Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33847555

RESUMO

A novel Gram-stain-negative, facultative aerobic and rod-shaped bacterium, designated as MKL-01T and isolated from the blood of immunocompromised patient, was genotypically and phenotypically characterized. The colonies were found to be creamy yellow and convex. Phylogenetic analysis based on 16S rRNA gene and whole-genome sequences revealed that strain MKL-01T was most closely related to Cupriavidus gilardii LMG 5886T, present within a large cluster in the genus Cupriavidus. The genome sequence of strain MKL-01T showed the highest average nucleotide identity value of 92.1 % and digital DNA-DNA hybridization value of 44.8 % with the closely related species C. gilardii LMG 5886T. The genome size of the isolate was 5 750 268 bp, with a G+C content of 67.87 mol%. The strain could grow at 10-45 °C (optimum, 37-40 °C), in the presence of 0-10 % (w/v) NaCl (optimum, 0.5%) and at pH 6.0-10.0 (optimum, pH 7.0). Strain MKL-01T was positive for catalase and negative for oxidase. The major fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c and/or C16 : 1 ω6c/C16 : 1 ω7c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, two unidentified phospholipids and one unidentified polar lipid. Moreover, strain MKL-01T contained ubiquinone Q-8 as the sole respiratory quinone. Based on its molecular, phenotypic and chemotaxonomic properties, strain MKL-01T represents a novel species of the genus Cupriavidus; the name Cupriavidus cauae sp. nov. is proposed for this strain. The type strain is MKL-01T.


Assuntos
Sangue/microbiologia , Cupriavidus/classificação , Hospedeiro Imunocomprometido , Filogenia , Adulto , Técnicas de Tipagem Bacteriana , Composição de Bases , Cupriavidus/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Feminino , Humanos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
2.
World J Microbiol Biotechnol ; 37(7): 122, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34151386

RESUMO

The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.


Assuntos
Burkholderia/metabolismo , Cupriavidus/metabolismo , Hidrocarbonetos Aromáticos/metabolismo , Octanos/metabolismo , Pseudomonas/metabolismo , Técnicas de Tipagem Bacteriana , Benzeno/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Burkholderia/classificação , Burkholderia/genética , Catecol 2,3-Dioxigenase/genética , Cupriavidus/classificação , Cupriavidus/genética , Citocromo P-450 CYP4A/genética , DNA Bacteriano , Microbiologia Ambiental , Poluentes Ambientais/metabolismo , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Pseudomonas/classificação , Pseudomonas/genética , RNA Ribossômico 16S , Tolueno/metabolismo , Xilenos/metabolismo
3.
Int J Syst Evol Microbiol ; 70(7): 4165-4170, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32539928

RESUMO

During the isolation of bacteria from the Agave L. rhizosphere in northeast Mexico, four strains with similar BOX-PCR patterns were collected. The 16S rRNA gene sequences of all four strains were very similar to each other and that of the type strains of Cupriavidus metallidurans CH34T (98.49 % sequence similarity) and Cupriavidus necator N-1T (98.35 %). The genome of strain ASC-9842T was sequenced and compared to those of other Cupriavidus species. ANIb and ANIm values with the most closely related species were lower than 95%, while the in silico DNA-DNA hybridization values were also much lower than 70 %, consistent with the proposal that they represent a novel species. This conclusion was supported by additional phenotypic and chemotaxonomic analyses. Therefore, the name Cupriavidus agavae sp. nov. is proposed with the type strain ASC-9842T (=LMG 26414T=CIP 110327T).


Assuntos
Agave/microbiologia , Cupriavidus/classificação , Filogenia , Rizosfera , Técnicas de Tipagem Bacteriana , Composição de Bases , Cupriavidus/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , México , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Mol Plant Microbe Interact ; 32(12): 1635-1648, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31617792

RESUMO

The ß-rhizobium Cupriavidus taiwanensis is a nitrogen-fixing symbiont of Mimosa pudica. Nod factors produced by this species were previously found to be pentameric chitin-oligomers carrying common C18:1 or C16:0 fatty acyl chains, N-methylated and C-6 carbamoylated on the nonreducing terminal N-acetylglucosamine and sulfated on the reducing terminal residue. Here, we report that, in addition, C. taiwanensis LMG19424 produces molecules where the reducing sugar is open and oxidized. We identified a novel nodulation gene located on the symbiotic plasmid pRalta, called noeM, which is involved in this atypical Nod factor structure. noeM encodes a transmembrane protein bearing a fatty acid hydroxylase domain. This gene is expressed during symbiosis with M. pudica and requires NodD and luteolin for optimal expression. The closest noeM homologs formed a separate phylogenetic clade containing rhizobial genes only, which are located on symbiosis plasmids downstream from a nod box. Corresponding proteins, referred to as NoeM, may have specialized in symbiosis via the connection to the nodulation pathway and the spread in rhizobia. noeM was mostly found in isolates of the Mimoseae tribe, and specifically detected in all tested strains able to nodulate M. pudica. A noeM deletion mutant of C. taiwanensis was affected for the nodulation of M. pudica, confirming the role of noeM in the symbiosis with this legume.


Assuntos
Cupriavidus , Mimosa , Rhizobium , Cupriavidus/classificação , Cupriavidus/genética , Genes Bacterianos/genética , Mimosa/microbiologia , Filogenia , Plasmídeos/genética , Simbiose/genética
5.
Arch Microbiol ; 201(10): 1323-1331, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31297579

RESUMO

The widespread use of metals influenced many researchers to examine the relationship between heavy metal toxicity and bacterial resistance. In this study, we have inoculated heavy metal-contaminated soil from Janghang region of South Korea in the nickel-containing media (20 mM Ni2+) for the enrichment. Among dozens of the colonies acquired from the several transfers and serial dilutions with the same concentrations of Ni, the strain Ni-2 was chosen for further studies. The isolates were identified for their phylogenetic affiliations using 16S rRNA gene analysis. The strain Ni-2 was close to Cupriavidus metallidurans and was found to be resistant to antibiotics of vancomycin, erythromycin, chloramphenicol, ampicillin, gentamicin, streptomycin, and kanamycin by disk diffusion method. Of the isolated strains, Ni-2 was sequenced for the whole genome, since the Ni-resistance seemed to be better than the other strains. From the genome sequence we have found that there was a total of 89 metal-resistance-related genes including 11 Ni-resistance genes, 41 heavy metal (As, Cd, Zn, Hg, Cu, and Co)-resistance genes, 22 cation-efflux genes, 4 metal pumping ATPase genes, and 11 metal transporter genes.


Assuntos
Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Níquel/toxicidade , Antibacterianos/farmacologia , Cupriavidus/classificação , Genômica , Metais Pesados/toxicidade , Filogenia , RNA Ribossômico 16S/genética , República da Coreia
6.
Antonie Van Leeuwenhoek ; 112(4): 543-551, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30317454

RESUMO

A Gram-stain negative, strictly aerobic, mesophilic bacterial strain, designated strain S23T, was isolated from pond-side soil of an artificial pond in South Korea. Cells were observed to be peritrichously flagellated short rods showing positive oxidase and catalase activities. Growth of strain S23T was observed at 15-37 °C (optimum, 30 °C), pH 5.0-9.0 (optimum, pH 7.0-8.0) and 0-2% (w/v) NaCl (optimum, 0-0.5%). The major respiratory quinone was identified as ubiquinone-8 and the major fatty acids were identified as C16:0, cyclo-C17:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The G + C content of the genomic DNA was determined to be 65.1 mol%. Phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid were detected as the major polar lipids. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain S23T formed a phyletic lineage with Cupriavidus necator N-1T within the genus Cupriavidus. Strain S23T is closely related to C. necator N-1T (99.2%), Cupriavidus basilensis DSM 11853T (98.8%), Cupriavidus alkaliphilus ASC-732T (98.8%) and Cupriavidus numazuensis TE26T (98.7%), based on 16S rRNA gene sequence similarities. However, the DNA-DNA relatedness values between strain S23T and the closely related type strains were less than 46%. On the basis of phenotypic, chemotaxonomic and molecular properties, strain S23T represents a novel species of the genus Cupriavidus, for which the name Cupriavidus lacunae sp. nov. is proposed. The type strain is S23T (KACC 19624T = JCM 32674T).


Assuntos
Cupriavidus/isolamento & purificação , Lagoas/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Cupriavidus/classificação , Cupriavidus/genética , Cupriavidus/metabolismo , DNA Bacteriano/genética , Ácidos Graxos/química , Ácidos Graxos/metabolismo , RNA Ribossômico 16S/genética , República da Coreia , Solo/química
7.
Antonie Van Leeuwenhoek ; 111(3): 361-372, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29022146

RESUMO

Bacterial classification on the basis of a polyphasic approach was conducted on three poly(3 hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] accumulating bacterial strains that were isolated from samples collected from Malaysian environments; Kulim Lake, Sg. Pinang river and Sg. Manik paddy field. The Gram-negative, rod-shaped, motile, non-sporulating and non-fermenting bacteria were shown to belong to the genus Cupriavidus of the Betaproteobacteria on the basis of their 16S rRNA gene sequence analyses. The sequence similarity value with their near phylogenetic neighbour, Cupriavidus pauculus LMG3413T, was 98.5%. However, the DNA-DNA hybridization values (8-58%) and ribotyping analysis both enabled these strains to be differentiated from related Cupriavidus species with validly published names. The RiboPrint patterns of the three strains also revealed that the strains were genetically related even though they displayed a clonal diversity. The major cellular fatty acids detected in these strains included C15:0 ISO 2OH/C16:1 ω7c, hexadecanoic (16:0) and cis-11-octadecenoic (C18:1 ω7c). Their G+C contents ranged from 68.0  to 68.6 mol%, and their major isoprenoid quinone was Ubiquinone Q-8. Of these three strains, only strain USMAHM13 (= DSM 25816 = KCTC 32390) was discovered to exhibit yellow pigmentation that is characteristic of the carotenoid family. Their assembled genomes also showed that the three strains were not identical in terms of their genome sizes that were 7.82, 7.95 and 8.70 Mb for strains USMAHM13, USMAA1020 and USMAA2-4, respectively, which are slightly larger than that of Cupriavidus necator H16 (7.42 Mb). The average nucleotide identity (ANI) results indicated that the strains were genetically related and the genome pairs belong to the same species. On the basis of the results obtained in this study, the three strains are considered to represent a novel species for which the name Cupriavidus malaysiensis sp. nov. is proposed. The type strain of the species is USMAA1020T (= DSM 19416T = KCTC 32390T).


Assuntos
Cupriavidus/classificação , Cupriavidus/metabolismo , Microbiologia Ambiental , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Biologia Computacional/métodos , Cupriavidus/genética , Cupriavidus/isolamento & purificação , Genoma Bacteriano , Malásia , Metabolômica/métodos , Anotação de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
8.
Int J Mol Sci ; 18(4)2017 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-28346361

RESUMO

Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga). Specificity for rhizobial species/symbiovar appears to hold for Galega officinalis (Neorhizobium galegeae sv. officinalis), Galega orientalis (Neorhizobium galegeae sv. orientalis), Hedysarum coronarium (Rhizobium sullae), Medicago laciniata (Ensifer meliloti sv. medicaginis), Medicago rigiduloides (Ensifer meliloti sv. rigiduloides) and Trifolium ambiguum (Rhizobium leguminosarum sv. trifolii). Lateral gene transfer of specific symbiosis genes within rhizobial genera is an important mechanism allowing legumes to form symbioses with rhizobia adapted to particular soils. Strain-specific legume rhizobia symbioses can develop in particular habitats.


Assuntos
Fabaceae/microbiologia , Rhizobium/fisiologia , Simbiose , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Bradyrhizobium/classificação , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Cupriavidus/classificação , Cupriavidus/fisiologia , Fabaceae/metabolismo , Filogenia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Rhizobium/classificação , Rhizobium/genética
9.
Appl Environ Microbiol ; 82(11): 3150-3164, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994087

RESUMO

UNLABELLED: The large legume genus Mimosa is known to be associated with both alphaproteobacterial and betaproteobacterial symbionts, depending on environment and plant taxonomy, e.g., Brazilian species are preferentially nodulated by Burkholderia, whereas those in Mexico are associated with alphaproteobacterial symbionts. Little is known, however, about the symbiotic preferences of Mimosa spp. at the southern subtropical limits of the genus. In the present study, rhizobia were isolated from field-collected nodules from Mimosa species that are native to a region in southern Uruguay. Phylogenetic analyses of sequences of the 16S rRNA, recA, and gyrB core genome and the nifH and nodA symbiosis-essential loci confirmed that all the isolates belonged to the genus Cupriavidus However, none were in the well-described symbiotic species C. taiwanensis, but instead they were closely related to other species, such as C. necator, and to species not previously known to be symbiotic (or diazotrophic), such as C. basilensis and C. pinatubonensis Selection of these novel Cupriavidus symbionts by Uruguayan Mimosa spp. is most likely due to their geographical separation from their Brazilian cousins and to the characteristics of the soils in which they were found. IMPORTANCE: With the aim of exploring the diversity of rhizobia associated with native Mimosa species, symbionts were isolated from root nodules on five Mimosa species that are native to a region in southern Uruguay, Sierra del Abra de Zabaleta. In contrast to data obtained in the major centers of diversification of the genus Mimosa, Brazil and Mexico, where it is mainly associated with Burkholderia and Rhizobium/Ensifer, respectively, the present study has shown that all the isolated symbiotic bacteria belonged to the genus Cupriavidus Interestingly, none of nodules contained bacteria belonging to the well-described symbiotic species C. taiwanensis, but instead they were related to other Cupriavidus species such as C. necator and C. pinatubonensis These data suggest the existence of a higher diversity within beta-rhizobial Cupriavidus than was previously suspected, and that Mimosa spp. from Sierra del Abra de Zabaleta, may be natural reservoirs for novel rhizobia.


Assuntos
Cupriavidus/classificação , Cupriavidus/isolamento & purificação , Mimosa/microbiologia , Raízes de Plantas/microbiologia , Proteínas de Bactérias/genética , Análise por Conglomerados , Cupriavidus/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Uruguai
10.
Int J Syst Evol Microbiol ; 66(6): 2335-2341, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27001671

RESUMO

A Gram-stain-negative, aerobic, coccoid to small rod-shaped bacterium, designated X1T, was isolated from sludge collected from the vicinity of a pesticide manufacturer in Nantong, Jiangsu Province, China. Based on 16S rRNA gene sequence analysis, strain X1T belonged to the genus Cupriavidus, and was most closely related to Cupriavidus taiwanensis LMG 19424T (99.1 % 16S rRNA gene sequence similarity) and Cupriavidus alkaliphilus LMG 26294T (98.9 %). Strain X1T showed 16S rRNA gene sequence similarities of 97.2-98.2 % with other species of the genus Cupriavidus. The major cellular fatty acids of strain X1T were C16 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3), C18 : 1ω7c and C17 : 0 cyclo, and the major respiratory quinone was ubiquinone Q-8. The major polar lipids of strain X1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phospholipid and hydroxyphosphatidylethanolamine. The DNA G+C content was 66.6 mol%. The DNA-DNA relatedness values of strain X1T with the five reference strains C. taiwanensis LMG 19424T, C. alkaliphilus LMG 26294T, Cupriavidus necator LMG 8453T, Cupriavidus gilardii LMG 5886T and 'Cupriavidus yeoncheonense' KCTC 42053 were lower than 70 %. The results obtained from phylogenetic analysis, phenotypic characterization and DNA-DNA hybridization indicated that strain X1T should be proposed to represent a novel species of the genus Cupriavidus, for which the name Cupriavidus nantongensis sp. nov. is proposed. The type strain is X1T (=KCTC 42909T=LMG 29218T).


Assuntos
Clorpirifos/metabolismo , Cupriavidus/classificação , Filogenia , Esgotos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Cupriavidus/genética , Cupriavidus/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
11.
Antonie Van Leeuwenhoek ; 107(3): 749-58, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25690136

RESUMO

A novel bacterial strain, DCY86(T) (=KCTC 42053(T) = JCM 19890(T)) was isolated from soil of a ginseng field in Yeoncheon province (38°04'00″N 126°57'00″E), Republic of Korea using a serial dilution method. Strain DCY86(T) was observed to be Gram-stain negative, strictly aerobic, to grow optimally at 25-30 °C, at pH 7-7.5 and on tryptic soya agar medium. The cells were found to be sensitive to ceftazidine and tetracycline. Based on 16S rRNA gene sequence comparisons, strain DCY86(T) was found to be most closely related to Cupriavidus basilensis LMG 18990(T) (98.48 %), Cupriavidus numazensis LMG 26411(T) (98.34 %), Cupriavidus pinatabonesis KCTC 22125(T) (98.34 %) and Cupriavidus laharis KCTC 22126(T) (98.00 %). The G+C content was determined to be 64.23 mol %. The only isoprenoid quinone detected in strain DCY86(T) was ubiquinone Q-8. The major polar lipids were identified as diphosphatidylglycerol, phosphtidylethanolamine, phosphatidylglycerol, unidentified aminophosphoglycolipids and unidentified phospholipids. The major fatty acids were identified as C16:0 summed feature 3 (C16:1 ω7c/ω6c and/or iso-C15 : 0 2-OH) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). These data support the affiliation of strain DCY86(T) to the genus Cupriavidus. Strain DCY86(T) was also found to be able to solubilize phosphate and produce siderophores. The results of physiological and biochemical tests enabled strain DCY86(T) to be differentiated genotypically and phenotypically from the recognized species of the genus Cupriaividus. Therefore, the novel isolate can be considered to represent a novel species, for which the name Cupriavidus yeoncheonense sp. nov. is proposed here. The type strain is DCY86(T) (=KCTC 42053(T) = JCM 19890(T)).


Assuntos
Cupriavidus/classificação , Cupriavidus/isolamento & purificação , Microbiologia do Solo , Aerobiose , Antibacterianos/farmacologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Ceftazidima/farmacologia , Análise por Conglomerados , Meios de Cultura/química , Cupriavidus/genética , Cupriavidus/fisiologia , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Glicolipídeos/análise , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Panax/crescimento & desenvolvimento , Fosfolipídeos/análise , Filogenia , Quinonas/análise , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Temperatura , Tetraciclina/farmacologia
12.
J Basic Microbiol ; 55(2): 229-35, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25470743

RESUMO

In this study, a highly effective chlorpyrifos (CP)-degrading bacterium (termed strain X1) was isolated from the sludge of drain outlet of a chlorpyrifos manufacturer. Strain X1 was identified as Cupriavidus taiwanensis based upon the analysis of the 16S rDNA gene and biochemical characteristics, which is capable of transforming CP into 3,5,6-trichloro-2-pyridinol (TCP), and the resulting TCP was further metabolized when performed in an aqueous medium. Degradation experiments were carried out under different conditions at the range of pH (5.0∼9.0) and temperature (22∼42 °C), and the optimized pH and temperature were 7.0 and 32 °C respectively. Biotransformation of high concentration of CP was also determined; 400 mg l(À1) of CP was completely transformed within 36 h; approximately 95% of CP was removed within 48 h when concentration of CP was up to 500 mg l(À1) . A genomic library was successfully constructed to clone the gene encoding the CP hydrolase, and a positive transformant with clear hydrolytic zones was obtained and analyzed. The insert gene sequence exhibited close relationship with 99% similar to opdB gene encoding parathion hydrolase, whereas, transformant failed in degrading the accumulated TCP. These results highlight the potential of this bacterium to be used in the cleanup of CP.


Assuntos
Clorpirifos/metabolismo , Cupriavidus/isolamento & purificação , Cupriavidus/metabolismo , Hidrolases/genética , Piridonas/metabolismo , Esgotos/microbiologia , Biodegradação Ambiental , Biotransformação , Cupriavidus/classificação , Cupriavidus/genética , DNA Ribossômico , Biblioteca Genômica , Hidrólise , Filogenia
13.
J Environ Sci (China) ; 34: 126-32, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26257355

RESUMO

Indole, a typical nitrogen heterocyclic aromatic pollutant, is extensively spread in industrial wastewater. Microbial degradation has been proven to be a feasible approach to remove indole, whereas the microbial resources are fairly limited. A bacterial strain designated as SHE was isolated and found to be an efficient indole degrader. It was identified as Cupriavidus sp. according to 16S rRNA gene analysis. Strain SHE could utilize indole as the sole carbon source and almost completely degrade 100mg/L of indole within 24hr. It still harbored relatively high indole degradation capacity within pH4-9 and temperature 25°C-35°C. Experiments also showed that some heavy metals such as Mn(2+), Pb(2+) and Co(2+) did not pose severe inhibition on indole degradation. Based on high performance liquid chromatography-mass spectrum analysis, isatin was identified as a minor intermediate during the process of indole biodegradation. A major yellow product with m/z 265.0605 (C15H8N2O3) was generated and accumulated, suggesting a novel indole conversion pathway existed. Genome analysis of strain SHE indicated that there existed a rich set of oxidoreductases, which might be the key reason for the efficient degradation of indole. The robust degradation ability of strain SHE makes it a promising candidate for the treatment of indole containing wastewater.


Assuntos
Cupriavidus/metabolismo , Indóis/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Cupriavidus/classificação , Cupriavidus/genética , DNA Bacteriano/genética , Isatina/metabolismo , Espectrometria de Massas , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Environ Microbiol ; 16(7): 2099-111, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24131520

RESUMO

Variations in the patterns of diversity of symbionts have been described worldwide on Mimosa pudica, a pan-tropical invasive species that interacts with both α and ß-rhizobia. In this study, we investigated if symbiont competitiveness can explain these variations and the apparent prevalence of ß- over α-rhizobia. We developed an indirect method to measure the proportion of nodulation against a GFP reference strain and tested its reproducibility and efficiency. We estimated the competitiveness of 54 strains belonging to four species of ß-rhizobia and four of α-rhizobia, and the influence of the host genotype on their competitiveness. Our results were compared with biogeographical patterns of symbionts and host varieties. We found: (i) a strong strain effect on competitiveness largely explained by the rhizobial species, with Burkholderia phymatum being the most competitive species, followed by B. tuberum, whereas all other species shared similar and reduced levels of competitiveness; (ii) plant genotype can increase the competitiveness of Cupriavidus taiwanensis. The latter data support the likelihood of the strong adaptation of C. taiwanensis with the M. pudica var. unijuga and help explain its prevalence as a symbiont of this variety over Burkholderia species in some environments, most notably in Taiwan.


Assuntos
Burkholderia/classificação , Cupriavidus/classificação , Mimosa/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Rhizobium/classificação , Simbiose , Burkholderia/genética , Cupriavidus/genética , Genótipo , Espécies Introduzidas , Mimosa/fisiologia , Dados de Sequência Molecular , Filogeografia , Nodulação/fisiologia , Reprodutibilidade dos Testes , Rhizobium/genética , Taiwan
15.
Arch Microbiol ; 196(11): 811-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25098225

RESUMO

During a survey of plant-associated bacteria in northeast Mexico, a group of 13 bacteria was isolated from agave, maize and sorghum plants rhizosphere. This group of strains was related to Cupriavidus respiraculi (99.4 %), but a polyphasic investigation based on DNA-DNA hybridization analysis, other genotypic studies and phenotypic features showed that this group of strains actually belongs to a new Cupriavidus species. Consequently, taking all the results together, the description of Cupriavidus plantarum sp. nov. is proposed.


Assuntos
Cupriavidus/classificação , Filogenia , Plantas/microbiologia , Rizosfera , Agave/microbiologia , Cupriavidus/química , Cupriavidus/genética , Cupriavidus/metabolismo , Dados de Sequência Molecular , Fenótipo , RNA Ribossômico 16S/genética , Sorghum/microbiologia , Especificidade da Espécie , Zea mays/microbiologia
16.
Int J Syst Evol Microbiol ; 63(Pt 1): 208-211, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22389284

RESUMO

Phylogenetic analysis of the 16S rRNA gene sequences of strains TE26(T) and K6 belonging to Wautersia numazuensis Kageyama et al. 2005 showed the strains to be deeply intermingled among the species of the genus Cupriavidus. The comparison showed that strain TE26(T) was closely related to the type strains of Cupriavidus pinatubonensis (99.1 % 16S rRNA gene sequence similarity), C. basilensis (98.7 %), C. necator (98.7 %) and C. gilardii (98.0 %). However, DNA-DNA hybridization experiments (less than 20 % relatedness) demonstrated that strain TE26(T) is different from these Cupriavidus species. A comparative phenotypic and chemotaxonomic analysis (based on fatty acid profiles) in combination with the 16S rRNA gene sequence phylogenetic analysis and the DNA-DNA hybridization results supported the incorporation of Wautersia numazuensis into the genus Cupriavidus as Cupriavidus numazuensis comb. nov.; the type strain is TE26(T) (=LMG 26411(T) =DSM 15562(T) = CIP 108892(T)).


Assuntos
Cupriavidus/classificação , Filogenia , Técnicas de Tipagem Bacteriana , Cupriavidus/genética , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
17.
J Bacteriol ; 194(8): 2109-10, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22461549

RESUMO

Here we report on the complete genome sequence of Cupriavidus basilensis OR16 NCAIM BO2487. The genome of strain OR16 contains 7,534 putative coding sequences, including a large set of xenobiotics-degrading genes and a unique glucose dehydrogenase gene that is absent from other Cupriavidus genomes.


Assuntos
Cupriavidus/genética , Genoma Bacteriano , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cupriavidus/classificação , Regulação Bacteriana da Expressão Gênica/fisiologia , Glucose 1-Desidrogenase/genética , Glucose 1-Desidrogenase/metabolismo , Dados de Sequência Molecular , Especificidade da Espécie
18.
Appl Environ Microbiol ; 78(6): 1692-700, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22226956

RESUMO

Among the leguminous trees native to Uruguay, Parapiptadenia rigida (Angico), a Mimosoideae legume, is one of the most promising species for agroforestry. Like many other legumes, it is able to establish symbiotic associations with rhizobia and belongs to the group known as nitrogen-fixing trees, which are major components of agroforestry systems. Information about rhizobial symbionts for this genus is scarce, and thus, the aim of this work was to identify and characterize rhizobia associated with P. rigida. A collection of Angico-nodulating isolates was obtained, and 47 isolates were selected for genetic studies. According to enterobacterial repetitive intergenic consensus PCR patterns and restriction fragment length polymorphism analysis of their nifH and 16S rRNA genes, the isolates could be grouped into seven genotypes, including the genera Burkholderia, Cupriavidus, and Rhizobium, among which the Burkholderia genotypes were the predominant group. Phylogenetic studies of nifH, nodA, and nodC sequences from the Burkholderia and the Cupriavidus isolates indicated a close relationship of these genes with those from betaproteobacterial rhizobia (beta-rhizobia) rather than from alphaproteobacterial rhizobia (alpha-rhizobia). In addition, nodulation assays with representative isolates showed that while the Cupriavidus isolates were able to effectively nodulate Mimosa pudica, the Burkholderia isolates produced white and ineffective nodules on this host.


Assuntos
Burkholderia/fisiologia , Cupriavidus/fisiologia , Fabaceae/microbiologia , Nodulação , Raízes de Plantas/microbiologia , Rhizobium/fisiologia , Burkholderia/classificação , Burkholderia/genética , Burkholderia/isolamento & purificação , Análise por Conglomerados , Cupriavidus/classificação , Cupriavidus/genética , Cupriavidus/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genótipo , Mimosa/microbiologia , Dados de Sequência Molecular , Tipagem Molecular , Fixação de Nitrogênio , Oxirredutases/genética , Filogenia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Rhizobium/classificação , Rhizobium/genética , Rhizobium/isolamento & purificação , Análise de Sequência de DNA , Uruguai
19.
Curr Microbiol ; 65(3): 231-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22645014

RESUMO

A bacterial strain P2 capable of degrading 3,5,6-trichloro-2-pyridinol (TCP) was isolated and characterized. Phylogenetic analysis based on 16S rRNA gene sequence indicated that it belonged to the genus of Cupriavidus, because it showed the highest sequence similarity to Cupriavidus pauculus LMG 3413(T) (99.7 %) and DNA-DNA relatedness value between strain P2 and C. pauculus LMG 3413(T) was 76.8 %. In combination with morphological, physiological and biochemical characters, strain P2 was identified as C. pauculus. It could use TCP as the sole carbon source and energy source for its growth. It showed a high average degradation rate of 10 mg/L h in mineral salt medium amended with TCP (50-800 mg/L). During TCP degradation, chloridion was released into the medium in two obvious discontinuous stages. Along with this, two colorful metabolites were produced. Finally, the molarity of the total released chloridion was three times that of the initial TCP in the medium. This is the first report of TCP-degrading strain from the genus of Cupriavidus and the detection of two colorful metabolites during TCP degradation. Strain P2 might be a promising candidate for its application in the bioremediation of TCP-polluted environments.


Assuntos
Cupriavidus/classificação , Piridonas/metabolismo , Biodegradação Ambiental , Cromatografia Líquida de Alta Pressão , Cupriavidus/genética , Cupriavidus/metabolismo , DNA Bacteriano/genética , Concentração de Íons de Hidrogênio , Filogenia , Piridonas/análise , Piridonas/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA