Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.954
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 572(7770): 507-510, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31435058

RESUMO

The ability to manipulate droplets on a substrate using electric signals1-known as digital microfluidics-is used in optical2,3, biomedical4,5, thermal6 and electronic7 applications and has led to commercially available liquid lenses8 and diagnostics kits9,10. Such electrical actuation is mainly achieved by electrowetting, with droplets attracted towards and spreading on a conductive substrate in response to an applied voltage. To ensure strong and practical actuation, the substrate is covered with a dielectric layer and a hydrophobic topcoat for electrowetting-on-dielectric (EWOD)11-13; this increases the actuation voltage (to about 100 volts) and can compromise reliability owing to dielectric breakdown14, electric charging15 and biofouling16. Here we demonstrate droplet manipulation that uses electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive substrate without the need for added layers. In this electrodewetting mechanism, which is phenomenologically opposite to electrowetting, the liquid-substrate interaction is not controlled directly by electric field but instead by field-induced attachment and detachment of ionic surfactants to the substrate. We show that this actuation mechanism can perform all the basic fluidic operations of digital microfluidics using water on doped silicon wafers in air, with only ±2.5 volts of driving voltage, a few microamperes of current and about 0.015 times the critical micelle concentration of an ionic surfactant. The system can also handle common buffers and organic solvents, promising a simple and reliable microfluidic platform for a broad range of applications.


Assuntos
Eletroumectação/métodos , Microfluídica/métodos , Tensoativos/química , Acetonitrilas/química , Soluções Tampão , Dimetil Sulfóxido/química , Etilenoglicol/química , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Microfluídica/instrumentação , Silício/química
2.
Cell Mol Life Sci ; 81(1): 306, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39023560

RESUMO

Recent advances in stem cell research have led to the creation of organoids, miniature replicas of human organs, offering innovative avenues for studying diseases. Kidney organoids, with their ability to replicate complex renal structures, provide a novel platform for investigating kidney diseases and assessing drug efficacy, albeit hindered by labor-intensive generation and batch variations, highlighting the need for tailored cryopreservation methods to enable widespread utilization. Here, we evaluated cryopreservation strategies for kidney organoids by contrasting slow-freezing and vitrification methods. 118 kidney organoids were categorized into five conditions. Control organoids followed standard culture, while two slow-freezing groups used 10% DMSO (SF1) or commercial freezing media (SF2). Vitrification involved V1 (20% DMSO, 20% Ethylene Glycol with sucrose) and V2 (15% DMSO, 15% Ethylene Glycol). Assessment of viability, functionality, and structural integrity post-thawing revealed notable differences. Vitrification, particularly V1, exhibited superior viability (91% for V1, 26% for V2, 79% for SF1, and 83% for SF2 compared to 99.4% in controls). 3D imaging highlighted distinct nephron segments among groups, emphasizing V1's efficacy in preserving both podocytes and tubules in kidney organoids. Cisplatin-induced injury revealed a significant reduction in regenerative capacities in organoids cryopreserved by flow-freezing methods, while the V1 method did not show statistical significance compared to the unfrozen controls. This study underscores vitrification, especially with high concentrations of cryoprotectants, as an effective approach for maintaining kidney organoid viability and structure during cryopreservation, offering practical approaches for kidney organoid research.


Assuntos
Criopreservação , Crioprotetores , Rim , Organoides , Criopreservação/métodos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Humanos , Rim/citologia , Crioprotetores/farmacologia , Vitrificação , Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Congelamento , Sobrevivência Celular/efeitos dos fármacos
3.
Lab Invest ; 104(9): 102125, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39168250

RESUMO

Lymph node status is a key factor in determining stage, treatment, and prognosis in cancers. Small lymph nodes in fat-rich gastrointestinal and breast cancer specimens are easily missed in conventional sampling methods. This study examined the effectiveness of the degreasing pretreatment with dimethyl sulfoxide (DMSO) in lymph node detection and its impact on the analysis of clinical treatment-related proteins and molecules. Thirty-three cases of gastrointestinal cancer specimens from radical gastrectomy and 63 cases of breast cancer specimens from modified radical mastectomy were included. After routine sampling of lymph nodes, the specimens were immersed in DMSO for 30 minutes for defatting. We assessed changes in the number of detected lymph nodes and pN staging in 33 gastrointestinal cancer specimens and 37 breast cancer specimens. In addition, we analyzed histologic characteristics, Masson trichrome special staining, and immunohistochemistry (gastrointestinal cancer: MMR, HER2, and PD-L1; breast cancer: ER, PR, AR, HER2, Ki-67, and PD-L1). Molecular status was evaluated for colorectal cancer (KRAS, NRAS, BRAF, and microsatellite instability) and breast cancer (HER2) in gastrointestinal cancer specimens and the remaining 26 breast cancer specimens. Compared with conventional sampling, DMSO pretreatment increased the detection rate of small lymph nodes (gastrointestinal cancer: P < .001; breast cancer: P < .001) and improved pN staging in 1 case each of gastric cancer, colon cancer, and rectal cancer (3/33; 9.1%). No significant difference in the morphology, special staining, protein, and molecular status of cancer tissue after DMSO treatment was found. Based on these results and our institutional experience, we recommend incorporating DMSO degreasing pretreatment into clinical pathologic sampling practices.


Assuntos
Neoplasias da Mama , Dimetil Sulfóxido , Neoplasias Gastrointestinais , Imuno-Histoquímica , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Pessoa de Meia-Idade , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Neoplasias Gastrointestinais/tratamento farmacológico , Dimetil Sulfóxido/farmacologia , Idoso , Adulto , Masculino , Linfonodos/patologia , Linfonodos/metabolismo , Manejo de Espécimes/métodos , Metástase Linfática , Idoso de 80 Anos ou mais
4.
Anal Chem ; 96(1): 446-454, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38124437

RESUMO

Histidine (His) and its metabolite analysis is significant due to their vital roles in the diagnosis of diseases. In practical applications, simple and effective detection and discrimination of these metabolic species are still a great challenge due to their highly similar structures. Herein, photoluminescence (PL)-electrochemiluminescence (ECL) dual-mode sensor arrays consisting of a series of sensing elements were proposed for simultaneous quantitation and accurate discrimination of His and its four key metabolites (including histamine, imidazole-4-acetic acid, N-acetylhistamine, and imidazole propionate). The sensing elements of these sensor arrays were constructed by employing two solvent iridium(III) complexes ([Ir(pbz)2(DMSO)Cl] and [Ir(ppy)2(DMSO)Cl], pbz = 3-(2-pyridyl)benzoic acid, ppy = 2-phenylpyridine) with excellent PL and ECL performances as cross-responsive sensing units. Based on diverse coordination abilities of the two complexes with the imidazole group of the five targets, PL and ECL responses of each sensing unit can be enhanced to various degrees, which generate unique fingerprint patterns for the corresponding targets. Through principal component analysis, the multifarious patterns (two-, three-, and four-element sensor arrays) can be transformed into simple visualization modes, from which His and its four key metabolites can be effectively discriminated against each other. Moreover, the quantitation of an individual metabolic species at different concentrations and the recognition of the mixtures with different ratios were also accurately achieved. Notably, His and its four key metabolites in urine can also be successfully discriminated by the as-fabricated sensor arrays, and the patients with kidney diseases can be identified clearly, providing a promising way for disease diagnosis.


Assuntos
Dimetil Sulfóxido , Histidina , Humanos , Fotometria , Medições Luminescentes
5.
Biochem Biophys Res Commun ; 712-713: 149936, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640736

RESUMO

As cisplatin is one of the most broadly used chemotherapeutics, it is widely tested in vitro & in vivo assays, involving attempts to better understand its mechanism of action, develop strategies to mitigate its toxicity, or develop new drug combinations. Presently, for in vitro assays, dissolving cisplatin in dimethyl sulfoxide (DMSO) is discouraged due to its significant reduction in drug activity, Alternatively, inorganic solvents like normal saline (NS) are recommended. However, this approach is still problematic, including 1) instability of cisplatin in NS, 2) limited solubility, 3) the need to avoid long-term storage at -80 °C (or -20 °C) after dissolving, and 4) complications when combining with other DMSO-solubilized compounds. Here, we report a DMSO-HCl mixture as an alternative solvent to address these challenges. Cisplatin in DMSO-HCl not only retains comparable drug activity to cisplatin in NS but also exhibits increased stability over an extended period. Our brief report sheds light on cisplatin action, providing insights to aid in cancer research in vitro.


Assuntos
Antineoplásicos , Cisplatino , Dimetil Sulfóxido , Solventes , Cisplatino/farmacologia , Cisplatino/química , Solventes/química , Dimetil Sulfóxido/farmacologia , Dimetil Sulfóxido/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Solubilidade , Estabilidade de Medicamentos , Linhagem Celular Tumoral , Concentração de Íons de Hidrogênio
6.
J Neuroinflammation ; 21(1): 71, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521932

RESUMO

Cerebrospinal fluid (CSF) matrix biomarkers have become increasingly valuable surrogate markers of neuropsychiatric diseases in research and clinical practice. In contrast, CSF cells have been rarely investigated due to their relative scarcity and fragility, and lack of common collection and cryopreservation protocols, with limited exceptions for neurooncology and primary immune-based diseases like multiple sclerosis. the advent of a microfluidics-based multi-omics approach to studying individual cells has allowed for the study of cellular phenotyping, intracellular dynamics, and intercellular relationships that provide multidimensionality unable to be obtained through acellular fluid-phase analyses. challenges to cell-based research include site-to-site differences in handling, storage, and thawing methods, which can lead to inaccuracy and inter-assay variability. In the present study, we performed single-cell RNA sequencing (10x Genomics) on fresh or previously cryopreserved human CSF samples from three alternative cryopreservation methods: Fetal Bovine Serum with Dimethyl sulfoxide (FBS/DMSO), FBS/DMSO after a DNase step (a step often included in epigenetic studies), and cryopreservation using commercially available Recovery© media. In comparing relative differences between fresh and cryopreserved samples, we found little effect of the cryopreservation method on being able to resolve donor-linked cell type proportions, markers of cellular stress, and overall gene expression at the single-cell level, whereas donor-specific differences were readily discernable. We further demonstrate the compatibility of fresh and cryopreserved CSF immune cell sequencing using biologically relevant sexually dimorphic gene expression differences by donor. Our findings support the utility and interchangeability of FBS/DMSO and Recovery cryopreservation with fresh sample analysis, providing a methodological grounding that will enable researchers to further expand our understanding of the CSF immune cell contributions to neurological and psychiatric disease.


Assuntos
Crioprotetores , Dimetil Sulfóxido , Humanos , Dimetil Sulfóxido/farmacologia , Crioprotetores/farmacologia , Células Cultivadas , Criopreservação/métodos , Análise de Célula Única , Sobrevivência Celular
7.
J Pharmacol Exp Ther ; 388(2): 613-623, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050077

RESUMO

Deployment of the tear gas agent 2-chlorobenzalmalononitrile (CS) for riot control has significantly increased in recent years. The effects of CS have been believed to be transient and benign. However, CS induces severe pain, blepharospasm, lachrymation, airway obstruction, and skin blisters. Frequent injuries and hospitalizations have been reported after exposure. We have identified the sensory neuronal ion channel, transient receptor potential ankyrin 1 (TRPA1), as a key CS target resulting in acute irritation and pain and also as a mediator of neurogenic inflammation. Here, we examined the effects of pharmacologic TRPA1 inhibition on CS-induced cutaneous injury. We modeled CS-induced cutaneous injury by applying 10 µl CS agent [200 mM in dimethyl sulfoxide (DMSO)] to each side of the right ears of 8- to 9-week-old C57BL/6 male mice, whereas left ears were applied with solvent only (DMSO). The TRPA1 inhibitor HC-030031 or A-967079 was administered after CS exposure. CS exposure induced strong tissue swelling, plasma extravasation, and a dramatic increase in inflammatory cytokine levels in the mouse ear skin. We also showed that the effects of CS were not transient but caused persistent skin injuries. These injury parameters were reduced with TRPA1 inhibitor treatment. Further, we tested the pharmacologic activity of advanced TRPA1 antagonists in vitro. Our findings showed that TRPA1 is a crucial mediator of CS-induced nociception and tissue injury and that TRPA1 inhibitors are effective countermeasures that reduce key injury parameters when administered after exposure. Additional therapeutic efficacy studies with advanced TRPA1 antagonists and decontamination strategies are warranted. SIGNIFICANCE STATEMENT: 2-Chlorobenzalmalononitrile (CS) tear gas agent has been deployed as a crowd dispersion chemical agent in recent times. Exposure to CS tear gas agents has been believed to cause transient acute toxic effects that are minimal at most. Here we found that CS tear gas exposure causes both acute and persistent skin injuries and that treatment with transient receptor potential ion channel ankyrin 1 (TRPA1) antagonists ameliorated skin injuries.


Assuntos
Clorobenzenos , Canais de Potencial de Receptor Transitório , o-Clorobenzilidenomalonitrila , Masculino , Camundongos , Animais , Gases Lacrimogênios/farmacologia , Anquirinas , Canal de Cátion TRPA1 , Dimetil Sulfóxido , Camundongos Endogâmicos C57BL , Dor
8.
Chembiochem ; 25(4): e202300809, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38205880

RESUMO

Being the standard solvent for preparing stock solutions of compounds for drug discovery, DMSO is always present in assay buffers in concentrations ranging from 0.1 % to 5 % (v/v). Even at the lowest concentrations, DMSO-containing solutions can have significant effects on individual proteins and possible pitfalls cannot be eliminated. Herein, we used two protein systems, the lysine methyltransferases G9a/KMT1 C and SETD8/KMT5 A, to study the effects of DMSO on protein stability and on the binding of the corresponding inhibitors, using different biophysical methods such as nano Differential Scanning Fluorimetry (nanoDSF), Differential Scanning Fluorimetry (DSF), microscale thermophoresis (MST), and surface plasmon resonance (SPR), all widely used in drug discovery screening campaigns. We demonstrated that the effects of DMSO are protein- and technique-dependent and cannot be predicted or extrapolated on the basis of previous studies using different proteins and/or different assays. Moreover, we showed that the application of orthogonal biophysical methods can lead to different binding affinity data, thus confirming the importance of using at least two different orthogonal assays in screening campaigns. This variability should be taken into account in the selection and characterization of hit compounds, in order to avoid data misinterpretation.


Assuntos
Dimetil Sulfóxido , Lisina , Metiltransferases , Ligantes , Descoberta de Drogas/métodos , Proteínas
9.
Chembiochem ; 25(8): e202300835, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38390634

RESUMO

Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.


Assuntos
Dimetil Sulfóxido , Hidrogéis , Hidrogéis/química , Solventes , Peptídeos/química , Laminina/química
10.
Nat Mater ; 22(1): 73-83, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456873

RESUMO

Achieving the long-term stability of perovskite solar cells is arguably the most important challenge required to enable widespread commercialization. Understanding the perovskite crystallization process and its direct impact on device stability is critical to achieving this goal. The commonly employed dimethyl-formamide/dimethyl-sulfoxide solvent preparation method results in a poor crystal quality and microstructure of the polycrystalline perovskite films. In this work, we introduce a high-temperature dimethyl-sulfoxide-free processing method that utilizes dimethylammonium chloride as an additive to control the perovskite intermediate precursor phases. By controlling the crystallization sequence, we tune the grain size, texturing, orientation (corner-up versus face-up) and crystallinity of the formamidinium (FA)/caesium (FA)yCs1-yPb(IxBr1-x)3 perovskite system. A population of encapsulated devices showed improved operational stability, with a median T80 lifetime (the time over which the device power conversion efficiency decreases to 80% of its initial value) for the steady-state power conversion efficiency of 1,190 hours, and a champion device showed a T80 of 1,410 hours, under simulated sunlight at 65 °C in air, under open-circuit conditions. This work highlights the importance of material quality in achieving the long-term operational stability of perovskite optoelectronic devices.


Assuntos
Amidinas , Luz Solar , Cátions , Dimetil Sulfóxido
11.
Appl Environ Microbiol ; 90(3): e0172923, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38411083

RESUMO

Geobacter sp. strain SVR uses antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration. Here, we visualized a possible key enzyme, periplasmic Sb(V) reductase (Anr), via active staining and non-denaturing gel electrophoresis. Liquid chromatography-tandem mass spectrometry analysis revealed that a novel dimethyl sulfoxide (DMSO) reductase family protein, WP_173201954.1, is involved in Anr. This protein was closely related with AnrA, a protein suggested to be the catalytic subunit of a respiratory Sb(V) reductase in Desulfuribacillus stibiiarsenatis. The anr genes of strain SVR (anrXSRBAD) formed an operon-like structure, and their transcription was upregulated under Sb(V)-respiring conditions. The expression of anrA gene was induced by more than 1 µM of antimonite [Sb(III)]; however, arsenite [As(III)] did not induce the expression of anrA gene. Tandem mass tag-based proteomic analysis revealed that, in addition to Anr proteins, proteins in the following categories were upregulated under Sb(V)-respiring conditions: (i) Sb(III) efflux systems such as Ant and Ars; (ii) antioxidizing proteins such as ferritin, rubredoxin, and thioredoxin; (iii) protein quality control systems such as HspA, HslO, and DnaK; and (iv) DNA repair proteins such as UspA and UvrB. These results suggest that strain SVR copes with antimony stress by modulating pleiotropic processes to resist and actively metabolize antimony. To the best of our knowledge, this is the first report to demonstrate the involvement of AnrA in Sb(V) respiration at the protein level. Furthermore, this is the first example to show high expression of the Ant system proteins in the Sb(V)-respiring bacterium.IMPORTANCEAntimony (Sb) exists mainly as antimonite [Sb(III)] or antimonate [Sb(V)] in the environment, and Sb(III) is more toxic than Sb(V). Recently, microbial involvement in Sb redox reactions has received attention. Although more than 90 Sb(III)-oxidizing bacteria have been reported, information on Sb(V)-reducing bacteria is limited. Especially, the enzyme involved in dissimilatory Sb(V) reduction, or Sb(V) respiration, is unclear, despite this pathway being very important for the circulation of Sb in nature. In this study, we demonstrated that the Sb(V) reductase (Anr) of an Sb(V)-respiring bacterium (Geobacter sp. SVR) is a novel member of the dimethyl sulfoxide (DMSO) reductase family. In addition, we found that strain SVR copes with Sb stress by modulating pleiotropic processes, including the Ant and Ars systems, and upregulating the antioxidant and quality control protein levels. Considering the abundance and diversity of putative anr genes in the environment, Anr may play a significant role in global Sb cycling in both marine and terrestrial environments.


Assuntos
Antimônio , Geobacter , Antimônio/farmacologia , Geobacter/genética , Geobacter/metabolismo , Dimetil Sulfóxido/metabolismo , Proteômica , Bactérias/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredução , Respiração
12.
Respir Res ; 25(1): 120, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38468259

RESUMO

BACKGROUND: Airway basal cells (BC) from patients with chronic obstructive pulmonary disease (COPD) regenerate abnormal airway epithelium and this was associated with reduced expression of several genes involved in epithelial repair. Quercetin reduces airway epithelial remodeling and inflammation in COPD models, therefore we examined whether quercetin promotes normal epithelial regeneration from COPD BC by altering gene expression. METHODS: COPD BC treated with DMSO or 1 µM quercetin for three days were cultured at air/liquid interface (ALI) for up to 4 weeks. BC from healthy donors cultured at ALI were used as controls. Polarization of cells was determined at 8 days of ALI. The cell types and IL-8 expression in differentiated cell cultures were quantified by flow cytometry and ELISA respectively. Microarray analysis was conducted on DMSO or 1 µM quercetin-treated COPD BC for 3 days to identify differentially regulated genes (DEG). Bronchial brushings obtained from COPD patients with similar age and disease status treated with either placebo (4 subjects) or 2000 mg/day quercetin (7 subjects) for 6 months were used to confirm the effects of quercetin on gene expression. RESULTS: Compared to placebo-, quercetin-treated COPD BC showed significantly increased transepithelial resistance, more ciliated cells, fewer goblet cells, and lower IL-8. Quercetin upregulated genes associated with tissue and epithelial development and differentiation in COPD BC. COPD patients treated with quercetin, but not placebo showed increased expression of two developmental genes HOXB2 and ELF3, which were also increased in quercetin-treated COPD BC with FDR < 0.001. Active smokers showed increased mRNA expression of TGF-ß (0.067) and IL-8 (22.0), which was reduced by 3.6 and 4.14 fold respectively after quercetin treatment. CONCLUSIONS: These results indicate that quercetin may improve airway epithelial regeneration by increasing the expression of genes involved in epithelial development/differentiation in COPD. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov on 6-18-2019. The study number is NCT03989271.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Quercetina , Humanos , Quercetina/farmacologia , Quercetina/uso terapêutico , Quercetina/metabolismo , Interleucina-8/metabolismo , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , Brônquios/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologia
13.
Cytotherapy ; 26(1): 96-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37943203

RESUMO

BACKGROUND AIMS: Hematopoietic stem cell transplants (HSCTs) are increasingly being offered to patients in India for various conditions. The Indian Stem Cell Transplant Registry shows that a total of 2533 transplants were done in India in 2019. METHODS: An epidemiological descriptive cross-sectional survey (55 questions) of centers providing HSCT in India was planned to analyze variations in policies and practices regarding HSCT graft manipulation (i.e., plasma reduction, red blood cell [RBC] depletion and cryopreservation). A total of 63 of 102 centers responded to the survey (response rate, 61.7%), mostly from the northern part of India (27 of 63 [42.8%]). RESULTS: The majority of responding centers reported performing >50 HSCTs annually (n = 24 [38%]), and 92% (58 of 63) performed stem cell collections from a pediatric donor/patient (age <18 years). A total of 56 of 63 responding centers indicated that they did product manipulations involving cryopreservation (n = 45), plasma reduction (n = 42) and RBC depletion (n = 28). Cryopreservation was primarily done by blood centers (27 of 45 [60%]), with dimethyl sulfoxide (DMSO) being the primary constituent, used most commonly at a concentration of 5-10% (28 of 45 centers). Dump freezing was most commonly used (27 of 45) with a -80°C deep freezer. A 7-aminoactinomycin D based viability assessment was also most commonly used (30 of 45). Thawing of the product was done mainly at the bedside (30 of 45) using a wet-type thawer (36 of 45), and washing of DMSO was done by a few centers (seven of 45). Plasma reduction and RBC depletion were primarily done for ABO incompatibility at blood centers. CONCLUSIONS: This survey demonstrates the lack of standardization and uniformity in the minimal manipulation of hematopoietic stem cell grafts in centers supporting HSCT in India. This work also highlights the need for more studies and country-specific recommendations to establish best practices.


Assuntos
Dimetil Sulfóxido , Transplante de Células-Tronco Hematopoéticas , Humanos , Criança , Adolescente , Estudos Transversais , Células-Tronco Hematopoéticas , Congelamento
14.
Cytotherapy ; 26(5): 482-489, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416086

RESUMO

BACKGROUND AIMS: Cryopreservation of hematopoietic stem cells (HSCs) is crucial for autologous transplantation, cord blood banking and other special circumstances. Dimethyl sulfoxide (DMSO) is used most commonly for cryopreserving HSC products but can cause infusional toxicities and affect cell viability and engraftment after transplant. A systematic review of controlled studies using lower concentrations of DMSO to cryopreserve HSC products in clinical transplant studies is needed to determine the effect of reducing DMSO concentrations on post-thaw cell viability, initial engraftment and adverse effects on patient health. METHODS: All studies identified in our systematic search (to July 11, 2023) examining the use of cryopreserved peripheral blood stem cells (PBSCs) for autologous stem cell transplantation (AHCT) were included. Meta-analysis was performed to determine how varying the concentration of DMSO during cryopreservation effects post-thaw cell viability, initial engraftment and adverse effects on patient health. RESULTS: A total of 1547 studies were identified in our systematic search, with seven published articles meeting eligibility for inclusion in meta-analysis. All patients underwent AHCT using (PBSCs) to treat hematologic malignancies. The viability of CD34+ cells post thaw was greater when cryopreserved with 5% DMSO compared with 10% DMSO, with lower rates of adverse side effects in patients. DMSO concentration had minimal impact on rates of initial engraftment. Significant heterogeneity in outcome reporting was observed and the potential for bias was identified in all studies. CONCLUSIONS: Reducing the concentration of DMSO from 10% to 5% during cryopreservation of autologous PBSCs may improve cell viability and reduce DMSO-associated adverse effects in patients undergoing AHCT. Data from more studies with similar patients and standard outcome reporting are needed to increase confidence in our initial observations. PROTOCOL REGISTRATION: PROSPERO; registration number CRD42023476809 registered November 8, 2023.


Assuntos
Criopreservação , Crioprotetores , Dimetil Sulfóxido , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Transplante Autólogo , Dimetil Sulfóxido/farmacologia , Humanos , Criopreservação/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante Autólogo/métodos , Crioprotetores/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Hematológicas/terapia
15.
J Magn Reson Imaging ; 59(2): 575-584, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37218596

RESUMO

BACKGROUND: Breast cancer treatment response evaluation using the response evaluation criteria in solid tumors (RECIST) guidelines, based on tumor volume changes, has limitations, prompting interest in novel imaging markers for accurate therapeutic effect determination. PURPOSE: To use MRI-measured cell size as a new imaging biomarker for assessing chemotherapy response in breast cancer. STUDY TYPE: Longitudinal; animal model. STUDY POPULATION: Triple-negative human breast cancer cell (MDA-MB-231) pellets (4 groups, n = 7) treated with dimethyl sulfoxide (DMSO) or 10 nM of paclitaxel for 24, 48, and 96 hours, and 29 mice with MDA-MB-231 tumors in right hind limbs treated with paclitaxel (n = 16) or DMSO (n = 13) twice weekly for 3 weeks. FIELD STRENGTH/SEQUENCE: Oscillating gradient spin echo and pulsed gradient spin echo sequences at 4.7 T. ASSESSMENT: MDA-MB-231 cells were analyzed using flowcytometry and light microscopy to assess cell cycle phases and cell size distribution. MDA-MB-231 cell pellets were MR imaged. Mice were imaged weekly, with 9, 6, and 14 being sacrificed for histology after MRI at weeks 1, 2, and 3, respectively. Microstructural parameters of tumors/cell pellets were derived by fitting diffusion MRI data to a biophysical model. STATISTICAL TESTS: One-way ANOVA compared cell sizes and MR-derived parameters between treated and control samples. Repeated measures 2-way ANOVA with Bonferroni post-tests compared temporal changes in MR-derived parameters. A P-value <0.05 was considered statistically significant. RESULTS: In vitro experiments showed that the mean MR-derived cell sizes of paclitaxel-treated cells increased significantly with a 24-hours treatment and decreased (P = 0.06) with a 96-hour treatment. For in vivo xenograft experiments, the paclitaxel-treated tumors showed significant decreases in cell size at later weeks. MRI observations were supported by flowcytometry, light microscopy, and histology. DATA CONCLUSIONS: MR-derived cell size may characterize the cell shrinkage during treatment-induced apoptosis, and may potentially provide new insights into the assessment of therapeutic response. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 4.


Assuntos
Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Feminino , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Dimetil Sulfóxido/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Imageamento por Ressonância Magnética/métodos , Tamanho Celular
16.
FASEB J ; 37(2): e22750, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36607308

RESUMO

Human hepatocyte culture system represents by far the most physiologically relevant model for our understanding of liver biology and diseases; however, its versatility has been limited due to the rapid and progressive loss of genuine characteristics, indicating the inadequacy of in vitro milieu for fate maintenance. This study, therefore, is designed to define environmental requirements necessary to sustain the homeostasis of terminally differentiated hepatocytes. Our study reveals that the supplementation of dimethyl sulfoxide (DMSO) is indispensable in mitigating fate deterioration and promoting adaptation to the in vitro environment, resulting in the restoration of tight cell-cell contact, cellular architecture, and polarity. The morphological recovery was overall accompanied by the restoration of hepatocyte marker gene expression, highlighting the interdependence between the cellular architecture and the maintenance of cell fate. However, beyond the recovery phase culture, DMSO supplementation is deemed detrimental due to the potent inhibitory effect on a multitude of hepatocyte functionalities while its withdrawal results in the loss of cell fate. In search of DMSO substitute, our screening of organic substances led to the identification of dimethyl sulfone (DMSO2), which supports the long-term maintenance of proper morphology, marker gene expression, and hepatocytic functions. Moreover, hepatocytes maintained DMSO2 exhibited clinically relevant toxicity in response to prolonged exposure to xenobiotics as well as alcohol. These observations suggest that the stepwise culture configuration consisting of the consecutive supplementation of DMSO and DMSO2 confers the microenvironment essential for the fate and functional maintenance of terminally differentiated human hepatocytes.


Assuntos
Dimetil Sulfóxido , Hepatócitos , Humanos , Dimetil Sulfóxido/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Diferenciação Celular , Células Cultivadas
17.
Transfusion ; 64(3): 517-525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230448

RESUMO

BACKGROUND: Platelet cryopreservation extends the shelf-life to at least 2 years. However, platelets are altered during the freeze/thaw process. Downscaling platelet cryopreservation by freezing in tubes would enable rapid screening of novel strategies to improve the quality of cryopreserved platelets (CPPs). The aim of this study was to characterize the effect of freezing conditions on the in vitro phenotype and function of platelets frozen in a low volume compared to standard CPPs. METHODS: Platelets were prepared for cryopreservation using 5%-6% DMSO and processed using standard protocols or aliquoted into 2 mL tubes. Platelets were hyperconcentrated to 25 mL (standard CPPs) or 200 µL (tubes) before freezing at -80°C (n = 8). Six insulators/controlled rate freezing containers were used to vary the freezing rate of platelets in tubes. Platelets were thawed, resuspended in plasma, and then assessed by flow cytometry and thromboelastography. RESULTS: The use of different insulators for tubes changed the freezing rate of platelets compared to platelets frozen using the standard protocol (p < .001). However, this had no impact on the recovery of the platelets (p = .87) or the proportion of platelets expressing GPIbα (p = .46) or GPVI (p = .07), which remained similar between groups. A lower proportion of platelets frozen in tubes externalized phosphatidylserine compared to standard CPPs (p < .001). The clot-forming ability (thromboelastography) of platelets was similar between groups (p > .05). CONCLUSION: Freezing platelets in tubes modified the freezing rate and altered some platelet characteristics. However, the functional characteristics remained comparable, demonstrating the feasibility of downscaling platelet cryopreservation for high-throughput exploratory investigations.


Assuntos
Preservação de Sangue , Agregação Plaquetária , Humanos , Congelamento , Preservação de Sangue/métodos , Plaquetas , Criopreservação/métodos , Dimetil Sulfóxido/farmacologia
18.
Mol Pharm ; 21(2): 651-660, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38230666

RESUMO

Natural killer (NK) cell-based immunotherapy has benefitted from the multiple strengths that NK cells offer in adoptive transfer settings, not the least of which is their safety and potential for allogeneic use. Such use, however, necessitates the cryopreservation of NK cell-based therapy products to support logistical efforts in deploying these cells in different locations, decentralized from the point of collection or manufacturing. DMSO, the most commonly used cryoprotective agent (CPA), has been effective in protecting immune cells during freezing and thawing, but its ability to induce molecular and genetic changes to immune cells as well as its toxicity has stimulated interest in alternative CPAs. However, replacing DMSO's ability to act intracellularly has been difficult, and the sensitivity of human peripheral blood-derived NK cells to freezing and thawing-induced damage has meant that investigations into the potential of replacing DMSO are lacking. As a first step toward establishing the feasibility of cryopreserving human NK cells with CPAs' alternative to DMSO, we investigate the potential of using noncell-penetrating and cell-penetrating CPAs to recover NK cells post-thaw without DMSO. Here, we find that cryoprotection using cell-penetrating CPAs can retain the viability of human peripheral blood-derived NK cells to a comparable degree to DMSO. In addition, non-DMSO-cryopreserved human NK cells were as cytotoxic as those cryopreserved with DMSO and displayed a comparable level of surface markers of activation. In summary, we present the first example of the potential of developing non-DMSO CPA formulations that could be deployed in future cell therapy regimens.


Assuntos
Criopreservação , Dimetil Sulfóxido , Humanos , Crioprotetores/farmacologia , Congelamento , Células Matadoras Naturais , Sobrevivência Celular
19.
Langmuir ; 40(1): 624-637, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38114446

RESUMO

Cryopreservation presents significant opportunities for biomedical applications including cell therapy, tissue engineering, and assisted reproduction. Dimethyl sulfoxide (DMSO), the most commonly used cryoprotectant (CPA), can be added to cells to prevent cryogenic damage. However, the toxicity of cryoprotectants restrains its further development in many areas with safety concerns such as clinical treatment. Therefore, the development of low-toxicity cryoprotectants is essential for medical research. This work reports deep eutectic solvents (DES) as naturally biocompatible osmoprotectants for green and efficient cryopreservation of human umbilical cord mesenchymal stem cells (HuMSC), which may be an ideal alternative to DMSO. The six types of DESs were explored for thermal properties, toxicity, and permeability in cells. Raman spectroscopy and viscosity studies showed that DES exhibited an improved hydrogen-bonding system as the temperature decreased. By optimizing the freezing process (cooling rate, incubation time, and loading procedure) of DES, the viability of mouse embryonic fibroblast cells (NIH-3T3) after thawing was significantly improved. The HuMSC were successfully preserved with no significant difference (p > 0.05) in cell viability (94.65%) after thawing compared with DMSO, which preserved the cell differentiation function and improved the cell proliferation rate. The mechanism of DES in cryopreservation was investigated, and it was found that DES could bind water molecules and effectively inhibit the growth of ice crystals during ice recrystallization, reducing mechanical damage to cells. This study highlights the excellent performance of DES as a low-toxicity CPA for stem cell preservation, which may be a significant advance for future clinical cell therapy.


Assuntos
Solventes Eutéticos Profundos , Dimetil Sulfóxido , Animais , Humanos , Camundongos , Dimetil Sulfóxido/farmacologia , Gelo , Fibroblastos/metabolismo , Criopreservação/métodos , Crioprotetores/toxicidade , Crioprotetores/química , Sobrevivência Celular
20.
Anticancer Drugs ; 35(1): 12-21, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578744

RESUMO

INTRODUCTION: Ceramides are known to show anti-cancer activity. A novel ceramide analog, (S,E)-3-hydroxy-2-(2-hydroxybenzylidene)amino-N-tetradecylpropanamide (analog 315) was developed as part of a larger study focused on finding more effective breast cancer treatments. OBJECTIVE: To assess whether analog 315 shows any or a combination of the following effects in breast cancer cells in vitro: inhibiting proliferation, inducing apoptosis, and altering protein expression. Also, to determine whether it inhibits chemo-resistant breast cancer tumor growth in vivo mouse model. METHODS: In vitro cell proliferation and apoptosis after treatment with analog 315 were assessed in three breast cancer cell lines (MCF-7, MCF-7TN-R, and MDA-MB-231) and reported. Protein expression was assessed by microarray assay. For the in vivo studies, chemo-resistant breast cancer cells were used for tumor development in two groups of mice (treated and control). Analog 315 (25 mg/kg/day) or control (dimethyl sulfoxide) was administered intraperitoneally for 7 days. Effects of analog 315 on inhibiting the growth of chemo-resistant breast cancer tumors after treatment are reported. RESULTS: Analog 315 reduced MCF-7TN-R chemo-resistant tumor burden (volume and weight) in mice. Liver metastasis was observed in control mice, but not in the treated animals. Ki-67, a proliferation marker for breast cancer cells, increased significantly ( P  < 0.05) in control tumor tissue. In vitro studies showed that analog 315 inhibited cell proliferation, altered protein expression and induced apoptosis in all three breast cancer cell lines studied, of which the effects on MCF-7TN-R cells were the most significant. CONCLUSION: Analog 315 reduced tumor growth in chemo-resistant breast cancer, inhibited cell proliferation, altered protein expression, and induced apoptosis in all three cell lines studied.


Assuntos
Neoplasias da Mama , Ceramidas , Humanos , Animais , Camundongos , Feminino , Ceramidas/farmacologia , Linhagem Celular Tumoral , Células MCF-7 , Dimetil Sulfóxido , Neoplasias da Mama/patologia , Apoptose , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA