Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(3): 51, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349406

RESUMO

Immune checkpoint therapy (ICT) for cancer can yield dramatic clinical responses; however, these may only be observed in a minority of patients. These responses can be further limited by subsequent disease recurrence and resistance. Combination immunotherapy strategies are being developed to overcome these limitations. We have previously reported enhanced efficacy of combined intratumoral cowpea mosaic virus immunotherapy (CPMV IIT) and ICT approaches. Lymphocyte-activation gene-3 (LAG-3) is a next-generation inhibitory immune checkpoint with broad expression across multiple immune cell subsets. Its expression increases on activated T cells and contributes to T cell exhaustion. We observed heightened efficacy of a combined CPMV IIT and anti-LAG-3 treatment in a mouse model of melanoma. Further, LAG-3 expression was found to be increased within the TME following intratumoral CPMV administration. The integration of CPMV IIT with LAG-3 inhibition holds significant potential to improve treatment outcomes by concurrently inducing a comprehensive anti-tumor immune response, enhancing local immune activation, and mitigating T cell exhaustion.


Assuntos
Comovirus , Melanoma , Humanos , Animais , Camundongos , Terapia Combinada , Imunoterapia , Modelos Animais de Doenças , Melanoma/terapia
2.
New Phytol ; 237(4): 1146-1153, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36073550

RESUMO

Transcriptome studies of Illumina RNA-Seq datasets of different Arabidopsis thaliana natural accessions and T-DNA mutants revealed the presence of two virus-like RNA sequences which showed the typical two-segmented genome characteristics of a comovirus. This comovirus did not induce any visible symptoms in infected A. thaliana plants cultivated under standard laboratory conditions. Hence it was named Arabidopsis latent virus 1 (ArLV1). Virus infectivity in A. thaliana plants was confirmed by quantitative reverse transcription polymerase chain reaction, transmission electron microscopy and mechanical inoculation. Arabidopsis latent virus 1 can also mechanically infect Nicotiana benthamiana, causing distinct mosaic symptoms. A bioinformatics investigation of A. thaliana RNA-Seq repositories, including nearly 6500 Sequence Read Archives (SRAs) in the NCBI SRA database, revealed the presence of ArLV1 in 25% of all archived natural A. thaliana accessions and in 8.5% of all analyzed SRAs. Arabidopsis latent virus 1 could also be detected in A. thaliana plants collected from the wild. Arabidopsis latent virus 1 is highly seed-transmissible with up to 40% incidence on the progeny derived from infected A. thaliana plants. This has probably led to a worldwide distribution in the model plant A. thaliana with as yet unknown effects on plant performance in a substantial number of studies.


Assuntos
Arabidopsis , Comovirus , Comovirus/genética , Arabidopsis/genética , RNA Viral/genética , Doenças das Plantas
3.
Theor Appl Genet ; 137(1): 8, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092992

RESUMO

KEY MESSAGE: R-BPMV is located within a recently expanded TNL cluster in the Phaseolus genus with suppressed recombination and known for resistance to multiple pathogens including potyviruses controlled by the I gene. Bean pod mottle virus (BPMV) is a comovirus that infects common bean and legumes in general. BPMV is distributed throughout the world and is a major threat on soybean, a closely related species of common bean. In common bean, BAT93 was reported to carry the R-BPMV resistance gene conferring resistance to BPMV and linked with the I resistance gene. To fine map R-BPMV, 182 recombinant inbred lines (RILs) derived from the cross BAT93 × JaloEEP558 were genotyped with polymerase chain reaction (PCR)-based markers developed using genome assemblies from G19833 and BAT93, as well as BAT93 BAC clone sequences. Analysis of RILs carrying key recombination events positioned R-BPMV to a target region containing at least 16 TIR-NB-LRR (TNL) sequences in BAT93. Because the I cluster presents a suppression of recombination and a large number of repeated sequences, none of the 16 TNLs could be excluded as R-BPMV candidate gene. The evolutionary history of the TNLs for the I cluster were reconstructed using microsynteny and phylogenetic analyses within the legume family. A single I TNL was present in Medicago truncatula and lost in soybean, mirroring the absence of complete BPMV resistance in soybean. Amplification of TNLs in the I cluster predates the divergence of the Phaseolus species, in agreement with the emergence of R-BPMV before the separation of the common bean wild centers of diversity. This analysis provides PCR-based markers useful in marker-assisted selection (MAS) and laid the foundation for cloning of R-BPMV resistance gene in order to transfer the resistance into soybean.


Assuntos
Comovirus , Phaseolus , Phaseolus/genética , Filogenia , Genótipo , Glycine max/genética
4.
Mol Pharm ; 20(7): 3589-3597, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37294891

RESUMO

Plant virus nanoparticles can be used as drug carriers, imaging reagents, vaccine carriers, and immune adjuvants in the formulation of intratumoral in situ cancer vaccines. One example is the cowpea mosaic virus (CPMV), a nonenveloped virus with a bipartite positive-strand RNA genome with each RNA packaged separately into identical protein capsids. Based on differences in their densities, the components carrying RNA-1 (6 kb) denoted as the bottom (B) component or carrying RNA-2 (3.5 kb) denoted as the middle (M) component can be separated from each other and from a top (T) component, which is devoid of any RNA. Previous preclinical mouse studies and canine cancer trials used mixed populations of CPMV (containing B, M, and T components), so it is unclear whether the particle types differ in their efficacies. It is known that the CPMV RNA genome contributes to immunostimulation by activation of TLR7. To determine whether the two RNA genomes that have different sizes and unrelated sequences cause different immune stimulation, we compared the therapeutic efficacies of B and M components and unfractionated CPMV in vitro and in mouse cancer models. We found that separated B and M particles behaved similarly to the mixed CPMV, activating innate immune cells to induce the secretion of pro-inflammatory cytokines such as IFNα, IFNγ, IL-6, and IL-12, while inhibiting immunosuppressive cytokines such as TGF-ß and IL-10. In murine models of melanoma and colon cancer, the mixed and separated CPMV particles all significantly reduced tumor growth and prolonged survival with no significant difference. This shows that the specific RNA genomes similarly stimulate the immune system even though B particles have 40% more RNA than M particles; each CPMV particle type can be used as an effective adjuvant against cancer with the same efficacy as native mixed CPMV. From a translational point of view, the use of either B or M component vs the mixed CPMV formulation offers the advantage that separated B or M alone is noninfectious toward plants and thus provides agronomic safety.


Assuntos
Vacinas Anticâncer , Comovirus , Melanoma , Animais , Cães , Camundongos , Comovirus/fisiologia , RNA Viral/genética , Modelos Animais de Doenças , Citocinas , Vacinação
5.
Mol Pharm ; 20(1): 500-507, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36399598

RESUMO

Cowpea mosaic virus (CPMV) has been developed as a promising nanoplatform technology for cancer immunotherapy; when applied as in situ vaccine, CPMV exhibits potent, systemic, and durable efficacy. While CPMV is not infectious to mammals, it is infectious to legumes; therefore, agronomic safety needs to be addressed to broaden the translational application of CPMV. RNA-containing formulations are preferred over RNA-free virus-like particles because the RNA and protein, each, contribute to CPMV's potent antitumor efficacy. We have previously optimized inactivation methods to develop CPMV that contains RNA but is not infectious to plants. We established that inactivated CPMV has reduced efficacy compared to untreated, native CPMV. However, a systematic comparison between native CPMV and different inactivated forms of CPMV was not done. Therefore, in this study, we directly compared the therapeutic efficacies and mechanisms of immune activation of CPMV, ultraviolet- (UV-), and formalin (Form)-inactivated CPMV to explain the differential efficacies. In a B16F10 melanoma mouse tumor model, Form-CPMV suppressed the tumor growth with prolonged survival (there were no statistical differences comparing CPMV and Form-CPMV). In comparison, UV-CPMV inhibited tumor growth significantly but not as well as Form-CPMV or CPMV. The reduced therapeutic efficacy of UV-CPMV is explained by the degree of cross-linking and aggregated state of the RNA, which renders it inaccessible for sensing by Toll-like receptor (TLR) 7/8 to activate immune responses. The mechanistic studies showed that the highly aggregated state of UV-CPMV inhibited TLR7 signaling more so than for the Form-CPMV formulation, reducing the secretion of interleukin-6 (IL-6) and interferon-α (IFN-α), cytokines associated with TLR7 signaling. These findings support the translational development of Form-CPMV as a noninfectious immunotherapeutic agent.


Assuntos
Comovirus , Melanoma , Animais , Camundongos , Receptor 7 Toll-Like , Modelos Animais de Doenças , Vacinação/métodos , Mamíferos
6.
J Vasc Interv Radiol ; 34(7): 1247-1257.e8, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36997021

RESUMO

PURPOSE: To test the hypothesis that cryoablation combined with intratumoral immunomodulating nanoparticles from cowpea mosaic virus (CPMV) as an in situ vaccination approach induces systemic antitumoral immunity in a murine model of hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Mice with bilateral, subcutaneous RIL-175 cell-derived HCCs were randomized to 4 groups: (a) phosphate-buffered saline (control), (b) cryoablation only (Cryo), (c) CPMV-treated only (CPMV), and (d) cryoablation plus CPMV-treated (Cryo + CPMV) (N = 11-14 per group). Intratumoral CPMV was administered every 3 days for 4 doses, with cryoablation performed on the third day. Contralateral tumors were monitored. Tumor growth and systemic chemokine/cytokine levels were measured. A subset of tumors and spleens were harvested for immunohistochemistry (IHC) and flow cytometry. One- or 2-way analysis of variance was performed for statistical comparisons. A P value of <.05 was used as the threshold for statistical significance. RESULTS: At 2 weeks after treatment, the Cryo and CPMV groups, alone or combined, outperformed the control group in the treated tumor; however, the Cryo + CPMV group showed the strongest reduction and lowest variance (1.6-fold ± 0.9 vs 6.3-fold ± 0.5, P < .0001). For the untreated tumor, only Cryo + CPMV significantly reduced tumor growth compared with control (9.2-fold ± 0.9 vs 17.8-fold ± 2.1, P = .01). The Cryo + CPMV group exhibited a transient increase in interleukin-10 and persistently decreased CXCL1. Flow cytometry revealed natural killer cell enrichment in the untreated tumor and increased PD-1 expression in the spleen. Tumor-infiltrating lymphocytes increased in Cryo + CPMV-treated tumors by IHC. CONCLUSIONS: Cryoablation and intratumoral CPMV, alone or combined, demonstrated potent efficacy against treated HCC tumors; however, only cryoablation combined with CPMV slowed the growth of untreated tumors, consistent with an abscopal effect.


Assuntos
Carcinoma Hepatocelular , Comovirus , Criocirurgia , Neoplasias Hepáticas , Animais , Camundongos , Adjuvantes Imunológicos , Carcinoma Hepatocelular/cirurgia , Criocirurgia/efeitos adversos , Neoplasias Hepáticas/cirurgia , Vacinação
7.
Nano Lett ; 22(13): 5348-5356, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35713326

RESUMO

We have previously shown the plant virus Cowpea mosaic virus (CPMV) to be an efficacious in situ cancer vaccine, providing elimination of tumors and tumor-specific immune memory. Additionally, we have shown that CPMV recruits Natural Killer (NK) cells within the tumor microenvironment. Here we aimed to determine whether a combination of CPMV and anti-4-1BB monoclonal antibody agonist to stimulate tumor-resident and CPMV-recruited NK cells is an effective dual therapy approach to improve NK cell function and in situ cancer vaccination efficacy. Using murine models of metastatic colon carcinomatosis and intradermal melanoma, intratumorally administered CPMV + anti-4-1BB dual therapy provided a robust antitumor response, improved elimination of primary tumors, and reduced mortality compared to CPMV and anti-4-1BB monotherapies. Additionally, on tumor rechallenge there was significant delay/prevention of tumor development and improved survival, highlighting that the CPMV + anti-4-1BB dual therapy enables potent and durable antitumor efficacy.


Assuntos
Comovirus , Melanoma , Animais , Humanos , Células Matadoras Naturais , Camundongos , Microambiente Tumoral , Vacinação
8.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37762335

RESUMO

Canine inflammatory mammary cancer (IMC) is a highly aggressive and lethal cancer in dogs serving as a valuable animal model for its human counterpart, inflammatory breast cancer (IBC), both lacking effective therapies. Intratumoral immunotherapy (IT-IT) with empty cowpea mosaic virus (eCPMV) nanoparticles has shown promising results, demonstrating a reduction in tumor size, longer survival rates, and improved quality of life. This study compares the transcriptomic profiles of tumor samples from female dogs with IMC receiving eCPMV IT-IT and medical therapy (MT) versus MT alone. Transcriptomic analyses, gene expression profiles, signaling pathways, and cell type profiling of immune cell populations in samples from four eCPMV-treated dogs with IMC and four dogs with IMC treated with MT were evaluated using NanoString Technologies using a canine immune-oncology panel. Comparative analyses revealed 34 differentially expressed genes between treated and untreated samples. Five genes (CXCL8, S100A9, CCL20, IL6, and PTGS2) involved in neutrophil recruitment and activation were upregulated in the treated samples, linked to the IL17-signaling pathway. Cell type profiling showed a significant increase in neutrophil populations in the tumor microenvironment after eCPMV treatment. These findings highlight the role of neutrophils in the anti-tumor response mediated by eCPMV IT-IT and suggest eCPMV as a novel therapeutic approach for IBC/IMC.


Assuntos
Comovirus , Neoplasias Inflamatórias Mamárias , Humanos , Cães , Animais , Feminino , Transcriptoma , Neutrófilos , Qualidade de Vida , Perfilação da Expressão Gênica , Microambiente Tumoral
9.
Int J Mol Sci ; 25(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203547

RESUMO

CBP60b (CALMODULIN-BINDING PROTEIN 60b) is a member of the CBP60 transcription factor family. In Arabidopsis, AtCBP60b not only regulates growth and development but also activates the transcriptions in immune responses. So far, CBP60b has only been studied extensively in the model plant Arabidopsis and rarely in crops. In this study, Bean pod mottle virus (BPMV)-mediated gene silencing (BPMV-VIGS) was used to silence GmCBP60b.1/2 in soybean plants. The silencing of GmCBP60b.1/2 resulted in typical autoimmunity, such as dwarfism and enhanced resistance to both Soybean mosaic virus (SMV) and Pseudomonas syringae pv. glycinea (Psg). To further understand the roles of GmCBP60b in immunity and circumvent the recalcitrance of soybean transformation, we generated transgenic tobacco lines that overexpress GmCBP60b.1. The overexpression of GmCBP60b.1 also resulted in autoimmunity, including spontaneous cell death on the leaves, highly induced expression of PATHOGENESIS-RELATED (PR) genes, significantly elevated accumulation of defense hormone salicylic acid (SA), and significantly enhanced resistance to Pst DC3000 (Pseudomonas syrangae pv. tomato DC3000). The transient coexpression of a luciferase reporter gene driven by the promoter of soybean SYSTEMIC ACQUIRED RESISTANCE DEFICIENT 1 (GmSARD1) (ProGmSARD1::LUC), together with GmCBP60b.1 driven by the 35S promoter, led to the activation of the LUC reporter gene, suggesting that GmCBP60b.1 could bind to the core (A/T)AATT motifs within the promoter region of GmSARD1 and, thus, activate the expression of the LUC reporter. Taken together, our results indicate that GmCBP60b.1/2 play both positive and negative regulatory roles in immune responses. These results also suggest that the function of CBP60b is conserved across plant species.


Assuntos
Arabidopsis , Comovirus , Arabidopsis/genética , Autoimunidade/genética , Proteínas de Ligação a Calmodulina , Glycine max/genética , Imunidade Vegetal/genética
10.
Plant Mol Biol ; 110(1-2): 199-218, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35779188

RESUMO

KEY MESSAGE: This study focused on enhancing resilience of soybean crops to drought and salinity stresses by overexpression of GmFAD3A gene, which plays an important role in modulating membrane fluidity and ultimately influence plants response to various abiotic stresses. Fatty acid desaturases (FADs) are a class of enzymes that mediate desaturation of fatty acids by introducing double bonds. They play an important role in modulating membrane fluidity in response to various abiotic stresses. However, a comprehensive analysis of GmFAD3 in drought and salinity stress tolerance in soybean is lacking. We used bean pod mottle virus (BPMV)-based vector for achieving rapid and efficient overexpression as well as silencing of Omega-3 Fatty Acid Desaturase gene from Glycine max (GmFAD3) to assess the functional role of GmFAD3 in abiotic stress responses in soybean. Higher levels of recombinant BPMV-GmFAD3A transcripts were detected in overexpressing soybean plants. Overexpression of GmFAD3A in soybean resulted in increased levels of jasmonic acid and higher expression of GmWRKY54 as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants under drought and salinity stress conditions. The GmFAD3A-overexpressing plants showed higher levels of chlorophyll content, efficient photosystem-II, relative water content, transpiration rate, stomatal conductance, proline content and also cooler canopy under drought and salinity stress conditions as compared to mock-inoculated, vector-infected and FAD3-silenced soybean plants. Results from the current study revealed that GmFAD3A-overexpressing soybean plants exhibited tolerance to drought and salinity stresses. However, soybean plants silenced for GmFAD3 were vulnerable to drought and salinity stresses.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max , Comovirus , Secas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Glycine max/fisiologia , Estresse Fisiológico/genética
11.
J Synchrotron Radiat ; 29(Pt 6): 1429-1435, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36345751

RESUMO

Brownian motion of Cowpea mosaic virus (CPMV) in water was measured using small-angle X-ray photon correlation spectroscopy (SA-XPCS) at 19.2 µs time resolution. It was found that the decorrelation time τ(Q) = 1/DQ2 up to Q = 0.091 nm-1. The hydrodynamic radius RH determined from XPCS using Stokes-Einstein diffusion D = kT/(6πηRH) is 43% larger than the geometric radius R0 determined from SAXS in the 0.007 M K3PO4 buffer solution, whereas it is 80% larger for CPMV in 0.5 M NaCl and 104% larger in 0.5 M (NH4)2SO4, a possible effect of aggregation as well as slight variation of the structures of the capsid resulting from the salt-protein interactions.


Assuntos
Comovirus , Comovirus/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Capsídeo
12.
Mol Pharm ; 19(5): 1573-1585, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35333531

RESUMO

In situ vaccination for cancer immunotherapy uses intratumoral administration of small molecules, proteins, nanoparticles, or viruses that activate pathogen recognition receptors (PRRs) to reprogram the tumor microenvironment and prime systemic antitumor immunity. Cowpea mosaic virus (CPMV) is a plant virus that─while noninfectious toward mammals─activates mammalian PRRs. Application of CPMV as in situ vaccine (ISV) results in a potent and durable efficacy in tumor mouse models and canine patients; data indicate that CPMV outperforms small molecule PRR agonists and other nonrelated plant viruses and virus-like particles (VLPs). In this work, we set out to compare the potency of CPMV versus other plant viruses from the Secoviridae. We developed protocols to produce and isolate cowpea severe mosaic virus (CPSMV) and tobacco ring spot virus (TRSV) from plants. CPSMV, like CPMV, is a comovirus with genome and protein homology, while TRSV lacks homology and is from the genus nepovirus. When applied as ISV in a mouse model of dermal melanoma (using B16F10 cells and C57Bl6J mice), CPMV outperformed CPSMV and TRSV─again highlighting the unique potency of CPMV. Mechanistically, the increased potency is related to increased signaling through toll-like receptors (TLRs)─in particular, CPMV signals through TLR2, 4, and 7. Using knockout (KO) mouse models, we demonstrate here that all three plant viruses signal through the adaptor molecule MyD88─with CPSMV and TRSV predominantly activating TLR2 and 4. CPMV induced significantly more interferon ß (IFNß) compared to TRSV and CPSMV; therefore, IFNß released upon signaling through TLR7 may be a differentiator for the observed potency of CPMV-ISV. Additionally, CPMV induced a different temporal pattern of intratumoral cytokine generation characterized by significantly increased inflammatory cytokines 4 days after the second of 2 weekly treatments, as if CPMV induced a "memory response". This higher, longer-lasting induction of cytokines may be another key differentiator that explains the unique potency of CPMV-ISV.


Assuntos
Vacinas Anticâncer , Comovirus , Neoplasias , Vírus de Plantas , Secoviridae , Animais , Citocinas , Cães , Humanos , Imunoterapia , Mamíferos , Camundongos , Receptor 2 Toll-Like , Microambiente Tumoral
13.
Mol Pharm ; 19(2): 592-601, 2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34978197

RESUMO

Viral immunotherapies are being recognized in cancer treatment, with several currently approved or undergoing clinical testing. While contemporary approaches have focused on oncolytic viral therapies, our efforts center on the development of plant virus-based cancer immunotherapies. In a previous work, we demonstrated the potent efficacy of the cowpea mosaic virus (CPMV), a plant virus that does not replicate in animals, applied as an in situ vaccine. CPMV is an immunostimulatory drug candidate, and intratumoral administration remodels the tumor microenvironment leading to activation of local and systemic antitumor immunity. Efficacy has been demonstrated in multiple tumor mouse models and canine cancer patients. As wild-type CPMV is infectious toward various legumes and because shedding of infectious virus from patients may be an agricultural concern, we developed UV-inactivated CPMV (termed inCPMV) which is not infectious toward plants. We report that as a monotherapy, wild-type CPMV outperforms inCPMV in mouse models of dermal melanoma or disseminated colon cancer. Efficacy of inCPMV is less than that of CPMV and similar to that of RNA-free CPMV. Immunological investigation using knockout mice shows that inCPMV does not signal through TLR7 (toll-like receptor); structure-function studies indicate that the RNA is highly cross-linked and therefore unable to activate TLR7. Wild-type CPMV signals through TLR2, -4, and -7, whereas inCPMV more closely resembles RNA-free CPMV which signals through TLR2 and -4 only. The structural features of inCPMV explain the increased potency of wild-type CPMV through the triple pronged TLR activation. Strikingly, when inCPMV is used in combination with an anti-OX40 agonist antibody (administered systemically), exceptional efficacy was demonstrated in a bilateral B16F10 dermal melanoma model. Combination therapy, with in situ vaccination applied only into the primary tumor, controlled the progression of the secondary, untreated tumors, with 10 out of 14 animals surviving for at least 100 days post tumor challenge without development of recurrence or metastatic disease. This study highlights the potential of inCPMV as an in situ vaccine candidate and demonstrates the power of combined immunotherapy approaches. Strategic immunocombination therapies are the formula for success, and the combination of in situ vaccination strategies along with therapeutic antibodies targeting the cancer immunity cycle is a particularly powerful approach.


Assuntos
Vacinas Anticâncer , Comovirus , Melanoma , Animais , Modelos Animais de Doenças , Cães , Humanos , Imunoterapia , Melanoma/tratamento farmacológico , Camundongos , Microambiente Tumoral
14.
Biomacromolecules ; 23(12): 5127-5136, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36375170

RESUMO

Peritoneal metastases (PMs) occur due to the metastasis of gynecological and gastrointestinal cancers such as ovarian, colon, pancreatic, or gastric tumors. PM outgrowth is often fatal, and patients with PMs have a median survival of 6 months. Cowpea mosaic virus (CPMV) has been shown, when injected intratumorally, to act as an immunomodulator reversing the immunosuppressive tumor microenvironment, therefore turning cold tumors hot and priming systemic antitumor immunity. However, not all tumors are injectable, and PMs especially will require targeted treatments to direct CPMV toward the disseminated tumor nodules. Toward this goal, we designed and tested a CPMV nanoparticle targeted to S100A9, a key immune mediator for many cancer types indicated in cancer growth, invasiveness, and metastasis. Here, we chose to use an intraperitoneal (IP) colon cancer model, and analysis of IP gavage fluid demonstrates that S100A9 is upregulated following IP challenge. S100A9-targeted CPMV particles displaying peptide ligands specific for S100A9 homed to IP-disseminated tumors, and treatment led to improved survival and decreased tumor burden. Targeting CPMV to S100A9 improves preclinical outcomes and harbors the potential of utilizing CPMV for the treatment of IP-disseminated diseases.


Assuntos
Neoplasias do Colo , Comovirus , Nanopartículas , Humanos , Microambiente Tumoral , Adjuvantes Imunológicos , Neoplasias do Colo/tratamento farmacológico
15.
Biomacromolecules ; 23(4): 1812-1825, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35344365

RESUMO

Cowpea mosaic virus (CPMV) is a potent immunogenic adjuvant and epitope display platform for the development of vaccines against cancers and infectious diseases, including coronavirus disease 2019. However, the proteinaceous CPMV nanoparticles are rapidly degraded in vivo. Multiple doses are therefore required to ensure long-lasting immunity, which is not ideal for global mass vaccination campaigns. Therefore, we formulated CPMV nanoparticles in injectable hydrogels to achieve slow particle release and prolonged immunostimulation. Liquid formulations were prepared from chitosan and glycerophosphate (GP) before homogenization with CPMV particles at room temperature. The formulations containing high-molecular-weight chitosan and 0-4.5 mg mL-1 CPMV gelled rapidly at 37 °C (5-8 min) and slowly released cyanine 5-CPMV particles in vitro and in vivo. Importantly, when a hydrogel containing CPMV displaying severe acute respiratory syndrome coronavirus 2 spike protein epitope 826 (amino acid 809-826) was administered to mice as a single subcutaneous injection, it elicited an antibody response that was sustained over 20 weeks, with an associated shift from Th1 to Th2 bias. Antibody titers were improved at later time points (weeks 16 and 20) comparing the hydrogel versus soluble vaccine candidates; furthermore, the soluble vaccine candidates retained Th1 bias. We conclude that CPMV nanoparticles can be formulated effectively in chitosan/GP hydrogels and are released as intact particles for several months with conserved immunotherapeutic efficacy. The injectable hydrogel containing epitope-labeled CPMV offers a promising single-dose vaccine platform for the prevention of future pandemics as well as a strategy to develop long-lasting plant virus-based nanomedicines.


Assuntos
COVID-19 , Quitosana , Comovirus , Vírus de Plantas , Vacinas , Animais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Preparações de Ação Retardada/farmacologia , Epitopos , Humanos , Hidrogéis , Camundongos , Glicoproteína da Espícula de Coronavírus
16.
Phytopathology ; 112(6): 1361-1372, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35113673

RESUMO

Three infectious clones of radish mosaic virus (RaMV) were generated from isolates collected in mainland Korea (RaMV-Gg) and Jeju Island (RaMV-Aa and RaMV-Bb). These isolates differed in sequences and pathogenicity. Examination of the wild-type isolates and reassortants between the genomic RNA1 and RNA2 of these three isolates revealed that severe symptoms were associated with RNA1 of isolates Aa or Gg causing systemic necrosis in Nicotiana benthamiana, or with RNA1 of isolate Bb for induction of veinal necrosis and severe mosaic symptoms in radish. Reverse transcription, followed by quantitative real-time PCR (Q-RT-PCR), results from infected N. benthamiana confirmed that viral RNA2 accumulation level was correlated to RaMV necrosis-inducing ability, and that the RNA2 accumulation level was mostly dependent on the origin of RNA1. However, in radish, Q-RT-PCR results showed more similar viral RNA2 accumulation levels regardless of the ability of the isolate to induce necrosis. Phylogenetic analysis of genomic RNAs sequence including previously characterized isolates from North America, Europe, and Asia suggest possible recombination within RNA1, while analysis of concatenated RNA1+RNA2 sequences indicates that reassortment of RNA1 and RNA2 has been more important in the evolution of RaMV isolates than recombination. Korean isolate Aa is a potential reassortant between isolates RaMV-J and RaMV-TW, while isolate Bb might have evolved from reassortment between isolates RaMV-CA and RaMV-J. The Korean isolates were shown to also be able to infect Chinese cabbage, raising concerns that RaMV may spread from radish fields to the Chinese cabbage crop in Korea, causing further economic losses.


Assuntos
Nicotiana , Raphanus , Células Clonais , Comovirus , Necrose , Filogenia , Doenças das Plantas , RNA Bacteriano , RNA Viral/genética
17.
J Am Chem Soc ; 143(36): 14748-14765, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34490778

RESUMO

The COVID-19 pandemic highlights the need for platform technologies enabling rapid development of vaccines for emerging viral diseases. The current vaccines target the SARS-CoV-2 spike (S) protein and thus far have shown tremendous efficacy. However, the need for cold-chain distribution, a prime-boost administration schedule, and the emergence of variants of concern (VOCs) call for diligence in novel SARS-CoV-2 vaccine approaches. We studied 13 peptide epitopes from SARS-CoV-2 and identified three neutralizing epitopes that are highly conserved among the VOCs. Monovalent and trivalent COVID-19 vaccine candidates were formulated by chemical conjugation of the peptide epitopes to cowpea mosaic virus (CPMV) nanoparticles and virus-like particles (VLPs) derived from bacteriophage Qß. Efficacy of this approach was validated first using soluble vaccine candidates as solo or trivalent mixtures and subcutaneous prime-boost injection. The high thermal stability of our vaccine candidates allowed for formulation into single-dose injectable slow-release polymer implants, manufactured by melt extrusion, as well as microneedle (MN) patches, obtained through casting into micromolds, for prime-boost self-administration. Immunization of mice yielded high titers of antibodies against the target epitope and S protein, and data confirms that antibodies block receptor binding and neutralize SARS-CoV and SARS-CoV-2 against infection of human cells. We present a nanotechnology vaccine platform that is stable outside the cold-chain and can be formulated into delivery devices enabling single administration or self-administration. CPMV or Qß VLPs could be stockpiled, and epitopes exchanged to target new mutants or emergent diseases as the need arises.


Assuntos
Vacinas contra COVID-19/metabolismo , COVID-19/epidemiologia , COVID-19/prevenção & controle , Preparações de Ação Retardada/química , SARS-CoV-2/metabolismo , Vacinas de Subunidades Antigênicas/metabolismo , Animais , Comovirus , Simulação por Computador , Composição de Medicamentos , Epitopos/química , Temperatura Alta , Humanos , Masculino , Camundongos Endogâmicos BALB C , Nanopartículas/química , Peptídeos/química , Vacinação , Vacinas de Partículas Semelhantes a Vírus/química
18.
Anal Chem ; 93(17): 6831-6838, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33877817

RESUMO

Cytoplasmic microviscosity (CPMV) plays essential roles in governing the diffusion-mediated cellular processes and has been recognized as a reliable indicator of the cellular response of many diseases and malfunctions. Current CPMV studies are exclusively established by probe-assisted optical methods, which nevertheless necessitate the complicated synthesis and delivery of optical probes into cells and thus the issues of biocompatibility and bio-orthogonality. Using twin nanopipettes integrated with a patch-clamp system, a practical electrochemical single-cell measurement is presented, which is capable of real-time and long-term CPMV detection without cell disruption. Specifically, upon the operation of the twin nanopipettes, the cellular CPMV status, which is correlated to cytoplasmic ionic mobility, could be sensibly transduced via the ionic current passing through the nanosystem. The average CPMV value of HeLa cells was detected as ca. 86 cP. Notably, the correlation between chemotherapy and CPMV alterations makes this approach possible for the real-time and long-term assessment of the evolution of external stimuli, as exemplified by the two natural products taxol and colchicine. Integrated with the patch-clamp setup, this study features the first use of twin nanopipettes for electrochemical CPMV monitoring of single living cells, and it is expected to inspire more interest in the exploitation of dual- and multiple nanopipettes for advanced single-cell analysis.


Assuntos
Comovirus , Citoplasma , Citosol , Células HeLa , Humanos , Análise de Célula Única
19.
Biomacromolecules ; 22(8): 3613-3623, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34314166

RESUMO

The plant virus cowpea mosaic virus (CPMV) is a natural nanocarrier that has been developed as a platform technology for the delivery of various payloads including peptide epitopes for vaccines, contrast agents for imaging, and drugs for therapy. Genetic fusion and chemical conjugations are the mainstay approaches to load the active ingredient to the exterior and/or interior of CPMV. However, these methods have limitations; genetic engineering is limited to biologics, and chemical alteration often requires multistep reactions with modification of both CPMV and the active ingredient. Either method can also result in particle instability. Therefore, to provide an alternate path toward CPMV functionalization, we report the isolation of peptides that specifically bind to CPMV, termed CPMV-binding peptides (CBP). We used a commercial M13 phage display 7-mer peptide library to pan for and select peptides that selectively bind to CPMV. Biopanning and characterization of lead candidates resulted in isolation of the motif "GWRVSEF/L" as the CPMV-specific motif with phenylalanine (F) at the seventh position being stronger than leucine (L). Specificity to CPMV was demonstrated, and cross-reactivity toward other plant viruses was not observed. To demonstrate cargo loading, GWRVSEF was tagged with biotin, fluorescein isothiocyanate (FITC), and a human epidermal growth factor receptor 2 (HER2)-specific targeting peptide ligand. Display of the active ingredient was confirmed, and utility of tagged and targeted CPMV in cell binding assays was demonstrated. The CBP functionalization strategy offers a new avenue for CPMV nanoparticle functionalization and should offer a versatile tool to add active ingredients that otherwise may be difficult to conjugate or display.


Assuntos
Comovirus , Nanopartículas , Comovirus/genética , Humanos , Peptídeos
20.
Virus Genes ; 57(2): 238-241, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33555455

RESUMO

In this study, the complete nucleotide sequence of a Brazilian isolate of cowpea severe mosaic virus (CPSMV) is presented for the first time. To date, the CPSMV-DG isolate, from the USA, is the only one with the complete known genome. High-throughput sequencing (Illumina HiSeq) and Sanger sequencing of the total RNA extract from a cowpea plant collected in Teresina city, Brazil, revealed the genome sequence of the CPSMV-Ter1 isolate. RNA-1 and RNA-2 are, respectively, 5921 and 3465 nucleotides (nt) long without the poly(A) tail, and show 77.91% and 76.08% nt sequence identity with CPSMV-DG, considered the type isolate of the species. The open reading frames (ORFs) were determined and the cleavage sites of the polyproteins were predicted. Although the two isolates show a similar genomic organization, there was a low percentage of sequence identity between Ter1 and DG. Furthermore, pairwise comparisons of a partial RNA-1 fragment between CPSMV-Ter1 and 11 CPSMV isolates from Brazil indicated 94.6 to 94.8% nt and 98.9% to 99.4% aa sequence identities.


Assuntos
Comovirus/genética , Genoma Viral , Brasil , Comovirus/isolamento & purificação , RNA Viral , Análise de Sequência de RNA , Vigna/virologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA