 Arabidopsis (Arabidopsis thaliana) accessions to study lipid remodeling under carbon starvation. Natural allelic variation at 3-KETOACYL-COENZYME A SYNTHASE4 (KCS4), a gene encoding an enzyme involved in very long chain fatty acid (VLCFA) synthesis, underlies the differential accumulation of polyunsaturated triacylglycerols (puTAGs) under stress. Ectopic expression of KCS4 in yeast and plants proved that KCS4 is a functional enzyme localized in the endoplasmic reticulum with specificity for C22 and C24 saturated acyl-CoA. Allelic mutants and transient overexpression in planta revealed the differential role of KCS4 alleles in VLCFA synthesis and leaf wax coverage, puTAG accumulation, and biomass. Moreover, the region harboring KCS4 is under high selective pressure and allelic variation at KCS4 correlates with environmental parameters from the locales of Arabidopsis accessions. Our results provide evidence that KCS4 plays a decisive role in the subsequent fate of fatty acids released from chloroplast membrane lipids under carbon starvation. This work sheds light on both plant response mechanisms and the evolutionary events shaping the lipidome under carbon starvation.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Humanos , Arabidopsis/metabolismo , Coenzima A/genética , Coenzima A/metabolismo , Escuridão , Amigos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/metabolismo , Triglicerídeos/metabolismo , Regulação da Expressão Gênica de Plantas
7.
J Virol ; 98(2): e0174923, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38189249

RESUMO

Enterovirus 71 (EV71) is one of the major pathogens causing hand, foot, and mouth disease in children under 5 years old, which can result in severe neurological complications and even death. Due to limited treatments for EV71 infection, the identification of novel host factors and elucidation of mechanisms involved will help to counter this viral infection. N-terminal acetyltransferase 6 (NAT6) was identified as an essential host factor for EV71 infection with genome-wide CRISPR/Cas9 screening. NAT6 facilitates EV71 viral replication depending on its acetyltransferase activity but has little effect on viral release. In addition, NAT6 is also required for Echovirus 7 and coxsackievirus B5 infection, suggesting it might be a pan-enterovirus host factor. We further demonstrated that NAT6 is required for Golgi integrity and viral replication organelle (RO) biogenesis. NAT6 knockout significantly inhibited phosphatidylinositol 4-kinase IIIß (PI4KB) expression and PI4P production, both of which are key host factors for enterovirus infection and RO biogenesis. Further mechanism studies confirmed that NAT6 formed a complex with its substrate actin and one of the PI4KB recruiters-acyl-coenzyme A binding domain containing 3 (ACBD3). Through modulating actin dynamics, NAT6 maintained the integrity of the Golgi and the stability of ACBD3, thereby enhancing EV71 infection. Collectively, these results uncovered a novel mechanism of N-acetyltransferase supporting EV71 infection.IMPORTANCEEnterovirus 71 (EV71) is an important pathogen for children under the age of five, and currently, no effective treatment is available. Elucidating the mechanism of novel host factors supporting viral infection will reveal potential antiviral targets and aid antiviral development. Here, we demonstrated that a novel N-acetyltransferase, NAT6, is an essential host factor for EV71 replication. NAT6 could promote viral replication organelle (RO) formation to enhance viral replication. The formation of enterovirus ROs requires numerous host factors, including acyl-coenzyme A binding domain containing 3 (ACBD3) and phosphatidylinositol 4-kinase IIIß (PI4KB). NAT6 could stabilize the PI4KB recruiter, ACBD3, by inhibiting the autophagy degradation pathway. This study provides a fresh insight into the relationship between N-acetyltransferase and viral infection.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Acetiltransferases N-Terminal , Fosfotransferases (Aceptor do Grupo Álcool) , Criança , Pré-Escolar , Humanos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antivirais , Coenzima A/metabolismo , Infecções por Coxsackievirus , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Proteínas de Membrana/metabolismo , Acetiltransferases N-Terminal/metabolismo , Biogênese de Organelas , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Replicação Viral/fisiologia
8.
Nature ; 565(7737): 96-100, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30487609

RESUMO

Endothelial nitric oxide synthase (eNOS) is protective against kidney injury, but the molecular mechanisms of this protection are poorly understood1,2. Nitric oxide-based cellular signalling is generally mediated by protein S-nitrosylation, the oxidative modification of Cys residues to form S-nitrosothiols (SNOs). S-nitrosylation regulates proteins in all functional classes, and is controlled by enzymatic machinery that includes S-nitrosylases and denitrosylases, which add and remove SNO from proteins, respectively3,4. In Saccharomyces cerevisiae, the classic metabolic intermediate co-enzyme A (CoA) serves as an endogenous source of SNOs through its conjugation with nitric oxide to form S-nitroso-CoA (SNO-CoA), and S-nitrosylation of proteins by SNO-CoA is governed by its cognate denitrosylase, SNO-CoA reductase (SCoR)5. Mammals possess a functional homologue of yeast SCoR, an aldo-keto reductase family member (AKR1A1)5 with an unknown physiological role. Here we report that the SNO-CoA-AKR1A1 system is highly expressed in renal proximal tubules, where it transduces the activity of eNOS in reprogramming intermediary metabolism, thereby protecting kidneys against acute kidney injury. Specifically, deletion of Akr1a1 in mice to reduce SCoR activity increased protein S-nitrosylation, protected against acute kidney injury and improved survival, whereas this protection was lost when Enos (also known as Nos3) was also deleted. Metabolic profiling coupled with unbiased mass spectrometry-based SNO-protein identification revealed that protection by the SNO-CoA-SCoR system is mediated by inhibitory S-nitrosylation of pyruvate kinase M2 (PKM2) through a novel locus of regulation, thereby balancing fuel utilization (through glycolysis) with redox protection (through the pentose phosphate shunt). Targeted deletion of PKM2 from mouse proximal tubules recapitulated precisely the protective and mechanistic effects of S-nitrosylation in Akr1a1-/- mice, whereas Cys-mutant PKM2, which is refractory to S-nitrosylation, negated SNO-CoA bioactivity. Our results identify a physiological function of the SNO-CoA-SCoR system in mammals, describe new regulation of renal metabolism and of PKM2 in differentiated tissues, and offer a novel perspective on kidney injury with therapeutic implications.


Assuntos
Injúria Renal Aguda/enzimologia , Injúria Renal Aguda/prevenção & controle , Coenzima A/metabolismo , Engenharia Metabólica , Oxirredutases/metabolismo , Aldeído Redutase/deficiência , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Animais , Linhagem Celular , Feminino , Glicólise , Células HEK293 , Humanos , Túbulos Renais Proximais/enzimologia , Masculino , Camundongos , Mutação , Óxido Nítrico Sintase Tipo III/metabolismo , Oxirredução , Via de Pentose Fosfato , Multimerização Proteica , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/deficiência , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(40): e2207505119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161908

RESUMO

Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.


Assuntos
Androstenodiona , Colesterol , Mycobacterium abscessus , Androstenodiona/metabolismo , Colesterol/metabolismo , Coenzima A/metabolismo , Humanos , Hidrolases/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191214

RESUMO

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Camundongos , Acetaminofen , Anticorpos Monoclonais/metabolismo , Antioxidantes , Autoanticorpos/metabolismo , Autofagia , Tetracloreto de Carbono , Proteínas de Transporte/genética , Colina , Coenzima A/metabolismo , Concanavalina A/metabolismo , Diazepam , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Inflamação , Metionina
11.
Proteins ; 92(6): 768-775, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38235908

RESUMO

The biosynthesis pathways of coenzyme A (CoA) in most archaea involve several unique enzymes including dephospho-CoA kinase (DPCK) that converts dephospho-CoA to CoA in the final step of CoA biosynthesis in all domains of life. The archaeal DPCK is unrelated to the analogous bacterial and eukaryotic enzymes and shows no significant sequence similarity to any proteins with known structures. Unusually, the archaeal DPCK utilizes GTP as the phosphate donor although the analogous bacterial and eukaryotic enzymes are ATP-dependent kinases. Here, we report the crystal structure of DPCK and its complex with GTP and a magnesium ion from the archaeal hyperthermophile Thermococcus kodakarensis. The crystal structure demonstrates why GTP is the preferred substrate of this kinase. We also report the activity analyses of site-directed mutants of crucial residues determined based on sequence conservation and the crystal structure. From these results, the key residues involved in the reaction of phosphoryl transfer and the possible dephospho-CoA binding site are inferred.


Assuntos
Sequência de Aminoácidos , Proteínas Arqueais , Guanosina Trifosfato , Magnésio , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool) , Thermococcus , Thermococcus/enzimologia , Thermococcus/genética , Thermococcus/química , Cristalografia por Raios X , Guanosina Trifosfato/metabolismo , Guanosina Trifosfato/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Magnésio/metabolismo , Magnésio/química , Mutagênese Sítio-Dirigida , Domínio Catalítico , Sítios de Ligação , Especificidade por Substrato , Coenzima A/metabolismo , Coenzima A/química , Ligação Proteica
12.
Mol Microbiol ; 119(6): 687-694, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37140060

RESUMO

Coenzyme A (CoA) is an essential cofactor throughout biology. The first committed step in the CoA synthetic pathway is synthesis of ß-alanine from aspartate. In Escherichia coli and Salmonella enterica panD encodes the responsible enzyme, aspartate-1-decarboxylase, as a proenzyme. To become active, the E. coli and S. enterica PanD proenzymes must undergo an autocatalytic cleavage to form the pyruvyl cofactor that catalyzes decarboxylation. A problem was that the autocatalytic cleavage was too slow to support growth. A long-neglected gene (now called panZ) was belatedly found to encode the protein that increases autocatalytic cleavage of the PanD proenzyme to a physiologically relevant rate. PanZ must bind CoA or acetyl-CoA to interact with the PanD proenzyme and accelerate cleavage. The CoA/acetyl-CoA dependence has led to proposals that the PanD-PanZ CoA/acetyl-CoA interaction regulates CoA synthesis. Unfortunately, regulation of ß-alanine synthesis is very weak or absent. However, the PanD-PanZ interaction provides an explanation for the toxicity of the CoA anti-metabolite, N5-pentyl pantothenamide.


Assuntos
Ácido Aspártico , Escherichia coli , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Ácido Aspártico/metabolismo , beta-Alanina/metabolismo , Precursores Enzimáticos/metabolismo , Coenzima A/metabolismo
13.
Eur J Immunol ; 53(10): e2350435, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482959

RESUMO

Coenzyme A (CoA) serves as a vital cofactor in numerous enzymatic reactions involved in energy production, lipid metabolism, and synthesis of essential molecules. Dysregulation of CoA-dependent metabolic pathways can contribute to chronic diseases, such as inflammatory diseases, obesity, diabetes, cancer, and cardiovascular disorders. Additionally, CoA influences immune cell activation by modulating the metabolism of these cells, thereby affecting their proliferation, differentiation, and effector functions. Targeting CoA metabolism presents a promising avenue for therapeutic intervention, as it can potentially restore metabolic balance, mitigate chronic inflammation, and enhance immune cell function. This might ultimately improve the management and outcomes for these diseases. This review will more specifically focus on the contribution of pathways regulating the availability of the CoA precursor Vitamin B5/pantothenate in vivo and modulating the development of Th17-mediated inflammation, CD8-dependent anti-tumor immunity but also tissue repair processes in chronic inflammatory or degenerative diseases.


Assuntos
Coenzima A , Ácido Pantotênico , Humanos , Ácido Pantotênico/metabolismo , Coenzima A/metabolismo , Inflamação , Imunomodulação
14.
Biochem Biophys Res Commun ; 718: 150080, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735137

RESUMO

Catalytic promiscuity of enzymes plays a pivotal role in driving the evolution of plant specialized metabolism. Chalcone synthase (CHS) catalyzes the production of 2',4,4',6'-tetrahydroxychalcone (THC), a common precursor of plant flavonoids, from p-coumaroyl-coenzyme A (-CoA) and three malonyl-CoA molecules. CHS has promiscuous product specificity, producing a significant amount of p-coumaroyltriacetic lactone (CTAL) in vitro. However, mechanistic aspects of this CHS promiscuity remain to be clarified. Here, we show that the product specificity of soybean CHS (GmCHS1) is altered by CoA, a reaction product, which selectively inhibits THC production (IC50, 67 µM) and enhances CTAL production. We determined the structure of a ternary GmCHS1/CoA/naringenin complex, in which CoA is bound to the CoA-binding tunnel via interactions with Lys55, Arg58, and Lys268. Replacement of these residues by alanine resulted in an enhanced THC/CTAL production ratio, suggesting the role of these residues in the CoA-mediated alteration of product specificity. In the ternary complex, a mobile loop ("the K-loop"), which contains Lys268, was in a "closed conformation" placing over the CoA-binding tunnel, whereas in the apo and binary complex structures, the K-loop was in an "open conformation" and remote from the tunnel. We propose that the production of THC involves a transition of the K-loop conformation between the open and closed states, whereas synthesis of CTAL is independent of it. In the presence of CoA, an enzyme conformer with the closed K-loop conformation becomes increasingly dominant, hampering the transition of K-loop conformations to result in decreased THC production and increased CTAL production.


Assuntos
Aciltransferases , Glycine max , Aciltransferases/química , Aciltransferases/metabolismo , Aciltransferases/genética , Glycine max/enzimologia , Especificidade por Substrato , Coenzima A/metabolismo , Coenzima A/química , Modelos Moleculares , Conformação Proteica , Chalconas/química , Chalconas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
15.
J Pharmacol Exp Ther ; 388(1): 171-180, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37875310

RESUMO

Pantothenate kinase-associated neurodegeneration (PKAN) is characterized by a motor disorder with combinations of dystonia, parkinsonism, and spasticity, leading to premature death. PKAN is caused by mutations in the PANK2 gene that result in loss or reduction of PANK2 protein function. PANK2 is one of three kinases that initiate and regulate coenzyme A biosynthesis from vitamin B5, and the ability of BBP-671, an allosteric activator of pantothenate kinases, to enter the brain and elevate coenzyme A was investigated. The metabolic stability, protein binding, and membrane permeability of BBP-671 all suggest that it has the physical properties required to cross the blood-brain barrier. BBP-671 was detected in plasma, liver, cerebrospinal fluid, and brain following oral administration in rodents, demonstrating the ability of BBP-671 to penetrate the brain. The pharmacokinetic and pharmacodynamic properties of orally administered BBP-671 evaluated in cannulated rats showed that coenzyme A (CoA) concentrations were elevated in blood, liver, and brain. BBP-671 elevation of whole-blood acetyl-CoA served as a peripheral pharmacodynamic marker and provided a suitable method to assess target engagement. BBP-671 treatment elevated brain coenzyme A concentrations and improved movement and body weight in a PKAN mouse model. Thus, BBP-671 crosses the blood-brain barrier to correct the brain CoA deficiency in a PKAN mouse model, resulting in improved locomotion and survival and providing a preclinical foundation for the development of BBP-671 as a potential treatment of PKAN. SIGNIFICANCE STATEMENT: The blood-brain barrier represents a major hurdle for drugs targeting brain metabolism. This work describes the pharmacokinetic/pharmacodynamic properties of BBP-671, a pantothenate kinase activator. BBP-671 crosses the blood-brain barrier to correct the neuron-specific coenzyme A (CoA) deficiency and improve motor function in a mouse model of pantothenate kinase-associated neurodegeneration. The central role of CoA and acetyl-CoA in intermediary metabolism suggests that pantothenate kinase activators may be useful in modifying neurological metabolic disorders.


Assuntos
Neurodegeneração Associada a Pantotenato-Quinase , Camundongos , Animais , Ratos , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/genética , Acetilcoenzima A/metabolismo , Acetilcoenzima A/uso terapêutico , Coenzima A/metabolismo , Modelos Animais de Doenças , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Encéfalo/metabolismo
16.
Chembiochem ; 25(2): e202300673, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37994376

RESUMO

The in vitro synthesis of Coenzyme A (CoA)-thioester intermediates opens new avenues to transform simple molecules into more complex and multifunctional ones by assembling cell-free biosynthetic cascades. In this review, we have systematically cataloged known CoA-dependent enzyme reactions that have been successfully implemented in vitro. To faciliate their identification, we provide their UniProt ID when available. Based on this catalog, we have organized enzymes into three modules: activation, modification, and removal. i) The activation module includes enzymes capable of fusing CoA with organic molecules. ii) The modification module includes enzymes capable of catalyzing chemical modifications in the structure of acyl-CoA intermediates. And iii) the removal module includes enzymes able to remove the CoA and release an organic molecule different from the one activated in the upstream. Based on these reactions, we constructed a reaction network that summarizes the most relevant CoA-dependent biosynthetic pathways reported until today. From the information available in the articles, we have plotted the total turnover number of CoA as a function of the product titer, observing a positive correlation between both parameters. Therefore, the success of a CoA-dependent in vitro pathway depends on its ability to regenerate CoA, but also to regenerate other cofactors such as NAD(P)H and ATP.


Assuntos
Acil Coenzima A , NAD , Acil Coenzima A/metabolismo , NAD/metabolismo , Coenzima A/metabolismo
17.
Eur Biophys J ; 53(3): 147-157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456905

RESUMO

Phosphopantetheine adenylyltransferase (EC. 2.7.7.3, PPAT) catalyzes the penultimate step of the multistep reaction in the coenzyme A (CoA) biosynthesis pathway. In this step, an adenylyl group from adenosine triphosphate (ATP) is transferred to 4'-phosphopantetheine (PNS) yielding 3'-dephospho-coenzyme A (dpCoA) and pyrophosphate (PPi). PPAT from strain C3 of Klebsiella pneumoniae (KpPPAT) was cloned, expressed and purified. It was crystallized using 0.1 M HEPES buffer and PEG10000 at pH 7.5. The crystals belonged to tetragonal space group P41212 with cell dimensions of a = b = 72.82 Å and c = 200.37 Å. The structure was determined using the molecular replacement method and refined to values of 0.208 and 0.255 for Rcryst and Rfree factors, respectively. The structure determination showed the presence of three crystallographically independent molecules A, B and C in the asymmetric unit. The molecules A and B are observed in the form of a dimer in the asymmetric unit while molecule C belongs to the second dimer whose partner is related by crystallographic twofold symmetry. The polypeptide chain of KpPPAT folds into a ß/α structure. The conformations of the side chains of several residues in the substrate binding site in KpPPAT are significantly different from those reported in other PPATs. As a result, the modes of binding of substrates, phosphopantetheine (PNS) and adenosine triphosphate (ATP) differ considerably. The binding studies using fluorescence spectroscopy indicated a KD value of 3.45 × 10-4 M for ATP which is significantly lower than the corresponding values reported for PPAT from other species.


Assuntos
Trifosfato de Adenosina , Klebsiella pneumoniae , Nucleotidiltransferases , Klebsiella pneumoniae/metabolismo , Cristalografia por Raios X , Coenzima A/química , Coenzima A/metabolismo
18.
RNA Biol ; 21(1): 1-12, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032240

RESUMO

NAD can be inserted co-transcriptionally via non-canonical initiation to form NAD-RNA. However, that mechanism is unlikely for CoA-linked RNAs due to low intracellular concentration of the required initiator nucleotide, 3'-dephospho-CoA (dpCoA). We report here that phosphopantetheine adenylyltransferase (PPAT), an enzyme of CoA biosynthetic pathway, accepts RNA transcripts as its acceptor substrate and transfers 4'-phosphopantetheine to yield CoA-RNA post-transcriptionally. Synthetic natural (RNAI) and small artificial RNAs were used to identify the features of RNA that are needed for it to serve as PPAT substrate. RNAs with 4-10 unpaired nucleotides at the 5' terminus served as PPAT substrates, but RNAs having <4 unpaired nucleotides did not undergo capping. No capping was observed when the +1A was changed to G or when 5' triphosphate was removed by RNA pyrophosphohydrolase (RppH), suggesting the enzyme recognizes pppA-RNA as an ATP analog. PPAT binding affinities were equivalent for transcripts with +1A, +1 G, or 5'OH (+1A), indicating that productive enzymatic recognition is driven more by local positioning effects than by overall binding affinity. Capping rates were independent of the number of unpaired nucleotides in the range of 4-10 nucleotides. Capping was strongly inhibited by ATP, reducing CoA-RNA production ~70% when equimolar ATP and substrate RNA were present. Dual bacterial expression of candidate RNAs with different 5' structures followed by CoA-RNA CaptureSeq revealed 12-fold enrichment of the better PPAT substrate, consistent with in vivo CoA-capping of RNA transcripts by PPAT. These results suggest post-transcriptional RNA capping as a possible mechanism for the biogenesis of CoA-RNAs in bacteria.


Assuntos
Coenzima A , NAD , Coenzima A/metabolismo , Nucleotidiltransferases/química , Trifosfato de Adenosina
19.
J Biol Chem ; 298(7): 102128, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35700823

RESUMO

The sirtuins and histone deacetylases are the best characterized members of the lysine deacetylase (KDAC) enzyme family. Recently, we annotated the "orphan" enzyme ABHD14B (α/ß-hydrolase domain containing protein # 14B) as a novel KDAC and showed this enzyme's ability to transfer an acetyl-group from protein lysine residue(s) to coenzyme-A to yield acetyl-coenzyme-A, thereby, expanding the repertoire of this enzyme family. However, the role of ABHD14B in metabolic processes is not fully elucidated. Here, we investigated the role of this enzyme using mammalian cell knockdowns in a combined transcriptomics and metabolomics analysis. We found from these complementary experiments in vivo that the loss of ABHD14B results in significantly altered glucose metabolism, specifically the decreased flux of glucose through glycolysis and the citric acid cycle. Further, we show that depleting hepatic ABHD14B in mice also results in defective systemic glucose metabolism, particularly during fasting. Taken together, our findings illuminate the important metabolic functions that the KDAC ABHD14B plays in mammalian physiology and poses new questions regarding the role of this hitherto cryptic metabolism-regulating enzyme.


Assuntos
Glucose/metabolismo , Histona Desacetilases , Lisina , Acetilação , Animais , Coenzima A/metabolismo , Histona Desacetilases/metabolismo , Lisina/metabolismo , Mamíferos/metabolismo , Camundongos
20.
J Biol Chem ; 298(8): 102203, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764173

RESUMO

Lipoic acid is a sulfur-containing cofactor indispensable for the function of several metabolic enzymes. In microorganisms, lipoic acid can be salvaged from the surroundings by lipoate protein ligase A (LplA), an ATP-dependent enzyme. Alternatively, it can be synthesized by the sequential actions of lipoate protein ligase B (LipB) and lipoyl synthase (LipA). LipB takes up the octanoyl chain from C8-acyl carrier protein (C8-ACP), a byproduct of the type II fatty acid synthesis pathway, and transfers it to a conserved lysine of the lipoyl domain of a dehydrogenase. However, the molecular basis of its substrate recognition is still not fully understood. Using Escherichia coli LipB as a model enzyme, we show here that the octanoyl-transferase mainly recognizes the 4'-phosphopantetheine-tethered acyl-chain of its donor substrate and weakly binds the apo-acyl carrier protein. We demonstrate LipB can accept octanoate from its own ACP and noncognate ACPs, as well as C8-CoA. Furthermore, our 1H saturation transfer difference and 31P NMR studies demonstrate the binding of adenosine, as well as the phosphopantetheine arm of CoA to LipB, akin to binding to LplA. Finally, we show a conserved 71RGG73 loop, analogous to the lipoate-binding loop of LplA, is required for full LipB activity. Collectively, our studies highlight commonalities between LipB and LplA in their mechanism of substrate recognition. This knowledge could be of significance in the treatment of mitochondrial fatty acid synthesis related disorders.


Assuntos
Aciltransferases/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Proteína de Transporte de Acila/metabolismo , Aciltransferases/metabolismo , Coenzima A/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligases/metabolismo , Panteteína/análogos & derivados , Ácido Tióctico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA