Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.299
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 96(2): e20231337, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38922281

RESUMO

Disorders of gastrointestinal motility are the major physiologic problem in chagasic megacolon. The contraction mechanism is complex and controlled by different cell types such as enteric neurons, smooth muscle, telocytes, and an important pacemaker of the intestine, the interstitial cells of Cajal (ICCs). The role of ICCs in the progression of acute and chronic Chagas disease remains unclear. In the present work, we investigate the aspects of ICCs in a long-term model of Chagas disease that mimics the pathological aspects of human megacolon. Different subsets of ICCs isolated from Auerbach's myenteric plexuses and muscle layers of control and Trypanosoma cruzi infected animals were determined by analysis of CD117, CD44, and CD34 expression by flow cytometer. Compared with the respective controls, the results showed a reduced frequency of mature ICCs in the acute phase and three months after infection. These results demonstrate for the first time the phenotypic distribution of ICCs associated with functional dysfunction in a murine model of chagasic megacolon. This murine model proved valuable for studying the profile of ICCs as an integrative system in the gut and as a platform for understanding the mechanism of chagasic megacolon development.


Assuntos
Doença de Chagas , Modelos Animais de Doenças , Células Intersticiais de Cajal , Megacolo , Animais , Células Intersticiais de Cajal/patologia , Doença de Chagas/patologia , Doença de Chagas/fisiopatologia , Megacolo/parasitologia , Megacolo/patologia , Megacolo/fisiopatologia , Camundongos , Citometria de Fluxo , Masculino , Trypanosoma cruzi/fisiologia
2.
PLoS Pathog ; 16(8): e1008781, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810179

RESUMO

Chagas disease is caused by Trypanosoma cruzi, a protozoan parasite that has a heterogeneous population composed of a pool of strains with distinct characteristics, including variable levels of virulence. In previous work, transcriptome analyses of parasite genes after infection of human foreskin fibroblasts (HFF) with virulent (CL Brener) and non-virulent (CL-14) clones derived from the CL strain, revealed a reduced expression of genes encoding parasite surface proteins in CL-14 compared to CL Brener during the final steps of the intracellular differentiation from amastigotes to trypomastigotes. Here we analyzed changes in the expression of host genes during in vitro infection of HFF cells with the CL Brener and CL-14 strains by analyzing total RNA extracted from cells at 60 and 96 hours post-infection (hpi) with each strain, as well as from uninfected cells. Similar transcriptome profiles were observed at 60 hpi with both strains compared to uninfected samples. However, at 96 hpi, significant differences in the number and expression levels of several genes, particularly those involved with immune response and cytoskeleton organization, were observed. Further analyses confirmed the difference in the chemokine/cytokine signaling involved with the recruitment and activation of immune cells such as neutrophils upon T. cruzi infection. These findings suggest that infection with the virulent CL Brener strain induces a more robust inflammatory response when compared with the non-virulent CL-14 strain. Importantly, the RNA-Seq data also exposed an unexplored role of fibroblasts as sentinel cells that may act by recruiting neutrophils to the initial site of infection. This role for fibroblasts in the regulation of the inflammatory response during infection by T. cruzi was corroborated by measurements of levels of different chemokines/cytokines during in vitro infection and in plasma from Chagas disease patients as well as by neutrophil activation and migration assays.


Assuntos
Doença de Chagas/metabolismo , Fibroblastos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Ativação de Neutrófilo , Neutrófilos , Trypanosoma cruzi/metabolismo , Doença de Chagas/genética , Doença de Chagas/patologia , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Fibroblastos/patologia , Humanos , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Neutrófilos/patologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
3.
J Immunol ; 205(3): 573-578, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32591392

RESUMO

Myocytes express low levels of MHC class I (MHC I), perhaps influencing the ability of CD8+ T cells to efficiently detect and destroy pathogens that invade muscle. Trypanosoma cruzi infects many cell types but preferentially persists in muscle, and we asked if this tissue-dependent persistence was linked to MHC expression. Inducible enhancement of skeletal muscle MHC I in mice during the first 20 d of T. cruzi infection resulted in enhanced CD8-dependent reduction of parasite load. However, continued overexpression of MHC I beyond 30 d ultimately led to a collapse of systemic parasite control associated with immune exhaustion, which was reversible in part by blocking PD-1:PD-L1 interactions. These studies demonstrate a surprisingly strong and systemically dominant effect of skeletal muscle MHC expression on maintaining T cell function and pathogen control and argue that the normally low MHC I expression in skeletal muscle is host protective by allowing for pathogen control while preventing immune exhaustion.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Regulação da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Fibras Musculares Esqueléticas/imunologia , Trypanosoma cruzi/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/patologia , Doença de Chagas/genética , Doença de Chagas/patologia , Antígenos de Histocompatibilidade Classe I/genética , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/patologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia
4.
Exp Parasitol ; 238: 108266, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35490799

RESUMO

Treatment for Chagas disease has limited efficacy in the chronic phase. We evaluated benznidazole (BZ) and itraconazole (ITZ) individually and in association in dogs 16 months after infection with a BZ-resistant Trypanosoma cruzi strain. Four study groups (20 animals) were evaluated and treated for 60 days with BZ, ITZ, or BZ + ITZ, and maintained in parallel to control group infected and not treated (INT). All dogs were evaluated in the first, sixth, 12th, 18th and 24th months of study. Polymerase chain reaction (PCR) was negative in 2 of 3 animals in the BZ + ITZ group, 2 of 5 in the BZ group, and 4 of 5 in the ITZ group. Hemoculture performed in the 24th month was negative in all groups. Enzyme-linked immunoassay remained reactive in all treated animals. Echocardiography differentiated treated animals from control animals. Quantitative PCR analysis of cardiac tissue was negative in the BZ + ITZ and BZ groups, positive in 2 of 5 dogs in the ITZ group and in 2 of 3 dogs in the control group, but negative in colon tissue in all groups. Inflammation was significantly reduced in the right atrium and left ventricle of dogs treated with BZ + ITZ and BZ compared with those receiving ITZ alone. Fibrosis was absent in most dogs treated with BZ + ITZ, mild in those treated with BZ or ITZ alone, and intense in the control group. Parasitological and histopathological evaluations showed that BZ + ITZ treatment improved or stabilized the clinical condition of the dogs.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/patologia , Doença de Chagas/veterinária , Cães , Itraconazol/uso terapêutico , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico
5.
Histochem Cell Biol ; 155(4): 451-462, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33404704

RESUMO

Chagas disease is caused by the parasite, Trypanosoma cruzi that causes chronic cardiac and digestive dysfunction. Megacolon, an irreversible dilation of the left colon, is the main feature of the gastrointestinal form of Chagas disease. Patients have severe constipation, a consequence of enteric neuron degeneration associated with chronic inflammation. Dysmotility, infection, neuronal loss and a chronic exacerbated inflammation, all observed in Chagas disease, can affect enteroendocrine cells (EEC) expression, which in turn, could influence the inflammatory process. In this study, we investigated the distribution and chemical coding of EEC in the dilated and non-dilated portion of T. cruzi-induced megacolon and in non-infected individuals (control colon). Using immunohistochemistry, EECs were identified by applying antibodies to chromogranin A (CgA), glucagon-like peptide 1 (GLP-1), 5-hydroxytryptamine (5-HT), peptide YY (PYY) and somatostatin (SST). Greater numbers of EEC expressing GLP-1 and SST occurred in the dilated portion compared to the non-dilated portion of the same patients with Chagas disease and in control colon, but numbers of 5-HT and PYY EEC were not significantly different. However, it was noticeable that EEC in which 5-HT and PYY were co-expressed were common in control colon, but were rare in the non-dilated and absent in the dilated portion of chagasic megacolon. An increase in the number of CgA immunoreactive EEC in chagasic patients reflected the increases in EEC numbers summarised above. Our data suggests that the denervation and associated chronic inflammation are accompanied by changes in the number and coding of EEC that could contribute to disorders of motility and defence in the chagasic megacolon.


Assuntos
Doença de Chagas/patologia , Células Enteroendócrinas/patologia , Megacolo/patologia , Trypanosoma cruzi/isolamento & purificação , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Feminino , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Inflamação/parasitologia , Inflamação/patologia , Masculino , Megacolo/imunologia , Megacolo/parasitologia
6.
Mol Cell Biochem ; 476(10): 3815-3825, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34110554

RESUMO

Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.


Assuntos
Anticoagulantes/uso terapêutico , COVID-19/patologia , Doença de Chagas/patologia , Heparitina Sulfato/uso terapêutico , Trombose/tratamento farmacológico , Trombose/patologia , Plaquetas/imunologia , COVID-19/imunologia , Doença de Chagas/imunologia , Ativação do Complemento/imunologia , Endotélio/patologia , Humanos , Moléculas com Motivos Associados a Patógenos/imunologia , Ativação Plaquetária/imunologia , SARS-CoV-2/imunologia , Trypanosoma cruzi/imunologia
7.
Bioorg Med Chem ; 29: 115855, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199200

RESUMO

Despite the serious public health problems caused by Chagas disease in several countries, the available therapy remains with only two drugs that are poorly active during the chronic phase of the disease in addition to having severe side effects. In search of new trypanocidal agents, herein we describe the synthesis and biological evaluation of eleven new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine compounds containing the carbohydrazide or the 2,3-dihydro-1,3,4-oxadiazole moieties. Two of them showed promising in vitro activity against amastigote forms of T. cruzi and were evaluated in vivo in male BALB/c mice infected with T. cruzi Y strain. Our results suggest that the substitution at the C-2 position of the phenyl group connected to the carbohydrazide or to the 2,3-dihydro-1,3,4-oxadiazole moieties plays an important role in the trypanocidal activity of this class of compounds. Moreover, the compound containing the 2,3-dihydro-1,3,4-oxadiazole moiety has demonstrated more favorable structural requirements for in vivo activity than its carbohydrazide analog.


Assuntos
Doença de Chagas/tratamento farmacológico , Pirazóis/farmacologia , Piridinas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/patologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Testes de Sensibilidade Parasitária , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade , Tripanossomicidas/síntese química , Tripanossomicidas/química
8.
Bioorg Chem ; 113: 105018, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098396

RESUMO

Chagas disease (ChD), caused by Trypanosoma cruzi, remains a challenge for the medical and scientific fields due to the inefficiency of the therapeutic approaches available for its treatment. Thiosemicarbazones and hydrazones present a wide spectrum of bioactivities and are considered a platform for the design of new anti-T. cruzi drug candidates. Herein, the potential antichagasic activities of [(E)-2-(1-(4-chlorophenylthio)propan-2-ylidene)-hydrazinecarbothioamides] (C1, C3), [(E)-N'-(1-((4-chlorophenyl)thio)propan-2-ylidene)benzohydrazide] (C2), [(E)-2-(1-(4-, and [(E)-2-(1-((4-chlorophenyl)thio)propan-2-ylidene)hydrazinecarboxamide] (C4) were investigated. Macrophages (MOs) from C57BL/6 mice stimulated with C1 and C3, but not with C2 and C4, reduced amastigote replication and trypomastigote release, independent of nitric oxide (NO) and reactive oxygen species production and indoleamine 2,3-dioxygenase activity. C3, but not C1, reduced parasite uptake by MOs and potentiated TNF production. In cardiomyocytes, C3 reduced trypomastigote release independently of NO, TNF, and IL-6 production. C1 and C3 were non-toxic to the host cells. A reduction of parasite release was found during infection of MOs with trypomastigotes pre-incubated with C1 or C3 and MOs pre-stimulated with compounds before infection. Moreover, C1 and C3 acted directly on trypomastigotes, killing them faster than Benznidazole, and inhibited T. cruzi proliferation at various stages of its intracellular cycle. Mechanistically, C1 and C3 inhibit parasite duplication, and this process cannot be reversed by inhibiting the DNA damage response. In vivo, C1 and C3 attenuated parasitemia in T. cruzi-infected mice. Moreover, C3 loaded in a lipid nanocarrier system (nanoemulsion) maintained anti-T. cruzi activity in vivo. Collectively, these data suggest that C1 and C3 are candidates for the treatment of ChD and present activity in both the host and parasite cells.


Assuntos
Tiossemicarbazonas/química , Tripanossomicidas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Cisteína Endopeptidases/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Conformação Molecular , Óxido Nítrico/metabolismo , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Ratos , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/uso terapêutico , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/fisiologia
9.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32152197

RESUMO

Chagas disease is a major public health issue, affecting ∼10 million people worldwide. Transmitted by a protozoan named Trypanosoma cruzi, this infection triggers a chronic inflammatory process that can lead to cardiomyopathy (Chagas disease). Resolvin D1 (RvD1) is a novel proresolution lipid mediator whose effects on inflammatory diseases dampens pathological inflammatory responses and can restore tissue homeostasis. Current therapies are not effective in altering the outcome of T. cruzi infection, and as RvD1 has been evaluated as a therapeutic agent in various inflammatory diseases, we examined if exogenous RvD1 could modulate the pathogenesis of Chagas disease in a murine model. CD-1 mice infected with the T. cruzi Brazil strain were treated with RvD1. Mice were administered 3 µg/kg of body weight RvD1 intraperitoneally on days 5, 10, and 15 to examine the effect of RvD1 on acute disease or administered the same dose on days 60, 65, and 70 to examine its effects on chronic infection. RvD1 therapy increased the survival rate and controlled parasite replication in mice with acute infection and reduced the levels of interferon gamma and transforming growth factor ß (TGF-ß) in mice with chronic infection. In addition, there was an increase in interleukin-10 levels with RvD1 therapy in both mice with acute infection and mice with chronic infection and a decrease in TGF-ß levels and collagen content in cardiac tissue. Together, these data indicate that RvD1 therapy can dampen the inflammatory response, promote the resolution of T. cruzi infection, and prevent cardiac fibrosis.


Assuntos
Anti-Inflamatórios/administração & dosagem , Doença de Chagas/microbiologia , Ácidos Docosa-Hexaenoicos/administração & dosagem , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/mortalidade , Doença de Chagas/patologia , Modelos Animais de Doenças , Ecocardiografia , Fibrose , Coração , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Leucócitos/patologia , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Tamanho do Órgão , Índice de Gravidade de Doença
10.
Clin Exp Immunol ; 199(2): 216-229, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31593356

RESUMO

Galectin-3 is the best-characterized member of galectins, an evolutionary conserved family of galactoside-binding proteins that play central roles in infection and immunity, regulating inflammation, cell migration and cell apoptosis. Differentially expressed by cells and tissues with immune privilege, they bind not only to host ligands, but also to glycans expressed by pathogens. In this regard, we have previously shown that human galectin-3 recognizes several genetic lineages of the protozoan parasite Trypanosoma cruzi, the causal agent of Chagas' disease or American trypanosomiasis. Herein we describe a molecular mechanism developed by T. cruzi to proteolytically process galectin-3 that generates a truncated form of the protein lacking its N-terminal domain - required for protein oligomerization - but still conserves a functional carbohydrate recognition domain (CRD). Such processing relies on specific T. cruzi proteases, including Zn-metalloproteases and collagenases, and ultimately conveys profound changes in galectin-3-dependent effects, as chemical inhibition of parasite proteases allows galectin-3 to induce parasite death in vitro. Thus, T. cruzi might have established distinct mechanisms to counteract galectin-3-mediated immunity and microbicide properties. Interestingly, non-pathogenic T. rangeli lacked the ability to cleave galectin-3, suggesting that during evolution two genetically similar organisms have developed different molecular mechanisms that, in the case of T. cruzi, favoured its pathogenicity, highlighting the importance of T. cruzi proteases to avoid immune mechanisms triggered by galectin-3 upon infection. This study provides the first evidence of a novel strategy developed by T. cruzi to abrogate signalling mechanisms associated with galectin-3-dependent innate immunity.


Assuntos
Doença de Chagas/imunologia , Galectina 3/imunologia , Imunidade Inata , Metaloproteases/imunologia , Proteólise , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/imunologia , Proteínas Sanguíneas , Doença de Chagas/patologia , Galectina 3/química , Galectinas , Humanos , Metaloproteases/química , Domínios Proteicos , Proteínas de Protozoários/química
11.
Pharmacol Res ; 158: 104907, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32416214

RESUMO

Phenothiazines inhibit major antioxidant defense mechanisms in trypanosomatids and exhibit potent cytotoxic effects in vitro. However, the relevance of these drugs in the treatment of Trypanosoma cruzi-induced acute myocarditis is poorly explored, especially in combination with reference trypanocidal drugs. Thus, we compared the antiparasitic and cardioprotective potential of thioridazine (TDZ) and benznidazole (Bz) administered in monotherapy and combined in a murine model of T. cruzi-induced acute myocarditis. Female mice were randomized into six groups: (i) uninfected untreated, (ii) infected untreated, or infected treated with (iii) Bz (100 mg/kg), (iv) TDZ (80 mg/kg), (v) Bz (100 mg/kg) + TDZ (80 mg/kg), or (vi) Bz (50 mg/kg) + TDZ (80 mg/kg). Infected animals were inoculated with 2000 T. cruzi trypomastigotes and treated by gavage for 20 days. Animals that received TDZ alone presented the highest levels of parasitemia, parasitic load and anti-T. cruzi immunoglobulin G titers; cardiac upregulation of N-acetyl-ß-D-glucosaminidase activity, nitric oxide, malondialdehyde and cytokines (IFN-γ, TNF-α, IL-10 and IL-17); as well as microstructural damage compared to the other groups (p < 0.05). These parameters were reduced in groups receiving Bz monotherapy compared to the other groups (p < 0.05). The combination of TDZ and Bz attenuated the response to treatment, worsening parasitological control, oxidative heart damage and myocarditis compared to the group treated with Bz alone (p < 0.05). Our results indicate that when administered alone, TDZ potentiated the pathological outcomes in animals infected with T. cruzi. Moreover, TDZ attenuated the antiparasitic effect of Bz when administered together, impairing parasitological control, potentiating inflammation, molecular oxidation and pathological microstructural remodeling of the heart. Thus, our findings indicate that TDZ acts as a pharmacological risk factor and Bz-based monotherapy remains a better cardioprotective drug against Trypanosoma cruzi-induced acute myocarditis.


Assuntos
Antiprotozoários/administração & dosagem , Cardiomiopatia Chagásica/tratamento farmacológico , Miocardite/tratamento farmacológico , Nitroimidazóis/administração & dosagem , Fenotiazinas/administração & dosagem , Tripanossomicidas/administração & dosagem , Animais , Cardiomiopatia Chagásica/patologia , Doença de Chagas/tratamento farmacológico , Doença de Chagas/patologia , Quimioterapia Combinada , Feminino , Camundongos , Miocardite/parasitologia , Miocardite/patologia , Trypanosoma cruzi/efeitos dos fármacos
12.
Exp Parasitol ; 215: 107931, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32464222

RESUMO

Chagas disease is a public health problem in America. Its parasite, Trypanosoma cruzi, presents different discrete typing units (DTUs), colonizes organs of mammalian hosts in chronic infections, and presents tropism for particular organs in experimental infections. We evaluated T. cruzi tropism towards organs on the naturally infected rodent Octodon degus, identifying the parasites' DTUs, by means of conventional PCR and hybridization. Almost all the analyzed organs presented T. cruzi. More than 42% of the tested oesophagus, skin, skeletal muscle, brain and intestine showed T. cruzi DNA. Other nine types of organs were infected in over 15%. These results suggest that there is some tropism by T. cruzi in chronically infected O. degus. DTU TcV was present in 92.5% of infected organs with identified DTUs; this DTU is frequently reported in human infections in the Southern Cone of South America. Few organs showed mixed DTU infections. This is one of the few reports on the outcome of chronic natural T. cruzi-infection in wild mammal hosts exposed to naturally infected vectors.


Assuntos
Doença de Chagas/veterinária , Octodon/parasitologia , Doenças dos Roedores/patologia , Doenças dos Roedores/parasitologia , Animais , Animais Selvagens , Doença de Chagas/parasitologia , Doença de Chagas/patologia , DNA de Protozoário/isolamento & purificação , Feminino , Masculino , Trypanosoma cruzi/classificação , Trypanosoma cruzi/genética
13.
Exp Parasitol ; 218: 108012, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33011239

RESUMO

Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic in almost all countries of Latin America. In Brazil, oral infection is becoming the most important mechanism of transmission of the disease in several regions of the country. The gastrointestinal tract is the gateway for the parasite through this route of infection, however, little is known about the involvement of these organs related to oral route. In this sense, the present study evaluated the impact of oral infection on the digestive tract in mice infected by Berenice-78 (Be-78) T. cruzi strain, in comparison with the intraperitoneal route of infection. In this work, the intraperitoneal route group showed a peak of parasitemia similar to the oral route group, however the mortality rate among the orally infected animals was higher when compared to intraperitoneal route. By analyzing the frequency of blood cell populations, differences were mainly observed in CD4+ T lymphocytes, and not in CD8+, presenting an earlier reduction in the number of CD4+ T cells, which persisted for a longer period, in the animals of the oral group when compared with the intraperitoneal group. Animals infected by oral route presented a higher tissue parasitism and inflammatory infiltrate in stomach, duodenum and colon on the 28th day after infection. Therefore, these data suggest that oral infection has a different profile of parasitological and immune responses compared to intraperitoneal route, being the oral route more virulent and with greater tissue parasitism in organs of the gastrointestinal tract evaluated during the acute phase.


Assuntos
Doença de Chagas/patologia , Trato Gastrointestinal/patologia , Trato Gastrointestinal/parasitologia , Trypanosoma cruzi/patogenicidade , Administração Oral , Análise de Variância , Animais , Doença de Chagas/mortalidade , Doença de Chagas/parasitologia , Colo/parasitologia , Colo/patologia , Duodeno/parasitologia , Duodeno/patologia , Imunofenotipagem , Masculino , Camundongos , Monócitos/patologia , Parasitemia/mortalidade , Parasitemia/parasitologia , Estômago/parasitologia , Estômago/patologia , Taxa de Sobrevida
14.
Parasitol Res ; 119(6): 1829-1843, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32206887

RESUMO

The underlying pathogenic mechanisms of cardiomyopathy in Chagas disease are still unsolved. In order to better clarify the role of fat on the evolution of cardiomyopathy, the present study employed three murine models of chronic Trypanosoma cruzi infection: (1) aP2-RIDα/ß transgenic mice (RID mice; an adipose tissue model which express a gain-of-function potent anti-inflammatory activity), (2) allograft inflammatory factor-1 knockout mice (Aif1-/-), and (3) a Swiss outbred mice. RID mice and non-transgenic mice (wild type, WT) were infected with blood trypomastigotes of Brazil strain. During the acute stage of infection, RID mice had lower parasitemia, lower heart inflammation, and a decrease in the relative distribution of parasite load from cardiac muscle tissue toward epididymal fat. Nevertheless, comparable profiles of myocardial inflammatory infiltrates and relative distribution of parasite load were observed among RID and WT at the chronic stage of infection. Aif1-/- and Aif1+/+ mice were infected with bloodstream trypomastigotes of Tulahuen strain and fed with high-fat diet (HFD) or regular diet (RD). Interestingly, Aif1+/+ HFD infected mice showed the highest mortality. Swiss mice infected with blood trypomastigotes of Berenice-78 strain on a HFD had higher levels of TNFα and more inflammation in their heart tissue than infected mice fed a RD. These various murine models implicate adipocytes in the pathogenesis of chronic Chagas disease and suggest that HFD can lead to a significant increase in the severity of parasite-induced chronic cardiac damage. Furthermore, these data implicate adipocyte TLR4-, TNFα-, and IL-1ß-mediated signaling in pro-inflammatory pathways and Aif-1 gene expression in the development of chronic Chagas disease.


Assuntos
Cardiomiopatia Chagásica/patologia , Doença de Chagas/complicações , Dieta Hiperlipídica , Trypanosoma cruzi , Animais , Cardiomiopatia Chagásica/parasitologia , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Modelos Animais de Doenças , Feminino , Coração/parasitologia , Inflamação/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/patologia , Carga Parasitária , Trypanosoma cruzi/fisiologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Molecules ; 25(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344932

RESUMO

The sesquiterpene lactones eupatoriopicrin, estafietin, eupahakonenin B and minimolide have been isolated from Argentinean Astearaceae species and have been found to be active against Trypanosoma cruzi epimastigotes. The aim of this work was to evaluate the activity of these compounds by analyzing their effect against the stages of the parasites that are infective for the human. Even more interesting, we aimed to determine the effect of the most active and selective compound on an in vivo model of T. cruzi infection. Eupatoriopicrin was the most active against amastigotes and tripomastigotes (IC50 = 2.3 µg/mL, and 7.2 µg/mL, respectively) and displayed a high selectivity index. This compound was selected to study on an in vivo model of T. cruzi infection. The administration of 1 mg/kg/day of eupatoriopicrin for five consecutive days to infected mice produced a significant reduction in the parasitaemia levels in comparison with non-treated animals (area under parasitaemia curves 4.48 vs. 30.47, respectively). Skeletal muscular tissues from eupatopicrin-treated mice displayed only focal and interstitial lymphocyte inflammatory infiltrates and small areas of necrotic; by contrast, skeletal tissues from T. cruzi infected mice treated with the vehicle showed severe lymphocyte inflammatory infiltrates with necrosis of the adjacent myocytes. The results indicate that eupatoriopicrin could be considered a promising candidate for the development of new therapeutic agents for Chagas disease.


Assuntos
Asteraceae/química , Lactonas/farmacologia , Extratos Vegetais/farmacologia , Sesquiterpenos/farmacologia , Tripanossomicidas/farmacologia , Animais , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Humanos , Lactonas/química , Camundongos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sensibilidade e Especificidade , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Tripanossomicidas/química , Tripanossomicidas/isolamento & purificação , Trypanosoma cruzi/efeitos dos fármacos
16.
J Biol Chem ; 293(45): 17402-17417, 2018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30232153

RESUMO

In vertebrate cells, mitochondrial Ca2+ uptake by the mitochondrial calcium uniporter (MCU) leads to Ca2+-mediated stimulation of an intramitochondrial pyruvate dehydrogenase phosphatase (PDP). This enzyme dephosphorylates serine residues in the E1α subunit of pyruvate dehydrogenase (PDH), thereby activating PDH and resulting in increased ATP production. Although a phosphorylation/dephosphorylation cycle for the E1α subunit of PDH from nonvertebrate organisms has been described, the Ca2+-mediated PDP activation has not been studied. In this work, we investigated the Ca2+ sensitivity of two recombinant PDPs from the protozoan human parasites Trypanosoma cruzi (TcPDP) and T. brucei (TbPDP) and generated a TcPDP-KO cell line to establish TcPDP's role in cell bioenergetics and survival. Moreover, the mitochondrial localization of the TcPDP was studied by CRISPR/Cas9-mediated endogenous tagging. Our results indicate that TcPDP and TbPDP both are Ca2+-sensitive phosphatases. Of note, TcPDP-KO epimastigotes exhibited increased levels of phosphorylated TcPDH, slower growth and lower oxygen consumption rates than control cells, an increased AMP/ATP ratio and autophagy under starvation conditions, and reduced differentiation into infective metacyclic forms. Furthermore, TcPDP-KO trypomastigotes were impaired in infecting cultured host cells. We conclude that TcPDP is a Ca2+-stimulated mitochondrial phosphatase that dephosphorylates TcPDH and is required for normal growth, differentiation, infectivity, and energy metabolism in T. cruzi Our results support the view that one of the main roles of the MCU is linked to the regulation of intramitochondrial dehydrogenases.


Assuntos
Doença de Chagas/enzimologia , Metabolismo Energético , Cetona Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/enzimologia , Linhagem Celular , Doença de Chagas/genética , Doença de Chagas/patologia , Técnicas de Silenciamento de Genes , Humanos , Cetona Oxirredutases/genética , Fosforilação/genética , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética
17.
Microb Pathog ; 135: 103618, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31310832

RESUMO

P21 is a protein secreted by Trypanosoma cruzi (T. cruzi). Previous studies have shown a spectrum of biological activities performed by P21 such as induction of phagocytosis, leukocyte chemotaxis and inhibition of angiogenesis. However, the activity of P21 in T. cruzi infection remains unknown. Here, we reported the role of P21 in mice harboring late T. cruzi infection. Treatment with recombinant P21 protein (rP21) reduced parasite load and angiogenesis, and induced fibrosis in the cardiac tissue of infected mice. In addition, rP21 reduced the growth of epimastigotes, inhibited intracellular replication of amastigotes and modulated the parasite cell cycle. Our data suggest that P21 controls parasite replication in the host, supporting the survival of both parasite and host.


Assuntos
Doença de Chagas/imunologia , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/fisiologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Ciclo Celular , Doença de Chagas/parasitologia , Doença de Chagas/patologia , Modelos Animais de Doenças , Fibrose , Coração , Interações Hospedeiro-Parasita , Camundongos , Camundongos Endogâmicos BALB C , Carga Parasitária , Proteínas de Protozoários/genética , Proteínas Recombinantes , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidade
18.
Med Microbiol Immunol ; 208(5): 651-666, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30413884

RESUMO

Adipose tissue is a target of Trypanosoma cruzi infection being a parasite reservoir during the chronic phase in mice and humans. Previously, we reported that acute Trypanosoma cruzi infection in mice is linked to a severe adipose tissue loss, probably triggered by inflammation, as well as by the parasite itself. Here, we evaluated how infection affects adipose tissue homeostasis, considering adipocyte anabolic and catabolic pathways, the immune-endocrine pattern and the possible repercussion upon adipogenesis. During in vivo infection, both lipolytic and lipogenic pathways are profoundly affected, since the expression of lipolytic enzymes and lipogenic enzymes was intensely downregulated. A similar pattern was observed in isolated adipocytes from infected animals and in 3T3-L1 adipocytes infected in vitro with Trypanosoma cruzi. Moreover, 3T3-L1 adipocytes exposed to plasmas derived from infected animals also tend to downregulate lipolytic enzyme expression which was less evident regarding lipogenic enzymes. Moreover, in vivo-infected adipose tissue reveals a pro-inflammatory profile, with increased leucocyte infiltration accompanied by TNF and IL-6 overexpression, and adiponectin downregulation. Strikingly, the nuclear factor PPAR-γ is strongly decreased in adipocytes during in vivo infection. Attempts to favor PPAR-γ-mediated actions in the adipose tissue of infected animals using agonists failed, indicating that inflammation or parasite-derived factors are strongly involved in PPAR-γ inhibition. Here, we report that experimental acute Trypanosoma cruzi infection disrupts both adipocyte catabolic and anabolic metabolism secondary to PPAR-γ robust downregulation, tipping the balance towards to an adverse status compatible with the adipose tissue atrophy and the acquisition of an inflammatory phenotype.


Assuntos
Tecido Adiposo/patologia , Doença de Chagas/patologia , Homeostase , Adipócitos/parasitologia , Adipócitos/patologia , Adipocinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Enzimas/metabolismo , Expressão Gênica , Imunidade Celular , Imunidade Humoral , Lipogênese , Lipólise , Camundongos , Trypanosoma cruzi/crescimento & desenvolvimento
19.
Biochem J ; 475(7): 1235-1251, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29438066

RESUMO

Chagas disease (CD), caused by the protozoa Trypanosoma cruzi, is a chronic illness in which parasites persist in the host-infected tissues for years. T. cruzi invasion in cardiomyocytes elicits the production of pro-inflammatory mediators [TNF-α, IL-1ß, IFN-γ; nitric oxide (·NO)], leading to mitochondrial dysfunction with increased superoxide radical (O2·-), hydrogen peroxide (H2O2) and peroxynitrite generation. We hypothesize that these redox mediators may control parasite proliferation through the induction of intracellular amastigote programmed cell death (PCD). In this work, we show that T. cruzi (CL-Brener strain) infection in primary cardiomyocytes produced an early (24 h post infection) mitochondrial dysfunction with H2O2 generation and the establishment of an oxidative stress evidenced by FoxO3 activation and target host mitochondrial protein expression (MnSOD and peroxiredoxin 3). TNF-α/IL-1ß-stimulated cardiomyocytes were able to control intracellular amastigote proliferation compared with unstimulated cardiomyocytes. In this condition leading to oxidant formation, an enhanced number of intracellular apoptotic amastigotes were detected. The ability of H2O2 to induce T. cruzi PCD was further confirmed in the epimastigote stage of the parasite. H2O2 treatment induced parasite mitochondrial dysfunction together with intra-mitochondrial O2·- generation. Importantly, parasites genetically engineered to overexpress mitochondrial Fe-superoxide dismutase (Fe-SODA) were more infective to TNF-α/IL-1ß-stimulated cardiomyocytes with less apoptotic amastigotes; this result underscores the role of this enzyme in parasite survival. Our results indicate that cardiomyocyte-derived diffusible mediators are able to control intracellular amastigote proliferation by triggering T. cruzi PCD and that parasite Fe-SODA tilts the process toward survival as part of an antioxidant-based immune evasion mechanism.


Assuntos
Doença de Chagas/parasitologia , Interações Hospedeiro-Parasita , Ferro/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Animais , Apoptose , Células Cultivadas , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/parasitologia , Oxirredução , Ratos , Superóxido Dismutase/genética , Superóxidos , Trypanosoma cruzi/patogenicidade
20.
Curr Top Membr ; 84: 217-238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31610864

RESUMO

Intracellular pathogens depend on specific mechanisms to be able to gain entry and survive into their host cells. For this, they subvert pathways involved in physiological cellular processes. Here we are going to focus on how two protozoan parasites, Trypanosoma cruzi and Leishmania sp, which may cause severe diseases in humans, use plasma membrane repair (PMR) mechanisms to gain entry in host intracellular environment. T. cruzi is the causative agent of Chagas disease, a disease originally endemic of central and South America, but that has become widespread around the globe. T. cruzi is able to invade any nucleated cell, but muscle cells are usually the main targets during chronic disease. During host cell contact, the parasite interacts with proteins at the host cell surface and may cause damage to their membrane, which has been shown to be responsible for inducing intracellular calcium increase and PMR-related events that culminate with parasite internalization. The same was recently observed for Leishmania sp, when infecting nonprofessional phagocytic cells, such as fibroblasts. Other pathogens, such as viruses or bacteria may also use PMR-related events for invasion and vacuole escape/maturation. In some cases, PMR may also be responsible to modulate pathogen intracellular development. These other PMR roles in pathogen infections will also be briefly discussed.


Assuntos
Membrana Celular/metabolismo , Doença de Chagas/patologia , Doença de Chagas/parasitologia , Trypanosoma cruzi/metabolismo , Animais , Doença de Chagas/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA