Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioorg Med Chem Lett ; 105: 129745, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614151

RESUMO

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, ß-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.


Assuntos
Antimitóticos , Proliferação de Células , Colchicina , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacologia , Sítios de Ligação , Antimitóticos/farmacologia , Antimitóticos/química , Antimitóticos/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Benzenossulfonatos/química , Benzenossulfonatos/farmacologia , Benzenossulfonatos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Tubulina (Proteína)/metabolismo , Estrutura Molecular , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química , Piridinas/química , Piridinas/farmacologia , Piridinas/síntese química , Relação Dose-Resposta a Droga
2.
Environ Sci Technol ; 58(15): 6519-6531, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578272

RESUMO

Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.


Assuntos
Bivalves , Dinoflagellida , Animais , Rifampina/metabolismo , alfa-Tocoferol/metabolismo , Frutos do Mar/análise , Colchicina/metabolismo , Dinoflagellida/metabolismo
3.
Bioorg Chem ; 146: 107299, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38547722

RESUMO

We previously discovered a novel family of antimicrotubule agents designated as phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs). In this study, we evaluated the effect of the difluorination of the aromatic ring bearing the imidazolidin-2-one moiety (ring A) at positions 3, 5 and 2, 6 on their antiproliferative activity on four cancer cell lines, their ability to disrupt the microtubules and their toxicity toward chick embryos. We thus synthesized, characterized and biologically evaluated 24 new difluorinated PIB-SO derivatives designated as phenyl 3,5-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (3,5-PFB-SOs, 4-15) and phenyl 2,6-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (2,6-PFB-SOs, 16-27). The concentration of the drug required to inhibit cell growth by 50% (IC50) of 3,5-PFB-SOs is over 1000 nM while most of 2,6-PFB-SOs exhibit IC50 in the nanomolar range (23-900 nM). Furthermore, the most potent 2,6-PFB-SOs 19, 26 and 27 arrest the cell cycle progression in G2/M phase, induce cytoskeleton disruption and impair microtubule polymerization. Docking studies also show that the most potent 2,6-PFB-SOs 19, 21, 24, 26 and 27 have binding affinity toward the colchicine-binding site (C-BS). Moreover, their antiproliferative activity is not affected by antimicrotubule- and multidrug-resistant cell lines. Besides, they exhibit improved in vitro hepatic stability in the mouse, rat and human microsomes compared to their non-fluorinated counterparts. They also showed theoretical pharmacokinetic, physicochemical and drug-like properties suited for further in vivo assays. In addition, they exhibit low to no systemic toxicity toward chick embryos. Finally, our study evidences that PIB-SOs must be fluorinated in specific positions on ring A to maintain both their antiproliferative activity and their biological activity toward microtubules.


Assuntos
Antineoplásicos , Neoplasias , Embrião de Galinha , Humanos , Ratos , Camundongos , Animais , Benzenossulfonatos , Colchicina/metabolismo , Proliferação de Células , Sítios de Ligação , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Linhagem Celular Tumoral , Moduladores de Tubulina/farmacologia
4.
Bioorg Chem ; 150: 107569, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38905886

RESUMO

Erianin, a natural compound derived from Dendrobium, has shown significant anticancer properties against a wide range of cancer cells. Despite the identification of multiple mechanisms of action for erianin, none of these mechanisms fully account for its broad-spectrum effect. In this study, we aimed to identify the cellular target and underlying mechanism responsible for the broad-spectrum antitumor effects of erianin. We found that erianin effectively inhibited tubulin polymerization in cancer cells and purified tubulin. Through competition binding assays and X-ray crystallography, it was revealed that erianin bound to the colchicine site of ß-tubulin. Importantly, the X-ray crystal structure of the tubulin-erianin complex was solved, providing clear insight into the orientation and position of erianin in the colchicine-binding site. Erianin showed activity against paclitaxel-resistant cells, evidenced by G2/M cell cycle arrest, apoptosis-related PARP and Caspase-3 cleavage, and in vivo xenograft studies. The study concluded that erianin bound reversibly to the colchicine site of ß-tubulin, inhibited tubulin polymerization, and displayed anticancer activity against paclitaxel-resistant cells, offering valuable insights for further exploration as potential anticancer agents.


Assuntos
Antineoplásicos , Proliferação de Células , Colchicina , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Tubulina (Proteína) , Humanos , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Colchicina/farmacologia , Colchicina/química , Colchicina/metabolismo , Sítios de Ligação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Camundongos , Apoptose/efeitos dos fármacos , Taxoides/farmacologia , Taxoides/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Cristalografia por Raios X , Hidrocarbonetos Aromáticos com Pontes/química , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Camundongos Nus , Linhagem Celular Tumoral , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Bibenzilas/química , Bibenzilas/farmacologia , Fenol
5.
J Enzyme Inhib Med Chem ; 39(1): 2302320, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38221788

RESUMO

A new series of 1H-pyrrolo[3,2-c]pyridine derivatives were designed and synthesised as colchicine-binding site inhibitors. Preliminary biological evaluations showed that most of the target compounds displayed moderate to excellent antitumor activities against three cancer cell lines (HeLa, SGC-7901, and MCF-7) in vitro. Among them, 10t exhibited the most potent activities against three cancer cell lines with IC50 values ranging from 0.12 to 0.21 µM. Tubulin polymerisation experiments indicated that 10t potently inhibited tubulin polymerisation at concentrations of 3 µM and 5 µM, and immunostaining assays revealed that 10t remarkably disrupted tubulin microtubule dynamics at a concentration of 0.12 µM. Furthermore, cell cycle studies and cell apoptosis analyses demonstrated that 10t at concentrations of 0.12 µM, 0.24 µM, and 0.36 µM significantly caused G2/M phase cell cycle arrest and apoptosis. The results of molecular modelling studies suggested that 10t interacts with tubulin by forming hydrogen bonds with colchicine sites Thrα179 and Asnß349. In addition, the prediction of physicochemical properties disclosed that 10t conformed well to the Lipinski's rule of five.


Assuntos
Antineoplásicos , Colchicina , Humanos , Colchicina/farmacologia , Colchicina/metabolismo , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/química , Sítios de Ligação , Piridinas/química , Células HeLa , Moduladores de Tubulina/química , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral
6.
Int J Biol Macromol ; 263(Pt 2): 130451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408582

RESUMO

Atherosclerosis (AS) is the common basis for the onset of cardiovascular events. The lipid metabolism theory considers foam cell formation as an important marker for the initiation of AS. Fucoidan is an acidic polysaccharide that can reduce lipid accumulation in foam cells. Studies show that tea polysaccharides can be transported to lysosomes via the tubulin pathway. However, the specific mechanism of action of fucoidan on foam cells has not been extensively studied. Therefore, we further explored the mechanism of action of fucoidan and evaluated whether it could reduce lipid accumulation in foam cells by affecting the expression of lysosomal pathway-related genes and proteins. In this study, three inhibitors, CPZ, EIPA, and colchicine, were used to inhibit endocytosis, macropinocytosis, and the tubulin pathway, respectively, to study the pathways of action. Transcriptomics and proteomics analysis, as well as western blotting and qRT-PCR were used to determine the effects of fucoidan and the inhibitors on lysosomal genes and proteins. Fucoidan could enter foam cells through both endocytosis and via macropinocytosis, and then further undergo intracellular transport via the tubulin pathway. After fucoidan treatment, the expression of lysosomal pathway-related genes and proteins including LAMP2, AP3, AP4, MCOLN1, and TFEB in foam cells increased significantly (P < 0.01). However, the expression of lysosomal genes and proteins after colchicine intervention was comparable with that in the model group. Therefore, the tubulin pathway inhibited by colchicine is an important pathway for the transport and distribution of fucoidan within cells. In summary, fucoidan may be transported to lysosomes via the tubulin pathway and may enhance the expression of lysosomal genes, promoting autophagy, thereby accelerating lipid clearance in foam cells. Due to its significant lipid-lowering effect, it can be used in the clinical treatment of AS.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Células Espumosas/metabolismo , Tubulina (Proteína)/metabolismo , Aterosclerose/tratamento farmacológico , Polissacarídeos/uso terapêutico , Lipídeos/farmacologia , Lisossomos/metabolismo , Colchicina/metabolismo
7.
Int J Biol Macromol ; 276(Pt 1): 133678, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971286

RESUMO

The colchicine site of ß-tubulin has been proven to be essential binding sites of microtubule polymerization inhibitors. Recent studies implied that GTP pocket of α-tubulin adjacent to colchicine sites is a potential binding site for developing tubulin polymerization inhibitors. However, the structural basis for which type of structural fragments was more beneficial for enhancing the affinity of α-tubulin is still unclear. Here, podophyllotoxin derivatives-tubulin complex crystals indicated that heterocyclic with the highly electronegative and small steric hindrance was conducive to change configuration and enhance the affinity of the residues in GTP pocket of α-tubulin. Triazole with lone-pairs electrons and small steric hindrance exhibited the strongest affinity for enhancing affinity of podophyllotoxin derivatives by forming two hydrogen bonds with αT5 Ser178. Pyrimidine with the secondary strong affinity could bind Asn101 to make the αH7 configuration deflection, which reduces the stability of tubulin result in its depolymerization. Conversely, 4ß-quinoline-podophyllotoxin with the weakest affinity did not interact with α-tubulin. The molecular dynamics simulation and protein thermal shift results showed that 4ß-triazole-podophyllotoxin-tubulin was the most stable mainly due to two hydrogen bonds and the higher van der Waals force. This work provided a structural basis of the potential binding sites for extending the α/ß-tubulin dual-binding sites inhibitors design strategy.


Assuntos
Colchicina , Simulação de Dinâmica Molecular , Podofilotoxina , Moduladores de Tubulina , Tubulina (Proteína) , Podofilotoxina/química , Podofilotoxina/farmacologia , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Sítios de Ligação , Colchicina/química , Colchicina/farmacologia , Colchicina/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Ligação Proteica , Ligação de Hidrogênio , Polimerização
8.
J Med Chem ; 67(4): 2619-2630, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38294341

RESUMO

Targeting microtubules is the most effective wide-spectrum pharmacological strategy in antitumoral chemotherapy, and current research focuses on reducing main drawbacks: neurotoxicity and resistance. PM534 is a novel synthetic compound derived from the Structure-Activity-Relationship study on the natural molecule PM742, isolated from the sponge of the order Lithistida, family Theonellidae, genus Discodermia (du Bocage 1869). PM534 targets the entire colchicine binding domain of tubulin, covering four of the five centers of the pharmacophore model. Its nanomolar affinity and high retention time modulate a strikingly high antitumor activity that efficiently overrides two resistance mechanisms in cells (detoxification pumps and tubulin ßIII isotype overexpression). Furthermore, PM534 induces significant inhibition of tumor growth in mouse xenograft models of human non-small cell lung cancer. Our results present PM534, a highly effective new compound in the preclinical evaluation that is currently in its first human Phase I clinical trial.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Colchicina/metabolismo , Tubulina (Proteína)/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Microtúbulos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Moduladores de Tubulina/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células
9.
Eur J Med Chem ; 274: 116543, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38823265

RESUMO

Colchicine binding site inhibitors (CBSIs) have attracted much attention due to their antitumor efficacies and the advantages of inhibiting angiogenesis and overcoming multidrug resistance. However, no CBSI has been currently approved for cancer treatment due to the insufficient efficacies, serious toxicities and poor pharmacokinetic properties. Design of dual-target inhibitors is becoming a potential strategy for cancer treatment to improve anticancer efficacy, decrease adverse events and overcome drug resistance. Therefore, we reviewed dual-target inhibitors of colchicine binding site (CBS), summarized the design strategies and the biological activities of these dual-target inhibitors, expecting to provide inspiration for developing novel dual inhibitors based on CBS.


Assuntos
Antineoplásicos , Colchicina , Neoplasias , Humanos , Colchicina/metabolismo , Colchicina/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Sítios de Ligação/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/uso terapêutico , Estrutura Molecular , Animais
10.
Dalton Trans ; 53(29): 12349-12369, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38989784

RESUMO

Quite recently we discovered that copper(II) complexes with isomeric morpholine-thiosemicarbazone hybrid ligands show good cytotoxicity in cancer cells and that the molecular target responsible for this activity might be tubulin. In order to obtain better lead drug candidates, we opted to exploit the power of coordination chemistry to (i) assemble structures with globular shape to better fit the colchicine pocket and (ii) vary the metal ion. We report the synthesis and full characterization of bis-ligand cobalt(III) and iron(III) complexes with 6-morpholinomethyl-2-formylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL1), 6-morpholinomethyl-2-acetylpyridine 4N-(4-hydroxy-3,5-dimethylphenyl)-3-thiosemicarbazone (HL2), and 6-morpholinomethyl-2-formylpyridine 4N-phenyl-3-thiosemicarbazone (HL3), and mono-ligand nickel(II), zinc(II) and palladium(II) complexes with HL1, namely [CoIII(HL1)(L1)](NO3)2 (1), [CoIII(HL2)(L2)](NO3)2 (2), [CoIII(HL3)(L3)](NO3)2 (3), [FeIII(L2)2]NO3 (4), [FeIII(HL3)(L3)](NO3)2 (5), [NiII(L1)]Cl (6), [Zn(L1)Cl] (7) and [PdII(HL1)Cl]Cl (8). We discuss the effect of the metal identity and metal complex stoichiometry on in vitro cytotoxicity and antitubulin activity. The high antiproliferative activity of complex 4 correlated well with inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity were supported by experimental results and molecular docking calculations.


Assuntos
Colchicina , Complexos de Coordenação , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/síntese química , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacologia , Humanos , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/química , Moduladores de Tubulina/síntese química , Sítios de Ligação , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Polimerização , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Estrutura Molecular , Proliferação de Células/efeitos dos fármacos
11.
Microsc. electron. biol. celular ; 14(2): 147-57, 1990.
Artigo em Inglês | LILACS | ID: lil-121628

RESUMO

The fact that glycerol preserves microtubules from depolymerizing in vitro, and that some ions such as Ca(II) and Mg(II), regulate the assembly-disassembly process of these structures, induced us to study the effect of several sugars, glycols and metal ions on solubility and colchicine affinity of tubulin in rat brain homogenates, and of purified microtubular protein. Inhibition of colchicine binding was significant with glycerol, polyethylene glycol 1000 (PEG-2) and the ions A1(III), Co(II), Ni(II), while compounds structurally related to glycero (glucose and sucrose) did not inhibition it. Mannitol, instead, increased the activity a 47% over control. Apparently the presence of some compounds in brain homogenates [PEG-2 (1000) and NI (II)] favored tubulin sedimentation when these latterwere centrifuged at 100,000 x g for 150 min at 20 degrees C, but the form in which tubulin becomes aggregated in the pellet is unknown. Nickel ion madeinsoluble microtubular protein of homogenates and the purified one by more than 90% without causing significant inhibition of the colchicine binding. The sediment containing nickel-treated two cycles purified microtubular protein observed with the electron microscope did not present microtubules, but it revealed the presence of irregular, wavy and streteched structures, but it revealed the presence of irregular, wavy and stretched structures bearing highly dense dotted material. The sediments became soluble in phosphate-glutamate buffer (pH 6.8) and, when incubated in polymerizing conditions, gave rise to microtubules undistinguishable from those prepared with untreated purified protein


Assuntos
Animais , Feminino , Ratos , Carboidratos/farmacologia , Cátions/farmacologia , Colchicina/metabolismo , Glicóis/farmacologia , Níquel/farmacologia , Química Encefálica , Tubulinos/metabolismo , Alumínio/farmacologia , Precipitação Química , Cobalto/farmacologia , Fixadores/farmacologia , Ligação Proteica , Microtúbulos , Polímeros , Proteínas do Tecido Nervoso/metabolismo , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA