Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 101(2): 239-254, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28777931

RESUMO

The synthesis of all 13 mitochondrial DNA (mtDNA)-encoded protein subunits of the human oxidative phosphorylation (OXPHOS) system is carried out by mitochondrial ribosomes (mitoribosomes). Defects in the stability of mitoribosomal proteins or mitoribosome assembly impair mitochondrial protein translation, causing combined OXPHOS enzyme deficiency and clinical disease. Here we report four autosomal-recessive pathogenic mutations in the gene encoding the small mitoribosomal subunit protein, MRPS34, in six subjects from four unrelated families with Leigh syndrome and combined OXPHOS defects. Whole-exome sequencing was used to independently identify all variants. Two splice-site mutations were identified, including homozygous c.321+1G>T in a subject of Italian ancestry and homozygous c.322-10G>A in affected sibling pairs from two unrelated families of Puerto Rican descent. In addition, compound heterozygous MRPS34 mutations were identified in a proband of French ancestry; a missense (c.37G>A [p.Glu13Lys]) and a nonsense (c.94C>T [p.Gln32∗]) variant. We demonstrated that these mutations reduce MRPS34 protein levels and the synthesis of OXPHOS subunits encoded by mtDNA. Examination of the mitoribosome profile and quantitative proteomics showed that the mitochondrial translation defect was caused by destabilization of the small mitoribosomal subunit and impaired monosome assembly. Lentiviral-mediated expression of wild-type MRPS34 rescued the defect in mitochondrial translation observed in skin fibroblasts from affected subjects, confirming the pathogenicity of MRPS34 mutations. Our data establish that MRPS34 is required for normal function of the mitoribosome in humans and furthermore demonstrate the power of quantitative proteomic analysis to identify signatures of defects in specific cellular pathways in fibroblasts from subjects with inherited disease.


Assuntos
DNA Mitocondrial/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Subunidades Ribossômicas Menores de Eucariotos/genética , Adolescente , Sequência de Bases , Criança , Pré-Escolar , Exoma/genética , Feminino , Humanos , Lactente , Doença de Leigh/enzimologia , Masculino , Mitocôndrias/genética , Fosforilação Oxidativa , Proteômica , Splicing de RNA/genética , Análise de Sequência de DNA
2.
J Inherit Metab Dis ; 43(5): 1024-1036, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32160317

RESUMO

Hydrogen sulfide, a signaling molecule formed mainly from cysteine, is catabolized by sulfide:quinone oxidoreductase (gene SQOR). Toxic hydrogen sulfide exposure inhibits complex IV. We describe children of two families with pathogenic variants in SQOR. Exome sequencing identified variants; SQOR enzyme activity was measured spectrophotometrically, protein levels evaluated by western blotting, and mitochondrial function was assayed. In family A, following a brief illness, a 4-year-old girl presented comatose with lactic acidosis and multiorgan failure. After stabilization, she remained comatose, hypotonic, had neurostorming episodes, elevated lactate, and Leigh-like lesions on brain imaging. She died shortly after. Her 8-year-old sister presented with a rapidly fatal episode of coma with lactic acidosis, and lesions in the basal ganglia and left cortex. Muscle and liver tissue had isolated decreased complex IV activity, but normal complex IV protein levels and complex formation. Both patients were homozygous for c.637G > A, which we identified as a founder mutation in the Lehrerleut Hutterite with a carrier frequency of 1 in 13. The resulting p.Glu213Lys change disrupts hydrogen bonding with neighboring residues, resulting in severely reduced SQOR protein and enzyme activity, whereas sulfide generating enzyme levels were unchanged. In family B, a boy had episodes of encephalopathy and basal ganglia lesions. He was homozygous for c.446delT and had severely reduced fibroblast SQOR enzyme activity and protein levels. SQOR dysfunction can result in hydrogen sulfide accumulation, which, consistent with its known toxicity, inhibits complex IV resulting in energy failure. In conclusion, SQOR deficiency represents a new, potentially treatable, cause of Leigh disease.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Doença de Leigh/enzimologia , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Quinona Redutases/fisiologia , Acidose Láctica/patologia , Encefalopatias/patologia , Pré-Escolar , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Família , Feminino , Homozigoto , Humanos , Sulfeto de Hidrogênio/química , Cinética , Doença de Leigh/metabolismo , Imageamento por Ressonância Magnética , Masculino , Oxirredução , Quinona Redutases/química
3.
Clin Chem Lab Med ; 58(11): 1809-1817, 2020 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-32432562

RESUMO

Objectives Leigh syndrome (LS) is one of the most common mitochondrial diseases and has variable clinical symptoms. However, the genetic variant spectrum of this disease is incomplete. Methods Next-generation sequencing (NGS) was used to identify the m.14430A > G (p.W82R) variant in a patient with LS. The pathogenesis of this novel complex I (CI) variant was verified by determining the mitochondrial respiration, assembly of CI, ATP, MMP and lactate production, and cell growth rate in cybrids with and without this variant. Results A novel m.14430A > G (p.W82R) variant in the NADH dehydrogenase 6 (ND6) gene was identified in the patient; the mutant loads of m.14430A > G (p.W82R) in the patient were much higher than those in his mother. Although the transmitochondrial cybrid-based study showed that mitochondrial CI assembly remains unaffected in cells with the m.14430G variant, control cells had significantly higher endogenous and CI-dependent mitochondrial respiration than mutant cells. Accordingly, mutant cells had a lower ATP, MMP and higher extracellular lactate production than control cells. Notably, mutant cells had impaired growth in a galactose-containing medium when compared to wild-type cells. Conclusions A novel m.14430A > G (p.W82R) variant in the ND6 gene was identified from a patient suspected to have LS, and this variant impaired mitochondrial respiration by decreasing the activity of mitochondrial CI.


Assuntos
Doença de Leigh/genética , NADH Desidrogenase/deficiência , NADH Desidrogenase/genética , Linhagem Celular Tumoral , Pré-Escolar , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/enzimologia , Masculino , Mutação de Sentido Incorreto
4.
Am J Physiol Cell Physiol ; 317(1): C58-C67, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995105

RESUMO

Leigh syndrome French Canadian type (LSFC) is a mitochondrial disease caused by mutations in the leucine-rich pentatricopeptide repeat-containing (LRPPRC) gene leading to a reduction of cytochrome-c oxidase (COX) expression reaching 50% in skin fibroblasts. We have shown that under basal conditions, LSFC and control cells display similar ATP levels. We hypothesized that this occurs through upregulation of mechanistic target of rapamycin (mTOR)-mediated metabolic reprogramming. Our results showed that compared with controls, LSFC cells exhibited an upregulation of the mTOR complex 1 (mTORC1)/p70 ribosomal S6 kinase pathway and higher levels of hypoxia-inducible factor 1α (HIF-1α) and its downstream target pyruvate dehydrogenase kinase 1 (PDHK1), a regulator of mitochondrial pyruvate dehydrogenase 1 (PDH1). Consistent with these signaling alterations, LSFC cells displayed a 40-61% increase in [U-13C6]glucose contribution to pyruvate, lactate, and alanine formation, as well as higher levels of the phosphorylated and inactive form of PDH1-α. Interestingly, inhibition of mTOR with rapamycin did not alter HIF-1α or PDHK1 protein levels in LSFC fibroblasts. However, this treatment increased PDH1-α phosphorylation in control and LSFC cells and reduced ATP levels in control cells. Rapamycin also decreased LRPPRC expression by 41 and 11% in LSFC and control cells, respectively, and selectively reduced COX subunit IV expression in LSFC fibroblasts. Taken together, our data demonstrate the importance of mTORC1, independent of the HIF-1α/PDHK1 axis, in maintaining LRPPRC and COX expression in LSFC cells.


Assuntos
Deficiência de Citocromo-c Oxidase/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/enzimologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Doença de Leigh/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Neoplasias/metabolismo , Pele/enzimologia , Trifosfato de Adenosina/metabolismo , Células Cultivadas , Criança , Deficiência de Citocromo-c Oxidase/genética , Deficiência de Citocromo-c Oxidase/patologia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Metabolismo Energético , Feminino , Fibroblastos/patologia , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Doença de Leigh/genética , Doença de Leigh/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Proteínas de Neoplasias/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil/metabolismo , Complexo Piruvato Desidrogenase/genética , Complexo Piruvato Desidrogenase/metabolismo , Quebeque , Transdução de Sinais , Pele/patologia
5.
J Hum Genet ; 64(7): 637-645, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30948790

RESUMO

The genetic causes of Leigh syndrome are heterogeneous, with a poor genotype-phenotype correlation. To date, more than 50 nuclear genes cause nuclear gene-encoded Leigh syndrome. NDUFS6 encodes a 13 kiloDaltons subunit, which is part of the peripheral arm of complex I and is localized in the iron-sulfur fraction. Only a few patients were reported with proven NDUFS6 pathogenic variants and all presented with severe neonatal lactic acidemia and complex I deficiency, leading to death in the first days of life. Here, we present a patient harboring two NDUFS6 variants with a phenotype compatible with Leigh syndrome. Although most of previous reports suggested that NDUFS6 pathogenic variants invariably lead to early neonatal death, this report shows that the clinical spectrum could be larger. We found a severe decrease of NDUFS6 protein level in patient's fibroblasts associated with a complex I assembly defect in patient's muscle and fibroblasts. These data confirm the importance of NDUFS6 and the Zn-finger domain for a correct assembly of complex I.


Assuntos
Doença de Leigh/genética , NADH Desidrogenase/genética , Acidose Láctica/genética , Núcleo Celular/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/genética , Fibroblastos/enzimologia , Estudos de Associação Genética , Humanos , Lactente , Doença de Leigh/diagnóstico por imagem , Doença de Leigh/enzimologia , Masculino , Mitocôndrias/genética , Músculos/enzimologia , NADH Desidrogenase/metabolismo , Domínios Proteicos/genética , Análise de Sequência de DNA
6.
Mol Genet Metab ; 115(4): 161-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026795

RESUMO

PURPOSE: 3-Hydroxyisobutryl-CoA hydrolase (HIBCH) deficiency is a rare disorder of valine metabolism. We present a family with the oldest reported subjects with HIBCH deficiency and provide support that HIBCH deficiency should be included in the differential for elevated hydroxy-C4-carnitine in newborn screening (NBS). METHODS: Whole exome sequencing (WES) was performed on one affected sibling. HIBCH enzymatic activity was measured in patient fibroblasts. Acylcarnitines were measured by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Disease incidence was estimated using a cohort of 61,434 individuals. RESULTS: Two siblings presented with infantile-onset, progressive neurodegenerative disease. WES identified a novel homozygous variant in HIBCH c.196C>T; p.Arg66Trp. HIBCH enzymatic activity was significantly reduced in patients' fibroblasts. Acylcarnitine analysis showed elevated hydroxy-C4-carnitine in blood spots of both affected siblings, including in their NBS cards, while plasma acylcarnitines were normal. Estimates show HIBCH deficiency incidence as high as 1 in ~130,000 individuals. CONCLUSION: We describe a novel family with HIBCH deficiency at the biochemical, enzymatic and molecular level. Disease incidence estimates indicate HIBCH deficiency may be under-diagnosed. This together with the elevated hydroxy-C4-carnitine found in the retrospective analysis of our patient's NBS cards suggests that this disorder could be screened for by NBS programs and should be added to the differential diagnosis for elevated hydroxy-C4-carnitine which is already measured in most NBS programs using MS/MS.


Assuntos
Anormalidades Múltiplas/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Doença de Leigh/metabolismo , Triagem Neonatal , Tioléster Hidrolases/deficiência , Anormalidades Múltiplas/metabolismo , Adolescente , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Exoma , Feminino , Fibroblastos/enzimologia , Humanos , Lactente , Recém-Nascido , Doença de Leigh/enzimologia , Masculino , Espectrometria de Massas , Prognóstico , Estudos Retrospectivos , Análise de Sequência de DNA , Irmãos , Tioléster Hidrolases/química , Tioléster Hidrolases/metabolismo
7.
Folia Biol (Praha) ; 60(6): 268-74, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25629267

RESUMO

Cytochrome c oxidase (CIV) deficiency is among the most common childhood mitochondrial disorders. The diagnosis of this deficiency is complex, and muscle biopsy is used as the gold standard of diagnosis. Our aim was to minimize the patient burden and to test the use of a dipstick immunocapture assay (DIA) to determine the amount of CIV in non-invasively obtained buccal epithelial cells. Buccal smears were obtained from five children with Leigh syndrome including three children exhibiting a previously confirmed CIV deficiency in muscle and fibroblasts and two children who were clinical suspects for CIV deficiency; the smear samples were analysed using CI and CIV human protein quantity dipstick assay kits. Samples from five children of similar age and five adults were used as controls. Analysis of the controls demonstrated that only samples of buccal cells that were frozen for a maximum of 4 h after collection provide accurate results. All three patients with confirmed CIV deficiency due to mutations in the SURF1 gene exhibited significantly lower amounts of CIV than the similarly aged controls; significantly lower amounts were also observed in two new patients, for whom later molecular analysis also confirmed pathologic mutations in the SURF1 gene. We conclude that DIA is a simple, fast and sensitive method for the determination of CIV in buccal cells and is suitable for the screening of CIV deficiency in non-invasively obtained material from children who are suspected of having mitochondrial disease.


Assuntos
Deficiência de Citocromo-c Oxidase/diagnóstico , Complexo IV da Cadeia de Transporte de Elétrons/análise , Células Epiteliais/enzimologia , Técnicas de Imunoadsorção , Doença de Leigh/diagnóstico , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Mucosa Bucal/patologia , Fitas Reagentes , Adulto , Idade de Início , Estudos de Casos e Controles , Células Cultivadas , Pré-Escolar , Deficiência de Citocromo-c Oxidase/enzimologia , Deficiência de Citocromo-c Oxidase/genética , Análise Mutacional de DNA , Eletromiografia , Complexo I de Transporte de Elétrons/análise , Insuficiência de Crescimento/etiologia , Fibroblastos/enzimologia , Humanos , Lactente , Doença de Leigh/enzimologia , Doença de Leigh/genética , Proteínas de Membrana/deficiência , Mitocôndrias Musculares/enzimologia , Proteínas Mitocondriais/deficiência , Hipotonia Muscular/etiologia , Deleção de Sequência , Tremor/etiologia
8.
J Clin Invest ; 134(15)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38870029

RESUMO

Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogen sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Metronidazole administration and a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.


Assuntos
Sulfeto de Hidrogênio , Doença de Leigh , Mitocôndrias , Quinona Redutases , Animais , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Doença de Leigh/enzimologia , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/enzimologia , Quinona Redutases/genética , Quinona Redutases/metabolismo , Sulfeto de Hidrogênio/metabolismo , Metronidazol/farmacologia , Mutação , Sulfetos/farmacologia
9.
J Biol Chem ; 287(24): 20652-63, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22535952

RESUMO

Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid ß-oxidation.


Assuntos
Elementos de DNA Transponíveis , Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/enzimologia , Mitocôndrias/enzimologia , Mutação , NAD/metabolismo , Animais , Sítios de Ligação , Complexo I de Transporte de Elétrons/genética , Humanos , Doença de Leigh/genética , Doença de Leigh/patologia , Doença de Leigh/fisiopatologia , Metabolômica/métodos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , NAD/genética , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Proteômica/métodos , Splicing de RNA/genética
10.
Biochim Biophys Acta ; 1822(2): 168-75, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22036843

RESUMO

In this study, we investigated the pathogenicity of a homozygous Asp446Asn mutation in the NDUFS2 gene of a patient with a mitochondrial respiratory chain complex I deficiency. The clinical, biochemical, and genetic features of the NDUFS2 patient were compared with those of 4 patients with previously identified NDUFS2 mutations. All 5 patients presented with Leigh syndrome. In addition, 3 out of 5 showed hypertrophic cardiomyopathy. Complex I amounts in the patient carrying the Asp446Asn mutation were normal, while the complex I activity was strongly reduced, showing that the NDUFS2 mutation affects complex I enzymatic function. By contrast, the 4 other NDUFS2 patients showed both a reduced amount and activity of complex I. The enzymatic defect in fibroblasts of the patient carrying the Asp446Asn mutation was rescued by transduction of wild type NDUFS2. A 3-D model of the catalytic core of complex I showed that the mutated amino acid residue resides near the coenzyme Q binding pocket. However, the K(M) of complex I for coenzyme Q analogs of the Asp446Asn mutated complex I was similar to the K(M) observed in other complex I defects and in controls. We propose that the mutation interferes with the reduction of coenzyme Q or with the coupling of coenzyme Q reduction with the conformational changes involved in proton pumping of complex I.


Assuntos
Complexo I de Transporte de Elétrons/genética , Doença de Leigh/genética , Mitocôndrias/enzimologia , Mutação , NADH Desidrogenase/genética , Sequência de Aminoácidos , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Catálise , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Fibroblastos/metabolismo , Homozigoto , Humanos , Lactente , Recém-Nascido , Doença de Leigh/enzimologia , Doença de Leigh/metabolismo , Potencial da Membrana Mitocondrial/genética , Potencial da Membrana Mitocondrial/fisiologia , Mitocôndrias/metabolismo , Membranas Mitocondriais/enzimologia , Membranas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , NADH Desidrogenase/metabolismo , Conformação Proteica , Transdução Genética/métodos , Ubiquinona/metabolismo
11.
Hum Mol Genet ; 19(2): 374-86, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19875463

RESUMO

Mutations in the mitochondrial DNA (mtDNA) encoded subunit 6 of ATPase (ATP6) are associated with variable disease expression, ranging from adult onset neuropathy, ataxia and retinitis pigmentosa (NARP) to fatal childhood maternally inherited Leigh's syndrome (MILS). Phenotypical variations have largely been attributed to mtDNA heteroplasmy. However, there is often a discrepancy between the levels of mutant mtDNA and disease severity. Therefore, the correlation among genetic defect, bioenergetic impairment and clinical outcome in NARP/MILS remains to be elucidated. We investigated the bioenergetics of cybrids from five patients carrying different ATP6 mutations: three harboring the T8993G, one with the T8993C and one with the T9176G mutation. The bioenergetic defects varied dramatically, not only among different ATP6 mutants, but also among lines carrying the same T8993G mutation. Mutants with the most severe ATP synthesis impairment showed defective respiration and disassembly of respiratory chain complexes. This indicates that respiratory chain defects modulate the bioenergetic impairment in NARP/MILS cells. Sequencing of the entire mtDNA from the different mutant cell lines identified variations in structural genes, resulting in amino acid changes that destabilize the respiratory chain. Taken together, these results indicate that the mtDNA background plays an important role in modulating the biochemical defects and clinical outcome in NARP/MILS.


Assuntos
DNA Mitocondrial/genética , Metabolismo Energético , Doença de Leigh/enzimologia , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Retinose Pigmentar/enzimologia , Respiração Celular , Células Cultivadas , DNA Mitocondrial/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Dados de Sequência Molecular , Retinose Pigmentar/genética , Retinose Pigmentar/metabolismo
12.
J Med Genet ; 48(11): 737-40, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21617257

RESUMO

BACKGROUND: This study investigated a girl with Leigh syndrome born to first-cousin parents of Pakistani descent with an isolated respiratory chain complex I deficiency in muscle and fibroblasts. Her early development was delayed, and from age 2 years she started losing motor abilities. Cerebral MRI showed basal ganglia lesions typical of Leigh syndrome. METHODS AND RESULTS: A genome-wide search for homozygosity was performed with the Affymetrix GeneChip 50K Xba array. The analysis revealed several homozygous regions. Three candidate genes were identified, and in one of the genes, NDUFA12, a homozygous c.178C→T mutation leading to a premature stop codon (p.Arg60X) was found. Western blot analysis showed absence of NDUFA12 protein in patient fibroblasts and functional complementation by a baculovirus system showed restoration of complex I activity. CONCLUSION: NDUFA12 mutations are apparently not a frequent cause of complex I deficiency, since mutations were not found by screening altogether 122 complex I deficient patients in two different studies. NDUFA12 encodes an accessory subunit of complex I and is a paralogue of NDUFAF2. Despite the complete absence of NDUFA12 protein, a fully assembled and enzymatically active complex I could be found, albeit in reduced amounts. This suggests that NDUFA12 is required either at a late step in the assembly of complex I, or in the stability of complex I.


Assuntos
Códon sem Sentido , Complexo I de Transporte de Elétrons/deficiência , Fibroblastos/enzimologia , Doença de Leigh/genética , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Músculos/enzimologia , Western Blotting , Criança , Consanguinidade , Análise Mutacional de DNA , Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/genética , Feminino , Fibroblastos/patologia , Teste de Complementação Genética , Estudo de Associação Genômica Ampla , Homozigoto , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/enzimologia , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/deficiência , Músculos/patologia , Análise de Sequência com Séries de Oligonucleotídeos
13.
Biochim Biophys Acta ; 1802(1): 100-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19682572

RESUMO

Cytochrome c oxidase (COX) deficiencies are one of the most common defects of the respiratory chain found in mitochondrial diseases. COX is a multimeric inner mitochondrial membrane enzyme formed by subunits encoded by both the nuclear and the mitochondrial genome. COX biosynthesis requires numerous assembly factors that do not form part of the final complex but participate in prosthetic group synthesis and metal delivery in addition to membrane insertion and maturation of COX subunits. Human diseases associated with COX deficiency including encephalomyopathies, Leigh syndrome, hypertrophic cardiomyopathies, and fatal lactic acidosis are caused by mutations in COX subunits or assembly factors. In the last decade, numerous animal models have been created to understand the pathophysiology of COX deficiencies and the function of assembly factors. These animal models, ranging from invertebrates to mammals, in most cases mimic the pathological features of the human diseases.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Animais , Deficiência de Citocromo-c Oxidase/metabolismo , Humanos , Doença de Leigh/enzimologia , Doença de Leigh/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Modelos Animais , Neurônios/metabolismo , Fosforilação Oxidativa
14.
Biochim Biophys Acta ; 1800(3): 313-5, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19616603

RESUMO

BACKGROUND: Recently we proposed the therapeutic potential of pyruvate therapy for mitochondrial diseases. Leigh syndrome is a progressive neurodegenerative disorder ascribed to either mitochondrial or nuclear DNA mutations. METHODS: In an attempt to circumvent the mitochondrial dysfunction, we orally applied sodium pyruvate and analyzed its effect on an 11-year-old female with Leigh syndrome due to cytochrome c oxidase deficiency accompanied by cardiomyopathy. The patient was administered sodium pyruvate at a maintenance dose of 0.5 g/kg/day and followed up for 1 year. RESULTS: The exercise intolerance was remarkably improved so that she became capable of running. Echocardiography indicated improvements both in the left ventricle ejection fraction and in the fractional shortening. Electrocardiography demonstrated amelioration of the inverted T waves. When the pyruvate administration was interrupted because of a gastrointestinal infection, the serum lactate level became elevated and the serum pyruvate level, decreased, suggesting that the pyruvate administration was effective in decreasing the lactate-to-pyruvate ratio. CONCLUSIONS: These data indicate that pyruvate therapy was effective in improving exercise intolerance at least in a patient with cytochrome c oxidase deficiency. GENERAL SIGNIFICANCE: Administration of sodium pyruvate may prove effective for other patients with cytochrome c oxidase deficiency due to mitochondrial or nuclear DNA mutations.


Assuntos
Deficiência de Citocromo-c Oxidase/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Piruvatos/uso terapêutico , Adulto , DNA/genética , DNA Mitocondrial/genética , Feminino , Humanos , Doença de Leigh/enzimologia , Doença de Leigh/patologia , Imageamento por Ressonância Magnética , Mutação , Nistagmo Patológico/genética , Nistagmo Patológico/patologia
15.
Hum Mol Genet ; 18(15): 2889-98, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19454486

RESUMO

The Leigh syndrome is a severe neurological disorder that has been associated with mutations affecting the mitochondrial energy transducing system. One of these mutations, T9176G, has been localized in the mitochondrial ATP6 gene encoding the Atp6p (or a) subunit of the ATP synthase. This mutation converts a highly conserved leucine residue into arginine within a presumed trans-membrane alpha-helical segment, at position 217 of Atp6p. The T9176G mutation was previously shown to severely reduce the rate of mitochondrial ATP production in cultured human cells containing high loads of this mutation. However, the underlying mechanism responsible for the impaired ATP production is still unknown. To better understand how T9176G affects the ATP synthase, we have created and analyzed the properties of a yeast strain bearing an equivalent of this mutation. We show that incorporation of Atp6p within the ATP synthase was almost completely prevented in the modified yeast. Based on previous partial biochemical characterization of human T9176G cells, it is likely that this mutation similarly affects the human ATP synthase instead of causing a block in the rotary mechanism of this enzyme as it had been suggested. Interestingly, the T9176G yeast exhibits important anomalies in mitochondrial morphology, an observation which indicates that the pathogenicity of T9176G may not be limited to a bioenergetic deficiency.


Assuntos
Doença de Leigh/enzimologia , Mitocôndrias/ultraestrutura , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Linhagem Celular , Humanos , Doença de Leigh/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética
16.
Am J Hum Genet ; 82(6): 1306-15, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18513682

RESUMO

Mitochondrial isolated complex I deficiency is the most frequently encountered OXPHOS defect. We report a patient with an isolated complex I deficiency expressed in skin fibroblasts as well as muscle tissue. Because the parents were consanguineous, we performed homozygosity mapping to identify homozygous regions containing candidate genes such as NDUFA2 on chromosome 5. Screening of this gene on genomic DNA revealed a mutation that interferes with correct splicing and results in the skipping of exon 2. Exon skipping was confirmed on the mRNA level. The mutation in this accessory subunit causes reduced activity and disturbed assembly of complex I. Furthermore, the mutation is associated with a mitochondrial depolarization. The expression and activity of complex I and the depolarization was (partially) rescued with a baculovirus system expressing the NDUFA2 gene.


Assuntos
Complexo I de Transporte de Elétrons/genética , Doença de Leigh/enzimologia , Doença de Leigh/genética , Mutação , Consanguinidade , Primers do DNA/genética , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Éxons , Fibroblastos/enzimologia , Teste de Complementação Genética , Homozigoto , Humanos , Lactente , Masculino , Mitocôndrias/enzimologia , Músculos/enzimologia , RNA Mensageiro/genética
17.
J Med Genet ; 47(8): 507-12, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19542079

RESUMO

BACKGROUND: Leigh syndrome is an early onset, progressive, neurodegenerative disorder with developmental and motor skills regression. Characteristic magnetic resonance imaging abnormalities consist of focal bilateral lesions in the basal ganglia and/or the brainstem. The main cause is a deficiency in oxidative phosphorylation due to mutations in an mtDNA or nuclear oxidative phosphorylation gene. METHODS AND RESULTS: A consanguineous Moroccan family with Leigh syndrome comprise 11 children, three of which are affected. Marker analysis revealed a homozygous region of 11.5 Mb on chromosome 20, containing 111 genes. Eight possible mitochondrial candidate genes were sequenced. Patients were homozygous for an unclassified variant (p.P193L) in the cardiolipin synthase gene (CRLS1). As this variant was present in 20% of a Moroccan control population and enzyme activity was only reduced to 50%, this could not explain the rare clinical phenotype in our family. Patients were also homozygous for an amino acid substitution (p.L159F) in C20orf7, a new complex I assembly factor. Parents were heterozygous and unaffected sibs heterozygous or homozygous wild type. The mutation affects the predicted S-adenosylmethionine (SAM) dependent methyltransferase domain of C20orf7, possibly involved in methylation of NDUFB3 during the assembly process. Blue native gel electrophoresis showed an altered complex I assembly with only 30-40% of mature complex I present in patients and 70-90% in carriers. CONCLUSIONS: A new cause of Leigh syndrome can be a defect in early complex I assembly due to C20orf7 mutations.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Doença de Leigh/enzimologia , Doença de Leigh/genética , Metiltransferases/genética , Proteínas Mitocondriais/genética , Mutação/genética , Adolescente , Adulto , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Sequência de Bases , Pré-Escolar , Análise Mutacional de DNA , Complexo I de Transporte de Elétrons/genética , Família , Feminino , Homozigoto , Humanos , Doença de Leigh/diagnóstico por imagem , Doença de Leigh/metabolismo , Leucócitos Mononucleares/enzimologia , Imageamento por Ressonância Magnética , Masculino , Metiltransferases/química , Proteínas Mitocondriais/química , Dados de Sequência Molecular , Marrocos , Linhagem , Tomografia Computadorizada por Raios X , Adulto Jovem
18.
Biochim Biophys Acta ; 1787(5): 484-90, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19103152

RESUMO

Leigh syndrome is a common clinical manifestation in children with mitochondrial disease and other types of inborn errors of metabolism. We characterised clinical symptoms, prognosis, respiratory chain function and performed extensive genetic analysis of 25 Swedish children suffering from Leigh syndrome with the aim to obtain insights into the molecular pathophysiology and to provide a rationale for genetic counselling. We reviewed the clinical history of all patients and used muscle biopsies in order to perform molecular, biochemical and genetic investigations, including sequencing the entire mitochondrial DNA (mtDNA), the mitochondrial DNA polymerase (POLGA) gene and the surfeit locus protein 1 (SURF1) gene. Respiratory chain enzyme activity measurements identified five patients with isolated complex I deficiency and five with combined enzyme deficiencies. No patient presented with isolated complex IV deficiency. Seven patients had a decreased ATP production rate. Extensive sequence analysis identified eight patients with pathogenic mtDNA mutations and one patient with mutations in POLGA. Mutations of mtDNA are a common cause of LS and mtDNA analysis should always be included in the diagnosis of LS patients, whereas SURF1 mutations are not a common cause of LS in Sweden. Unexpectedly, age of onset, clinical symptoms and prognosis did not reveal any clear differences in LS patients with mtDNA or nuclear DNA mutations.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA Mitocondrial/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Criança , Pré-Escolar , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , Feminino , Glutamato Desidrogenase/genética , Humanos , Lactente , Recém-Nascido , Cinética , Doença de Leigh/enzimologia , Doença de Leigh/mortalidade , Masculino , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Fenótipo , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Análise de Sobrevida
19.
Biochim Biophys Acta ; 1793(5): 817-24, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19269308

RESUMO

We have created and analyzed the properties of a yeast model of the human mitochondrial DNA T8993C mutation that has been associated with maternally-inherited Leigh syndrome and/or with neurogenic muscle weakness, ataxia and retinitis pigmentosa. This mutation changes a highly conserved leucine to proline in the Atp6p subunit of the ATP synthase, at position 156 in the human protein, position 183 in yeast. In vitro the yeast T8993C mitochondria showed a 40-50% decrease in the rate of ATP synthesis. The ATP-driven translocation of protons across the inner mitochondrial membrane was normal in the mutant and fully sensitive to oligomycin, an inhibitor of the ATP synthase proton channel. However under conditions of maximal ATP hydrolytic activity, using non-osmotically protected mitochondria, the mutant ATPase activity was poorly inhibited by oligomycin (by 40% versus 85% in wild type cells). These anomalies were attributed by BN-PAGE and mitochondrial protein synthesis analyses to a less efficient incorporation of Atp6p within the ATP synthase. Interestingly, the cytochrome c oxidase content was selectively decreased by 40-50% in T8993C yeast, apparently due to a reduced synthesis of its mitochondrially encoded Cox1p subunit. This observation further supports the existence of a control of cytochrome c oxidase expression by the ATP synthase in yeast mitochondria. Despite the ATPase deficiency, growth of the atp6-L183P mutant on respiratory substrates and the efficiency of oxidative phosphorylation were similar to that of wild type, indicating that the mutation did not affect the proton permeability of the mitochondrial inner membrane.


Assuntos
DNA Mitocondrial/genética , Doença de Leigh/enzimologia , Doença de Leigh/genética , Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras/genética , Mutação , Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Respiração Celular/fisiologia , Citocromos/metabolismo , Humanos , Doença de Leigh/fisiopatologia , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
20.
Pediatr Res ; 68(2): 159-64, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20453710

RESUMO

This patient presented on the first day of life with pronounced lactic acidosis with an elevated lactate/pyruvate ratio. Urine organic acids showed Krebs cycle metabolites and mildly elevated methylmalonate and methylcitrate. The acylcarnitine profile showed elevated propionylcarnitine and succinylcarnitine. Amino acids showed elevated glutamic acid, glutamine, proline, and alanine. From the age 2 of mo on, she had elevated transaminases and intermittent episodes of liver failure. Liver biopsy showed steatosis and a decrease of mitochondrial DNA to 50% of control. She had bilateral sensorineural hearing loss. Over the course of the first 2 y of life, she developed a progressively severe myopathy with pronounced muscle weakness eventually leading to respiratory failure, Leigh disease, and recurrent hepatic failure. The hepatic symptoms and the metabolic parameters temporarily improved on treatment with aspartate, but neither muscle symptoms nor brain lesions improved. Laboratory testing revealed a deficiency of succinyl-CoA ligase enzyme activity and protein in fibroblasts because of a novel homozygous mutation in the SUCLG1 gene: c.40A>T (p.M14L). Functional analysis suggests that this methionine is more likely to function as the translation initiator methionine, explaining the pathogenic nature of the mutation. Succinyl-CoA ligase deficiency due to an SUCLG1 mutation is a new cause for mitochondrial hepatoencephalomyopathy.


Assuntos
Encefalopatias Metabólicas , Hepatopatias , Doenças Mitocondriais , Succinato-CoA Ligases/deficiência , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias Metabólicas/enzimologia , Encefalopatias Metabólicas/genética , Encefalopatias Metabólicas/patologia , Análise Mutacional de DNA , Evolução Fatal , Feminino , Humanos , Lactente , Recém-Nascido , Doença de Leigh/enzimologia , Doença de Leigh/genética , Doença de Leigh/patologia , Hepatopatias/enzimologia , Hepatopatias/genética , Hepatopatias/patologia , Imageamento por Ressonância Magnética , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Dados de Sequência Molecular , Mutação , Succinato-CoA Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA