RESUMO
Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear. Here, we identified that ARHGAP32, a Rho GTPase-activating protein, is located in desmosomes through its interaction with desmoplakin (DSP) via its GAB2-interacting domain (GAB2-ID). We confirmed that ARHGAP32 is required for desmosomal organization, maturation and length regulation. Notably, loss of ARHGAP32 increased formation of F-actin stress fibers and phosphorylation of the regulatory myosin light chain Myl9 at T18/S19. Inhibition of ROCK activity in ARHGAP32-knockout (KO) cells effectively restored desmosomal organization and the integrity of epithelial cell sheets. Moreover, loss of DSP impaired desmosomal ARHGAP32 location and led to decreased actomyosin contractility. ARHGAP32 with a deletion of the GAB2-ID domain showed enhanced association with RhoA in the cytosol and failed to rescue the desmosomal organization in ARHGAP32-KO cells. Collectively, our study unveils that ARHGAP32 associates with and regulates desmosomes by interacting with DSP. This interaction potentially facilitates the crosstalk between desmosomes and F-actin.
Assuntos
Desmoplaquinas , Desmossomos , Proteínas Ativadoras de GTPase , Desmossomos/metabolismo , Humanos , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Desmoplaquinas/metabolismo , Desmoplaquinas/genética , Animais , Actinas/metabolismo , Ligação Proteica , Proteína rhoA de Ligação ao GTP/metabolismo , Cães , Fosforilação , Células Madin Darby de Rim Canino , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética , Cadeias Leves de Miosina/metabolismo , Cadeias Leves de Miosina/genéticaRESUMO
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Assuntos
Desmossomos , Placofilinas , Animais , Cães , Desmossomos/metabolismo , Membrana Celular/metabolismo , Placofilinas/metabolismo , Células Madin Darby de Rim Canino , Transdução de Sinais , Adesão Celular , Desmoplaquinas/metabolismoRESUMO
BACKGROUND AND AIMS: Pathogenic desmoplakin (DSP) gene variants are associated with the development of a distinct form of arrhythmogenic cardiomyopathy known as DSP cardiomyopathy. Patients harbouring these variants are at high risk for sustained ventricular arrhythmia (VA), but existing tools for individualized arrhythmic risk assessment have proven unreliable in this population. METHODS: Patients from the multi-national DSP-ERADOS (Desmoplakin SPecific Effort for a RAre Disease Outcome Study) Network patient registry who had pathogenic or likely pathogenic DSP variants and no sustained VA prior to enrolment were followed longitudinally for the development of first sustained VA event. Clinically guided, step-wise Cox regression analysis was used to develop a novel clinical tool predicting the development of incident VA. Model performance was assessed by c-statistic in both the model development cohort (n = 385) and in an external validation cohort (n = 86). RESULTS: In total, 471 DSP patients [mean age 37.8 years, 65.6% women, 38.6% probands, 26% with left ventricular ejection fraction (LVEF) < 50%] were followed for a median of 4.0 (interquartile range: 1.6-7.3) years; 71 experienced first sustained VA events {2.6% [95% confidence interval (CI): 2.0, 3.5] events/year}. Within the development cohort, five readily available clinical parameters were identified as independent predictors of VA and included in a novel DSP risk score: female sex [hazard ratio (HR) 1.9 (95% CI: 1.1-3.4)], history of non-sustained ventricular tachycardia [HR 1.7 (95% CI: 1.1-2.8)], natural logarithm of 24-h premature ventricular contraction burden [HR 1.3 (95% CI: 1.1-1.4)], LVEF < 50% [HR 1.5 (95% CI: .95-2.5)], and presence of moderate to severe right ventricular systolic dysfunction [HR 6.0 (95% CI: 2.9-12.5)]. The model demonstrated good risk discrimination within both the development [c-statistic .782 (95% CI: .77-.80)] and external validation [c-statistic .791 (95% CI: .75-.83)] cohorts. The negative predictive value for DSP patients in the external validation cohort deemed to be at low risk for VA (<5% at 5 years; n = 26) was 100%. CONCLUSIONS: The DSP risk score is a novel model that leverages readily available clinical parameters to provide individualized VA risk assessment for DSP patients. This tool may help guide decision-making for primary prevention implantable cardioverter-defibrillator placement in this high-risk population and supports a gene-first risk stratification approach.
Assuntos
Desmoplaquinas , Humanos , Desmoplaquinas/genética , Feminino , Masculino , Medição de Risco/métodos , Adulto , Pessoa de Meia-Idade , Arritmias Cardíacas/genética , Heterozigoto , Taquicardia Ventricular/genéticaRESUMO
In order to report clinically actionable incidental findings in genetic testing, the American College of Medical Genetics and Genomics (ACMG) recommended the evaluation of variants in 59 genes associated with highly penetrant mutations. However, there is a lack of epidemiological data on medically actionable rare variants in these genes in Arab populations. We used whole genome sequencing data from 6045 participants from the Qatar Genome Programme and integrated it with phenotypic data collected by the Qatar Biobank. We identified novel putative pathogenic variants in the 59 ACMG genes by filtering previously unrecorded variants based on computational prediction of pathogenicity, variant rarity and segregation evidence. We assessed the phenotypic associations of candidate variants in genes linked to cardiovascular diseases. Finally, we used a zebrafish knockdown and synthetic human mRNA co-injection assay to functionally characterize two of these novel variants. We assessed the zebrafish cardiac function in terms of heart rate, rhythm and hemodynamics, as well as the heart structure. We identified 52 492 novel variants, which have not been reported in global and disease-specific databases. A total of 74 novel variants were selected with potentially pathogenic effect. We prioritized two novel cardiovascular variants, DSP c.1841A > G (p.Asp614Gly) and LMNA c.326 T > G (p.Val109Gly) for functional characterization. Our results showed that both variants resulted in abnormal zebrafish heart rate, rhythm and structure. This study highlights medically actionable variants that are specific to the Middle Eastern Qatari population.
Assuntos
Desmoplaquinas/genética , Achados Incidentais , Lamina Tipo A , Animais , Predisposição Genética para Doença , Testes Genéticos/métodos , Humanos , Lamina Tipo A/genética , Catar , Peixe-Zebra/genéticaRESUMO
Desmoplakin (DSP) is a desmosomal component expressed in skin and heart, essential for desmosome stability and intermediate filament connection. Pathogenic variants in the DSP gene encoding DSP, lead to heterogeneous skin, adnexa and heart-related phenotypes, including skin fragility, woolly hair (WH), palmoplantar keratoderma (PPK) and arrhythmogenic/dilated cardiomyopathy (ACM/DCM). The ambiguity of computer-based prediction analysis of pathogenicity and effect of DSP variants, indicates a necessity for functional analysis. Here, we report a heterozygous DSP variant that was not previously described, NM_004415.4:c.3337C>T (NM_004415.4(NP_004406.2):p.(Arg1113*)) in a patient with PPK, WH and ACM. RNA and protein analysis revealed ~50% reduction of DSP mRNA and protein expression. Patient's keratinocytes showed fragile cell-cell connections and perinuclear retracted intermediate filaments. Epidermal growth factor receptor (EGFR) is a transmembrane protein expressed in the basal epidermal layer involved in proliferation and differentiation, processes that are disrupted in the development of PPK, and in the regulation of the desmosome. In skin of the abovementioned patient, evident EGFR upregulation was observed. EGFR inhibition in patient's keratinocytes strongly increased DSP expression at the plasma membrane, improved intermediate filament connection with the membrane edges and reduced the cell-cell fragility. This cell phenotypic recovery was due to a translocation of DSP to the plasma membrane together with an increased number of desmosomes. These results indicate a therapeutic potential of EGFR inhibitors for disorders caused by DSP haploinsufficiency.
Assuntos
Desmoplaquinas , Receptores ErbB , Doenças do Cabelo , Ceratodermia Palmar e Plantar , Humanos , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Epiderme/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Doenças do Cabelo/genética , Queratinócitos/metabolismo , Ceratodermia Palmar e Plantar/genética , Fenótipo , Pele/metabolismoRESUMO
Inherited cardiovascular conditions are significant causes of sudden cardiac death in the young (SCDY), making their investigation using molecular autopsy and prevention a public health priority. However, the molecular autopsy data in Chinese population is lacking. The 5-year result (2017-2021) of molecular autopsy services provided for victims of SCDY (age 1-40 years) was reviewed. The outcome of family cascade genetic screening and clinical evaluation was reviewed. A literature review of case series reporting results of molecular autopsy on SCDY in 2016-2023 was conducted. Among the 41 decedents, 11 were found to carry 13 sudden cardiac death (SCD)-causative genetic variants. Likely pathogenic (LP) variants were identified in the DSP, TPM1, TTN, and SCN5A genes. Cascade genetic testing identified four family members with LP variants. One family member with familial TPM1 variant was found to have hypertrophic cardiomyopathy upon clinical evaluation. This study provided insight into the genetic profile of molecular autopsy in a Chinese cohort of SCDY. The detection of important SCD-causative variants through molecular autopsy has facilitated family cascade screening by targeted genetic testing and clinical evaluation of at-risk family members. A literature review of the current landscape of molecular autopsy in the investigation of SCDY was conducted.
Assuntos
Autopsia , Morte Súbita Cardíaca , Testes Genéticos , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Adulto Jovem , China/epidemiologia , Morte Súbita Cardíaca/patologia , Morte Súbita Cardíaca/etiologia , Desmoplaquinas/genética , População do Leste Asiático , Predisposição Genética para Doença , Testes Genéticos/métodos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Linhagem , Tropomiosina/genéticaRESUMO
Cutaneous graft versus host disease (cGVHD) has substantial clinical and histopathologic overlap with erythema multiforme (EM), Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN). This overlap can make it difficult to distinguish these disorders in patients who have received hematopoietic transplants. We sought to evaluate the utility of Dp I/II immunohistochemical stain in differentiating EM/SJS/TEN and cGVHD in a large cohort. Skin biopsy specimens from patients with cGVHD (n = 58) and EM/SJS/TEN (n = 60) were evaluated for Dp I/II expression by immunohistochemistry. We found a statistically significant difference in Dp I/II staining between cGVHD (all grades) and EM/SJS/TEN (mean scores 1.62 and 2.14, respectively; p < 0.005), as well as between Grades 2 + 3 cGVHD and EM/SJS/TEN (mean scores 2.26 and 1.62, respectively; p < 0.005), while we did not find a significant difference between Grade 4 cGVHD and EM/SJS/TEN (mean scores 1.69 and 1.62, respectively; p = 0.71). Dp I/II immunostain may be useful for differentiating EM/SJS/TEN from Grade 2 and Grade 3 cGVHD, especially in clinically ambiguous cases without extracutaneous GVHD.
Assuntos
Eritema Multiforme , Doença Enxerto-Hospedeiro , Síndrome de Stevens-Johnson , Humanos , Síndrome de Stevens-Johnson/diagnóstico , Síndrome de Stevens-Johnson/patologia , Desmoplaquinas , Eritema Multiforme/diagnóstico , Eritema Multiforme/patologia , Doença Enxerto-Hospedeiro/diagnóstico , Coloração e RotulagemRESUMO
BACKGROUND: Arrhythmogenic cardiomyopathy (ACM) characterized by progressive myocardial loss and replacement with fibro-fatty tissue is a major cause of sudden cardiac death (SCD). In particular, ACM with predominantly left ventricular involvement, known as arrhythmogenic left ventricular cardiomyopathy (ALVC), has a poor prognosis. METHODS: The proband underwent whole-exome sequencing (WES) to determine the etiology of ALVC. Family members were then analyzed using PCR and Sanger sequencing. Clinical evaluations including 12-lead ECG, transthoracic echocardiography, and cardiac MRI were performed for all available first-degree relatives. RESULTS: WES identified two variants in the FLNC (c.G3694A) and JUP (c.G1372A) genes, the combination of which results in ALVC and SCD. CONCLUSION: The present study comprehensively investigates the involvement of two discovered variants of FLNC and JUP in the pathogenesis of ALVC. More study is necessary to elucidate the genetic factors involved in the etiology of ALVC.
Assuntos
Morte Súbita Cardíaca , Sequenciamento do Exoma , Predisposição Genética para Doença , Linhagem , Fenótipo , Humanos , Masculino , Morte Súbita Cardíaca/etiologia , Feminino , Irã (Geográfico) , gama Catenina/genética , Adulto , Mutação , Hereditariedade , Desmoplaquinas/genética , Pessoa de Meia-Idade , Análise Mutacional de DNA , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Fatores de Risco , FilaminasRESUMO
OBJECTIVES: Carvajal syndrome is a very rare autosomal recessive cardiocutaneous disorder caused by a desmosomal mutation in exon 24 of the desmoplakin gene. It manifests with woolly hair, epidermolytic palmoplantar keratoderma, and arrhythmogenic right ventricular cardiomyopathy. We herein present a patient with heart failure and dilated cardiomyopathy who was diagnosed with Carvajal syndrome because of dermatologic manifestations. CASE PRESENTATION: A seven-year-old girl was referred to our clinic due to decompensated heart failure and clinical deterioration. The patient had severe weakness, tachycardia, and tachypnea. She had a complaint of getting tired quickly for three weeks, and she had shortness of breath and abdominal pain for the last two days. She had hepatomegaly and woolly hair. Mild keratoderma was present on the soles of her feet. Echocardiography demonstrated biventricular dilatation, significantly impaired left ventricular systolic function (ejection fraction 22%), and moderate to severe mitral and tricuspid regurgitation. Molecular genetic evaluation was performed because of cutaneous and cardiac findings, which demonstrated a desmoplakin gene mutation. Homozygous mutation c.4297C > T (p.Gln1433*) was identified in desmoplakin gene, and the diagnosis of Carvajal syndrome was confirmed. CONCLUSIONS: Syndromic types of arrhythmogenic right ventricular cardiomyopathy such as Carvajal syndrome are rare diseases. Awareness about cutaneous manifestations and genetic evaluation would help diagnosis and prevention of sudden death. Genetic counselling is needed in familial cases.
Assuntos
Cardiomiopatia Dilatada , Desmoplaquinas , Doenças do Cabelo , Humanos , Feminino , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/diagnóstico , Criança , Desmoplaquinas/genética , Doenças do Cabelo/genética , Doenças do Cabelo/diagnóstico , Doenças do Cabelo/complicações , Ecocardiografia , Ceratodermia Palmar e Plantar/genética , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/complicações , Mutação , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/complicações , DNA/genéticaRESUMO
Arrhythmogenic cardiomyopathy (ACM) is a rare genetic cardiac disease characterized by the progressive substitution of myocardium with fibro-fatty tissue. Clinically, ACM shows wide variability among patients; symptoms can include syncope and ventricular tachycardia but also sudden death, with the latter often being its sole manifestation. Approximately half of ACM patients have been found with variations in one or more genes encoding cardiac intercalated discs proteins; the most involved genes are plakophilin 2 (PKP2), desmoglein 2 (DSG2), and desmoplakin (DSP). Cardiac intercalated discs provide mechanical and electro-metabolic coupling among cardiomyocytes. Mechanical communication is guaranteed by the interaction of proteins of desmosomes and adheren junctions in the so-called area composita, whereas electro-metabolic coupling between adjacent cardiac cells depends on gap junctions. Although ACM has been first described almost thirty years ago, the pathogenic mechanism(s) leading to its development are still only partially known. Several studies with different animal models point to the involvement of the Wnt/ß-catenin signaling in combination with the Hippo pathway. Here, we present an overview about the existing murine models of ACM harboring variants in intercalated disc components with a particular focus on the underlying pathogenic mechanisms. Prospectively, mechanistic insights into the disease pathogenesis will lead to the development of effective targeted therapies for ACM.
Assuntos
Displasia Arritmogênica Ventricular Direita , Modelos Animais de Doenças , Animais , Humanos , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/metabolismo , Displasia Arritmogênica Ventricular Direita/patologia , Placofilinas/genética , Placofilinas/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Via de Sinalização Wnt/genética , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Desmossomos/genética , CamundongosRESUMO
Desmosomes, strong cell-cell junctions of epithelia and cardiac muscle, link intermediate filaments to cell membranes and mechanically integrate cells across tissues, dissipating mechanical stress. They comprise five major protein classes - desmocollins and desmogleins (the desmosomal cadherins), plakoglobin, plakophilins and desmoplakin - whose individual contribution to the structure and turnover of desmosomes is poorly understood. Using live-cell imaging together with fluorescence recovery after photobleaching (FRAP) and fluorescence loss and localisation after photobleaching (FLAP), we show that desmosomes consist of two contrasting protein moieties or modules: a very stable moiety of desmosomal cadherins, desmoplakin and plakoglobin, and a highly mobile plakophilin (Pkp2a). As desmosomes mature from Ca2+ dependence to Ca2+-independent hyper-adhesion, their stability increases, but Pkp2a remains highly mobile. We show that desmosome downregulation during growth-factor-induced cell scattering proceeds by internalisation of whole desmosomes, which still retain a stable moiety and highly mobile Pkp2a. This molecular mobility of Pkp2a suggests a transient and probably regulatory role for Pkp2a in desmosomes. This article has an associated First Person interview with the first author of the paper.
Assuntos
Desmossomos , Placofilinas , Caderinas , Membrana Celular , Desmogleínas , Desmoplaquinas/genética , Humanos , Placofilinas/genética , gama CateninaRESUMO
We combine proximity labeling and single molecule binding assays to discover transmembrane protein interactions in cells. We first screen for candidate binding partners by tagging the extracellular and cytoplasmic regions of a "bait" protein with BioID biotin ligase and identify proximal proteins that are biotin tagged on both their extracellular and intracellular regions. We then test direct binding interactions between proximal proteins and the bait, using single molecule atomic force microscope binding assays. Using this approach, we identify binding partners for the extracellular region of E-cadherin, an essential cell-cell adhesion protein. We show that the desmosomal proteins desmoglein-2 and desmocollin-3, the focal adhesion protein integrin-α2ß1, the receptor tyrosine kinase ligand ephrin-B1, and the classical cadherin P-cadherin, all directly interact with E-cadherin ectodomains. Our data shows that combining extracellular and cytoplasmic proximal tagging with a biophysical binding assay increases the precision with which transmembrane ectodomain interactors can be identified.
Assuntos
Caderinas/genética , Efrina-B1/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Caderinas/ultraestrutura , Adesão Celular/genética , Citoplasma/genética , Citoplasma/ultraestrutura , Desmocolinas , Desmogleína 2/genética , Desmogleína 2/ultraestrutura , Desmoplaquinas/genética , Desmoplaquinas/ultraestrutura , Desmossomos/genética , Desmossomos/ultraestrutura , Efrina-B1/ultraestrutura , Humanos , Integrinas/genética , Integrinas/ultraestrutura , Microscopia de Força Atômica , Domínios Proteicos/genética , Imagem Individual de MoléculaRESUMO
Cell to cell interactions are crucial for morphogenesis and tissue formation. Desmoplakin (encoded by the Dsp gene) is a component of desmosomes and anchors the transmembrane adhesion proteins to the cytoskeleton. Its role in gonad development remains vague. To study the role of desmoplakin in gonad development, we used a tissue-specific knockout of the Dsp gene in the NR5A1+ somatic cells of the gonads. We show here that desmoplakin is necessary for the survival of germ cells in fetal testes and ovaries. The Dspknockout in NR5A1+ somatic cells in testes decreased the number of germ cells, and thus the size of the testes, but did not affect the Sertoli cells or the structure of testis cords and interstitium. The Dspknockout in NR5A1+ somatic cells in ovaries decreased the number of female germ cells and drastically reduced the formation of ovarian follicles. Dsp knockout in NR5A1+ somatic cells did not affect the sex determination and sexual differentiation of the gonads, as judged from an unchanged expression of genes essential for these processes. We conclude that mediation by desmoplakin cell adhesion between the gonadal cells is necessary for germ cell survival.
Assuntos
Células Germinativas , Gônadas , Animais , Sobrevivência Celular , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Feminino , Masculino , Camundongos , Diferenciação Sexual , Testículo/metabolismoRESUMO
Desmoplakin (DP) is an important component of desmosomes, essential in cell-cell connecting structures in stress-bearing tissues. Over the years, many hundreds of pathogenic variants in DSP have been associated with different cutaneous and cardiac phenotypes or a combination, known as a cardiocutaneous syndrome. Of less than 5% of the reported DSP variants, the effect on the protein has been investigated. Here, we describe and have performed RNA, protein and tissue analysis in a large family where DSPc.273+5G>A/c.6687delA segregated with palmoplantar keratoderma (PPK), woolly hair and lethal cardiomyopathy, while DSPWT/c.6687delA segregated with PPK and milder cardiomyopathy. hiPSC-derived cardiomyocytes and primary keratinocytes from carriers were obtained for analysis. Unlike the previously reported nonsense variants in the last exon of DSP that bypassed the nonsense-mediated mRNA surveillance system leading to protein truncation, variant c.6687delA was shown to cause the loss of protein expression. Patients carrying both variants and having a considerably more severe phenotype were shown to have 70% DP protein reduction, while patients carrying only c.6687delA had 50% protein reduction and a milder phenotype. The analysis of RNA from patient cells did not show any splicing effect of the c.273+5G>A variant. However, a minigene splicing assay clearly showed alternative spliced transcripts originating from this variant. This study shows the importance of RNA and protein analyses to pinpoint the exact effect of DSP variants instead of solely relying on predictions. In addition, the particular pattern of inheritance, with simultaneous or separately segregating DSP variants within the same family, strongly supports the theory of a dose-dependent disease severity.
Assuntos
Cardiomiopatias , Ceratodermia Palmar e Plantar , Cardiomiopatias/genética , Cardiomiopatias/patologia , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Humanos , Ceratodermia Palmar e Plantar/genética , RNA , Índice de Gravidade de DoençaRESUMO
AIMS: Desmoplakin (DSP) cardiomyopathy is an increasingly recognized form of arrhythmogenic cardiomyopathy. With a genotype-specific approach, we characterized the diagnosis, natural history, and risk for ventricular arrhythmia and heart failure in DSP cardiomyopathy. METHODS AND RESULTS: We followed 91 individuals [45 probands, 34% male, median age 27.5 years (interquartile interval 20.0-43.9)] with pathogenic or likely pathogenic DSP variants for a median of 4.3 years. Regarding the ventricular involvement, left predominance was most common (n = 22, 28%) followed by bi-ventricular in 12 (15%) and right predominance in 5 (6%). Myocardial injury (chest pain, elevated troponin, normal coronary angiogram) occurred in 20 (22%) individuals. Incidence rates of sustained ventricular arrhythmia and heart failure (ventricular dysfunction ± symptoms) were 5.9 [95% confidence interval (CI): 3.9-9.1] and 6.7 (95% CI: 4.5-9.8) per 100 person-years, respectively. In univariate regression, myocardial injury was associated with sustained ventricular arrhythmia [hazard ratio (HR) 2.53, 95% CI: 1.05-6.11] and heart failure (HR 7.53, 95% CI: 3.10-18.26). After adjustment, left ventricular ejection fraction <35% and right ventricular dysfunction were prognostic for sustained ventricular arrhythmia while proband status and myocardial injury were prognostic for heart failure (all P < 0.05). The sensitivity of the arrhythmogenic right ventricular cardiomyopathy Task Force Criteria in diagnosing left dominant disease was 0.73; 5/22 (23%) of patients with sustained ventricular arrhythmias did not meet these criteria. CONCLUSION: DSP cardiomyopathy affects both ventricles and carries high risk for ventricular arrhythmia and heart failure. Myocardial injury is associated with worse disease outcomes. Both diagnosis and risk stratification of DSP cardiomyopathy need refinement.
Assuntos
Displasia Arritmogênica Ventricular Direita , Cardiomiopatias , Adulto , Displasia Arritmogênica Ventricular Direita/diagnóstico , Displasia Arritmogênica Ventricular Direita/epidemiologia , Displasia Arritmogênica Ventricular Direita/genética , Cardiomiopatias/diagnóstico , Cardiomiopatias/epidemiologia , Desmoplaquinas/genética , Feminino , Humanos , Masculino , Medição de Risco , Volume Sistólico , Função Ventricular EsquerdaRESUMO
BACKGROUND: Arrhythmogenic cardiomyopathy (AC) is a rare, heritable myocardial disorder that is a leading cause of ventricular arrhythmia and sudden cardiac death (SCD) in young people. Desmoplakin (DSP) mutations account for 3-20% of AC cases. However, the number of patients with DSP mutations is extremely small in all published reports and genotype-phenotype correlations are scant and mostly non-gene-specific. CASE PRESENTATION: A 45-year-old man was admitted after an out-of-hospital cardiac arrest, with documented ventricular fibrillation. He had no previous history of heart disease or family history of SCD or cardiomyopathy. The cardiac magnetic resonance showed a mildly dilated left ventricle with an ejection fraction of 30% and a non-dilated right ventricle with mildly depressed systolic function, and extensive subepicardial late gadolinium enhancement. Genetic screening identified a heterozygote nonsense mutation in DSP (NM_004415.2: c.478 C > T; p.Arg160Ter). Cascade genetic screening of the relatives revealed a high prevalence of the genotype and cutaneous phenotype, but a very low penetrance of the cardiac phenotype. CONCLUSIONS: We report a case of SCD and an autosomal dominant mutation in DSP that causes arrhythmogenic dilated cardiomyopathy/AC. Like the recessive mutation in DSP known to cause Carvajal syndrome, Arg160Ter may be associated with cutaneous abnormalities.
Assuntos
Arritmias Cardíacas/genética , Cardiomiopatia Dilatada/genética , Códon sem Sentido , Morte Súbita Cardíaca/etiologia , Desmoplaquinas/genética , Doenças do Cabelo/genética , Ceratodermia Palmar e Plantar/genética , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/fisiopatologia , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/fisiopatologia , Evolução Fatal , Predisposição Genética para Doença , Doenças do Cabelo/complicações , Doenças do Cabelo/diagnóstico , Doenças do Cabelo/fisiopatologia , Heterozigoto , Humanos , Ceratodermia Palmar e Plantar/complicações , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/fisiopatologia , Masculino , Pessoa de Meia-Idade , FenótipoRESUMO
BACKGROUND: Ichthyosis describes a localized or generalized hereditary cornification disorder caused by an impaired terminal keratinocyte differentiation resulting in excessive stratum corneum with the formation of more or less adherent scales. Ichthyosis affects humans and animals. Two rare bovine forms are reported, the severe harlequin ichthyosis and the less severe congenital ichthyosis, both characterized by a severe orthokeratotic lamellar hyperkeratosis. RESULTS: A 2-weeks-old purebred Scottish Highland calf was referred because of a syndrome resembling congenital ichthyosis. The clinical phenotype included diffuse alopecia and a markedly lichenified skin covered with large and excessive scales. Additionally, conjunctivitis and ulceration of the cornea were noted. Post-mortem examination revealed deep fissures in the diffusely thickened tongue and histopathological findings in the skin confirmed the clinical diagnosis. Whole-genome sequencing of the affected calf and comparison of the data with control genomes was performed. A search for private variants in known candidate genes for skin phenotypes including genes related with erosive and hyperkeratotic lesions revealed a single homozygous protein-changing variant, DSP: c.6893 C>A, or p.Ala2298Asp. The variant is predicted to change a highly conserved residue in the C-terminal plakin domain of the desmoplakin protein, which represents a main intracellular component of desmosomes, important intercellular adhesion molecules in various tissues including epidermis. Sanger sequencing confirmed the variant was homozygous in the affected calf and heterozygous in both parents. Further genotyping of 257 Scottish Highland animals from Switzerland revealed an estimated allele frequency of 1.2%. The mutant allele was absent in more than 4800 controls from various other cattle breeds. CONCLUSIONS: This study represents the first report of combined lesions compatible with congenital ichthyosis, alopecia, acantholysis of the tongue and corneal defects associated with a DSP missense variant as the most likely underlying cause. To the best of our knowledge, this study is also the first report of a DSP-related syndromic form of congenital ichthyosis in domestic animals. The results of our study enable genetic testing to avoid the unintentional occurrence of further affected cattle. The findings were added to the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002243-9913).
Assuntos
Alopecia , Desmoplaquinas , Ictiose Lamelar , Ictiose , Mutação de Sentido Incorreto , Alopecia/genética , Alopecia/veterinária , Animais , Bovinos , Desmoplaquinas/genética , Feminino , Ictiose/genética , Ictiose/veterinária , Ictiose Lamelar/veterinária , LínguaRESUMO
A new de novo heterozygous mutation in the desmoplakin gene, causing Naxos and Carvajal disease, has been reported in a 13-year-old Caucasian girl, with expanded clinical phenotype. In addition to woolly hair, palmoplantar keratoderma and cardiomyopathy, she had oligodontia and nail fragility. These additional clinical features may help in the diagnosis of Naxos and Carvajal disease, known to be severe on the cardiac level.
Assuntos
Anodontia , Doenças do Cabelo , Ceratodermia Palmar e Plantar , Anodontia/genética , Desmoplaquinas/genética , Feminino , Doenças do Cabelo/diagnóstico , Doenças do Cabelo/genética , Humanos , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/genética , Mutação de Sentido IncorretoRESUMO
BACKGROUND: PPKs represent a heterogeneous group of disorders with hyperkeratosis of palmar and/or plantar skin. PPK, hair shaft abnormalities, cardiomyopathy and arrhythmias can be caused by mutations in desmosomal genes, e.g. desmoplakin (DSP). PPK should trigger genetic testing to reveal mutations with possible related cardiac disease. OBJECTIVES: To report a large multigenerational family with a novel DSP mutation associated with early-onset PPK and adult-onset cardiomyopathy and arrhythmias. METHODS: A custom-designed in-house panel of 35 PPK related genes was used to screen mutations in the index patient with focal PPK. The identified DSP mutation was verified by Sanger sequencing. DNA samples from 20 members of the large multigenerational family were sequenced for the DSP mutation. Medical records were reviewed. Clinical dermatological evaluation was performed, including light microscopy of hair samples. Cardiac evaluation included clinical examination, echocardiography, cardiac magnetic resonance imaging (CMR), electrocardiogram (ECG), Holter monitoring and laboratory tests. RESULTS: We identified a novel autosomal dominant truncating DSP c.2493delA p.(Glu831Aspfs*33) mutation associated with dilated cardiomyopathy (DCM) with arrhythmia susceptibility and focal PPK as an early cutaneous sign. The mutation was found in nine affected family members, but not in any unaffected members. Onset of dermatological findings preceded cardiac symptoms which were variable and occurred at adult age. CONCLUSIONS: We report a novel truncating DSP mutation causing focal PPK with varying severity and left ventricular dilatation and ventricular extrasystoles. This finding emphasizes the importance of genetic diagnosis in patients with PPK for clinical counselling and management of cardiomyopathies and arrhythmias.
Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Desmoplaquinas , Ceratodermia Palmar e Plantar , Adulto , Cardiomiopatias/complicações , Cardiomiopatias/genética , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/genética , Desmoplaquinas/genética , Humanos , Ceratodermia Palmar e Plantar/complicações , Ceratodermia Palmar e Plantar/diagnóstico , Ceratodermia Palmar e Plantar/genética , MutaçãoRESUMO
Patients with erythrokeratodermia cardiomyopathy syndrome exhibit congenital, generalised erythrokeratoderma and dilated cardiomyopathy during early childhood. We report a case of erythrokeratodermia cardiomyopathy syndrome in a 15-year-old male patient and focus this report on cardiac features that were present.