Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.419
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Microbiol ; 121(6): 1262-1272, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38830767

RESUMO

Emerging and re-emerging pathogens often stem from zoonotic origins, cycling between humans and animals, and are frequently vectored and maintained by hematophagous arthropod vectors. The efficiency by which these disease agents are successfully transmitted between vertebrate hosts is influenced by many factors, including the host on which a vector feeds. The Lyme disease bacterium Borrelia burgdorferi sensu lato has adapted to survive in complex host environments, vectored by Ixodes ticks, and maintained in multiple vertebrate hosts. The versatility of Lyme borreliae in disparate host milieus is a compelling platform to investigate mechanisms dictating pathogen transmission through complex networks of vertebrates and ticks. Squamata, one of the most diverse clade of extant reptiles, is comprised primarily of lizards, many of which are readily fed upon by Ixodes ticks. Yet, lizards are one of the least studied taxa at risk of contributing to the transmission and life cycle maintenance of Lyme borreliae. In this review, we summarize the current evidence, spanning from field surveillance to laboratory infection studies, supporting their contributions to Lyme borreliae circulation. We also summarize the current understanding of divergent lizard immune responses that may explain the underlying molecular mechanisms to confer Lyme spirochete survival in vertebrate hosts. This review offers a critical perspective on potential enzootic cycles existing between lizard-tick-Borrelia interactions and highlights the importance of an eco-immunology lens for zoonotic pathogen transmission studies.


Assuntos
Ixodes , Lagartos , Doença de Lyme , Animais , Lagartos/microbiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Ixodes/microbiologia , Humanos , Grupo Borrelia Burgdorferi/fisiologia , Grupo Borrelia Burgdorferi/genética , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia
2.
J Bacteriol ; 206(9): e0011624, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39140751

RESUMO

Don't Panic. In the nearly 50 years since the discovery of Lyme disease, Borrelia burgdorferi has emerged as an unlikely workhorse of microbiology. Interest in studying host-pathogen interactions fueled significant progress in making the fastidious microbe approachable in laboratory settings, including the development of culture methods, animal models, and genetic tools. By developing these systems, insight has been gained into how the microbe is able to survive its enzootic cycle and cause human disease. Here, we discuss the discovery of B. burgdorferi and its development as a model organism before diving into the critical lessons we have learned about B. burgdorferi biology at pivotal stages of its lifecycle: gene expression changes during the tick blood meal, colonization of a new vertebrate host, and developing a long-lasting infection in that vertebrate until a new tick feeds. Our goal is to highlight the advancements that have facilitated B. burgdorferi research and identify gaps in our current understanding of the microbe.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Borrelia burgdorferi/genética , Borrelia burgdorferi/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Animais , Humanos , Interações Hospedeiro-Patógeno , Carrapatos/microbiologia
3.
Appl Environ Microbiol ; 90(7): e0082224, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38899883

RESUMO

Borrelia burgdorferi, a Lyme disease spirochete, causes a range of acute and chronic maladies in humans. However, a primary vertebrate reservoir in the United States, the white-footed deermouse Peromyscus leucopus, is reported not to have reduced fitness following infection. Although laboratory strains of Mus musculus mice have successfully been leveraged to model acute human Lyme disease, the ability of these rodents to model B. burgdorferi-P. leucopus interactions remains understudied. Here, we compared infection of P. leucopus with B. burgdorferi B31 with infection of the traditional B. burgdorferi murine models-C57BL/6J and C3H/HeN Mus musculus, which develop signs of inflammation akin to human disease. We find that B. burgdorferi was able to reach much higher burdens (10- to 30-times higher) in multiple M. musculus skin sites and that the overall dynamics of infection differed between the two rodent species. We also found that P. leucopus remained transmissive to larval Ixodes scapularis for a far shorter period than either M. musculus strain. In line with these observations, we found that P. leucopus does launch a modest but sustained inflammatory response against B. burgdorferi in the skin, which we hypothesize leads to reduced bacterial viability and rodent-to-tick transmission in these hosts. Similarly, we also observe evidence of inflammation in infected P. leucopus hearts. These observations provide new insight into reservoir species and the B. burgdorferi enzootic cycle.IMPORTANCEA Lyme disease-causing bacteria, Borrelia burgdorferi, must alternate between infecting a vertebrate host-usually rodents or birds-and ticks. In order to be successful in that endeavor, the bacteria must avoid being killed by the vertebrate host before it can infect a new larval tick. In this work, we examine how B. burgdorferi and one of its primary vertebrate reservoirs, Peromyscus leucopus, interact during an experimental infection. We find that B. burgdorferi appears to colonize its natural host less successfully than conventional laboratory mouse models, which aligns with a sustained seemingly anti-bacterial response by P. leucopus against the microbe. These data enhance our understanding of P. leucopus host-pathogen interactions and could potentially serve as a foundation to uncover ways to disrupt the spread of B. burgdorferi in nature.


Assuntos
Borrelia burgdorferi , Reservatórios de Doenças , Doença de Lyme , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Peromyscus , Animais , Peromyscus/microbiologia , Camundongos , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Doença de Lyme/veterinária , Borrelia burgdorferi/fisiologia , Borrelia burgdorferi/genética , Reservatórios de Doenças/microbiologia , Modelos Animais de Doenças , Ixodes/microbiologia
4.
Appl Environ Microbiol ; 90(9): e0066724, 2024 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-39207157

RESUMO

Tick-borne pathogen emergence is dependent on the abundance and distribution of competent hosts in the environment. Ixodes scapularis ticks are generalist feeders, and their pathogen infection prevalence depends on their relative feeding on local competent and non-competent hosts. The ability to determine what host a larval life stage tick fed on can help predict infection prevalence, emergence, and spread of certain tick-borne pathogens and the risks posed to public health. Here, we use a newly developed genomic target-based technique to detect the source of larval bloodmeals by sampling questing nymphs from Block Island, RI, a small island with a depauperate mammalian community. We used previously designed specific assays to target all known hosts on this island and analyzed ticks for four human pathogenic tick-borne pathogens. We determined the highest proportion of larvae fed on avian species (42.34%), white-footed mice (36.94%), and white-tailed deer (20.72%) and occasionally fed on feral cats, rats, and voles, which are in low abundance on Block Island. Additionally, larvae that had fed on white-footed mice were significantly more likely to be infected with Borrelia burgdorferi and Babesia microti, while larvae that had fed on white-footed mice or white-tailed deer were significantly more likely to be infected with, respectively, mouse- and deer-associated genotypes of Anaplasma phagocytophilum. The ability to detect a nymph's larval host allows for a better understanding of tick feeding behavior, host distribution, pathogen prevalence, and zoonotic risks to humans, which can contribute to better tick management strategies. IMPORTANCE: Tick-borne diseases, such as Lyme disease, babesiosis, and anaplasmosis, pose significant public health burdens. Tick bloodmeal analysis provides a noninvasive sampling method to evaluate tick-host associations and combined with a zoonotic pathogen assay, can generate crucial insights into the epidemiology and transmission of tick-borne diseases by identifying potential key maintenance hosts. We investigated the bloodmeals of questing Ixodes scapularis nymphs. We found that avian hosts, white-footed mice, and white-tailed deer fed the majority of larval ticks and differentially contributed to the prevalence of multiple tick-borne pathogens and pathogen genotypes in a low biodiversity island setting. Unraveling the intricate network of host-vector-pathogen interactions will contribute to improving wildlife management and conservation efforts, to developing targeted surveillance, and vector and host control efforts, ultimately reducing the incidence of tick-borne diseases and improving public health.


Assuntos
Ixodes , Larva , Animais , Ixodes/microbiologia , Ixodes/fisiologia , Larva/microbiologia , Biodiversidade , Borrelia burgdorferi/genética , Borrelia burgdorferi/isolamento & purificação , Borrelia burgdorferi/fisiologia , Interações Hospedeiro-Patógeno , Ninfa/microbiologia , Ninfa/crescimento & desenvolvimento , Humanos , Camundongos , Babesia microti/isolamento & purificação , Babesia microti/genética , Babesia microti/fisiologia , Cervos/parasitologia , Anaplasma phagocytophilum/isolamento & purificação , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/fisiologia , Doença de Lyme/transmissão , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Peromyscus/parasitologia , Aves/parasitologia
5.
Mol Ecol ; 33(16): e17480, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39034651

RESUMO

Recent changes in climate and human land-use have resulted in alterations of the geographic range of many species, including human pathogens. Geographic range expansion and population growth of human pathogens increase human disease risk. Relatively little empirical work has investigated the impact of range changes on within-population variability, a contributor to both colonization success and adaptive potential, during the precise time in which populations are colonized. This is likely due to the difficulties of collecting appropriate natural samples during the dynamic phase of migration and colonization. We systematically collected blacklegged ticks (Ixodes scapularis) across New York State (NY), USA, between 2006 and 2019, a time period coinciding with a rapid range expansion of ticks and their associated pathogens including Borrelia burgdorferi, the etiological agent of Lyme disease. These samples provide a unique opportunity to investigate the population dynamics of human pathogens as they expand into novel territory. We observed that founder effects were short-lived, as gene flow from long-established populations brought almost all B. burgdorferi lineages to newly colonized populations within just a few years of colonization. By 7 years post-colonization, B. burgdorferi lineage frequency distributions were indistinguishable from long-established sites, indicating that local B. burgdorferi populations experience similar selective pressures despite geographic separation. The B. burgdorferi lineage dynamics elucidate the processes underlying the range expansion and demonstrate that migration into, and selection within, newly colonized sites operate on different time scales.


Assuntos
Borrelia burgdorferi , Fluxo Gênico , Ixodes , Doença de Lyme , Dinâmica Populacional , Borrelia burgdorferi/genética , Borrelia burgdorferi/patogenicidade , New York , Animais , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Ixodes/microbiologia , Humanos , Genética Populacional
6.
PLoS Biol ; 19(1): e3001066, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33507921

RESUMO

Lyme disease is common in the northeastern United States, but rare in the southeast, even though the tick vector is found in both regions. Infection prevalence of Lyme spirochetes in host-seeking ticks, an important component to the risk of Lyme disease, is also high in the northeast and northern midwest, but declines sharply in the south. As ticks must acquire Lyme spirochetes from infected vertebrate hosts, the role of wildlife species composition on Lyme disease risk has been a topic of lively academic discussion. We compared tick-vertebrate host interactions using standardized sampling methods among 8 sites scattered throughout the eastern US. Geographical trends in diversity of tick hosts are gradual and do not match the sharp decline in prevalence at southern sites, but tick-host associations show a clear shift from mammals in the north to reptiles in the south. Tick infection prevalence declines north to south largely because of high tick infestation of efficient spirochete reservoir hosts (rodents and shrews) in the north but not in the south. Minimal infestation of small mammals in the south results from strong selective attachment to lizards such as skinks (which are inefficient reservoirs for Lyme spirochetes) in the southern states. Selective host choice, along with latitudinal differences in tick host-seeking behavior and variations in tick densities, explains the geographic pattern of Lyme disease in the eastern US.


Assuntos
Vetores de Doenças , Comportamento de Busca por Hospedeiro/fisiologia , Doença de Lyme/epidemiologia , Animais , Animais Selvagens , Borrelia burgdorferi/fisiologia , Clima , Reservatórios de Doenças/microbiologia , Reservatórios de Doenças/estatística & dados numéricos , Vetores de Doenças/classificação , Geografia , Especificidade de Hospedeiro/fisiologia , Humanos , Lagartos/microbiologia , Doença de Lyme/transmissão , Camundongos , Densidade Demográfica , Prevalência , Ratos , Sciuridae/microbiologia , Musaranhos/microbiologia , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/microbiologia , Infestações por Carrapato/transmissão , Carrapatos/microbiologia , Estados Unidos/epidemiologia
7.
J Therm Biol ; 121: 103853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626664

RESUMO

Warming winters will change patterns of behaviour in temperate and polar arthropods, but we know little about the drivers of winter activity in animals such as ticks. Any changes in behaviour are likely to arise from a combination of both abiotic (e.g. temperature) and biotic (e.g. infection) drivers, and will have important consequences for survival and species interactions. Blacklegged ticks, Ixodes scapularis, have invaded Atlantic Canada and high proportions (30-50%) are infected with the bacteria causing Lyme disease, Borrelia burgdorferi. Infection is correlated with increased overwintering survival of adult females, and ticks are increasingly active in the winter, but it is unclear if infection is associated with activity. Further, we know little about how temperature drives the frequency of winter activity. Here, we exposed wild-caught, adult, female Ixodes scapularis ticks to three different winter temperature regimes (constant low temperatures, increased warming, and increased warming + variability) to determine the thermal and infection conditions that promote or suppress activity. We used automated behaviour monitors to track daily activity in individual ticks and repeated the study with fresh ticks over three years. Following exposure to winter conditions we determined whether ticks were infected with the bacteria B. burgdorferi and if infection was responsible for any patterns in winter activity. Warming conditions promoted increased activity throughout the overwintering period but infection with B. burgdorferi had no impact on the frequency or overall number of ticks active throughout the winter. Individual ticks varied in their levels of activity throughout the winter, such that some were largely dormant for several weeks, while others were active almost daily; however, we do not yet know the drivers behind this individual variation in behaviour. Overall, warming winters will heighten the risk of tick-host encounters.


Assuntos
Borrelia burgdorferi , Ixodes , Estações do Ano , Animais , Ixodes/microbiologia , Ixodes/fisiologia , Borrelia burgdorferi/fisiologia , Feminino , Doença de Lyme/transmissão , Doença de Lyme/microbiologia , Temperatura , Comportamento Animal
8.
PLoS Pathog ; 17(7): e1009801, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324600

RESUMO

Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/crescimento & desenvolvimento , Doença de Lyme/imunologia , Doença de Lyme/transmissão , Tropismo Viral/fisiologia , Animais , Proteínas de Bactérias/metabolismo , Evolução Biológica , Borrelia burgdorferi/genética , Borrelia burgdorferi/imunologia , Fator H do Complemento/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Evasão da Resposta Imune/fisiologia , Camundongos , Codorniz , Especificidade da Espécie , Carrapatos
9.
PLoS Pathog ; 17(2): e1009072, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33600418

RESUMO

Throughout its enzootic cycle, the Lyme disease spirochete Borreliella (Borrelia) burgdorferi, senses and responds to changes in its environment using a small repertoire of transcription factors that coordinate the expression of genes required for infection of Ixodes ticks and various mammalian hosts. Among these transcription factors, the DnaK suppressor protein (DksA) plays a pivotal role in regulating gene expression in B. burgdorferi during periods of nutrient limitation and is required for mammalian infectivity. In many pathogenic bacteria, the gene regulatory activity of DksA, along with the alarmone guanosine penta- and tetra-phosphate ((p)ppGpp), coordinate the stringent response to various environmental stresses, including nutrient limitation. In this study, we sought to characterize the role of DksA in regulating the transcriptional activity of RNA polymerase and its role in the regulation of RpoS-dependent gene expression required for B. burgdorferi infectivity. Using in vitro transcription assays, we observed recombinant DksA inhibits RpoD-dependent transcription by B. burgdorferi RNA polymerase independent of ppGpp. Additionally, we determined the pH-inducible expression of RpoS-dependent genes relies on DksA, but this relationship is independent of (p)ppGpp produced by Relbbu. Subsequent transcriptomic and western blot assays indicate DksA regulates the expression of BBD18, a protein previously implicated in the post-transcriptional regulation of RpoS. Moreover, we observed DksA was required for infection of mice following intraperitoneal inoculation or for transmission of B. burgdorferi by Ixodes scapularis nymphs. Together, these data suggest DksA plays a central role in coordinating transcriptional responses in B. burgdorferi required for infectivity through DksA's interactions with RNA polymerase and post-transcriptional control of RpoS.


Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/fisiologia , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Ixodes/microbiologia , Doença de Lyme/transmissão , Animais , Proteínas de Bactérias/genética , Feminino , Doença de Lyme/microbiologia , Camundongos , Fator sigma/genética , Fator sigma/metabolismo , Estresse Fisiológico
10.
Mol Ecol ; 32(4): 786-799, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36461660

RESUMO

Vector-borne pathogens exist in obligate transmission cycles between vector and reservoir host species. Host and vector shifts can lead to geographic expansion of infectious agents and the emergence of new diseases in susceptible individuals. Three bacterial genospecies (Borrelia afzelii, Borrelia bavariensis, and Borrelia garinii) predominantly utilize two distinct tick species as vectors in Asia (Ixodes persulcatus) and Europe (Ixodes ricinus). Through these vectors, the bacteria can infect various vertebrate groups (e.g., rodents, birds) including humans where they cause Lyme borreliosis, the most common vector-borne disease in the Northern hemisphere. Yet, how and in which order the three Borrelia genospecies colonized each continent remains unclear including the evolutionary consequences of this geographic expansion. Here, by reconstructing the evolutionary history of 142 Eurasian isolates, we found evidence that the ancestors of each of the three genospecies probably have an Asian origin. Even so, each genospecies studied displayed a unique substructuring and evolutionary response to the colonization of Europe. The pattern of allele sharing between continents is consistent with the dispersal rate of the respective vertebrate hosts, supporting the concept that adaptation of Borrelia genospecies to the host is important for pathogen dispersal. Our results highlight that Eurasian Lyme borreliosis agents are all capable of geographic expansion with host association influencing their dispersal; further displaying the importance of host and vector association to the geographic expansion of vector-borne pathogens and potentially conditioning their capacity as emergent pathogens.


Assuntos
Distribuição Animal , Vetores Aracnídeos , Borrelia , Ixodes , Doença de Lyme , Animais , Humanos , Ásia , Borrelia/genética , Borrelia/fisiologia , Grupo Borrelia Burgdorferi/genética , Grupo Borrelia Burgdorferi/fisiologia , Ixodes/microbiologia , Ixodes/fisiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Europa (Continente) , Vetores Aracnídeos/microbiologia , Vetores Aracnídeos/fisiologia , Distribuição Animal/fisiologia , Adaptação Biológica/genética , Adaptação Biológica/fisiologia
11.
Infect Immun ; 89(12): e0033321, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34581605

RESUMO

Borrelia burgdorferi, the causative agent of Lyme disease, has a complex and segmented genome consisting of a small linear chromosome and up to 21 linear and circular plasmids. Some of these plasmids are essential as they carry genes that are critical during the life cycle of the Lyme disease spirochete. Among these is a highly conserved linear plasmid, lp54, which is crucial for the mouse-tick infectious cycle of B. burgdorferi. However, the functions of most lp54-encoded open reading frames (ORFs) remain unknown. In this study, we investigate the contribution of a previously uncharacterized lp54 gene during the infectious cycle of B. burgdorferi. This gene, bba30, is conserved in the Borrelia genus but lacks any identified homologs outside the genus. Homology modeling of BBA30 ORF indicated the presence of a nucleic acid binding motif, helix-turn-helix (HTH), near the amino terminus of the protein, suggesting a putative regulatory function. A previous study reported that spirochetes with a transposon insertion in bba30 exhibited a noninfectious phenotype in mice. In the current study, however, we demonstrate that the highly conserved bba30 gene is not required by the Lyme disease spirochete at any stage of the experimental mouse-tick infectious cycle. We conclude that the undefined circumstances under which bba30 potentially confers a fitness advantage in the natural life cycle of B. burgdorferi are not factors of the experimental infectious cycle that we employ.


Assuntos
Proteínas de Bactérias/genética , Borrelia burgdorferi/genética , Interações Hospedeiro-Patógeno , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Carrapatos/microbiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Sequência Conservada , Modelos Animais de Doenças , Suscetibilidade a Doenças , Camundongos , Fases de Leitura Aberta
12.
Curr Issues Mol Biol ; 42: 97-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33289682

RESUMO

The genus Borrelia consists of evolutionarily and genetically diverse bacterial species that cause a variety of diseases in humans and domestic animals. These vector-borne spirochetes can be classified into two major evolutionary groups, the Lyme borreliosis clade and the relapsing fever clade, both of which have complex transmission cycles during which they interact with multiple host species and arthropod vectors. Molecular, ecological, and evolutionary studies have each provided significant contributions towards our understanding of the natural history, biology and evolutionary genetics of Borrelia species; however, integration of these studies is required to identify the evolutionary causes and consequences of the genetic variation within and among Borrelia species. For example, molecular and genetic studies have identified the adaptations that maximize fitness components throughout the Borrelia lifecycle and enhance transmission efficacy but provide limited insights into the evolutionary pressures that have produced them. Ecological studies can identify interactions between Borrelia species and the vertebrate hosts and arthropod vectors they encounter and the resulting impact on the geographic distribution and abundance of spirochetes but not the genetic or molecular basis underlying these interactions. In this review we discuss recent findings on the evolutionary genetics from both of the evolutionarily distinct clades of Borrelia species. We focus on connecting molecular interactions to the ecological processes that have driven the evolution and diversification of Borrelia species in order to understand the current distribution of genetic and molecular variation within and between Borrelia species.


Assuntos
Borrelia/genética , Evolução Molecular , Variação Genética , Doença de Lyme/microbiologia , Animais , Borrelia/classificação , Aptidão Genética , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão
13.
Curr Issues Mol Biol ; 42: 473-518, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33353871

RESUMO

Lyme disease Borrelia are obligately parasitic, tick- transmitted, invasive, persistent bacterial pathogens that cause disease in humans and non-reservoir vertebrates primarily through the induction of inflammation. During transmission from the infected tick, the bacteria undergo significant changes in gene expression, resulting in adaptation to the mammalian environment. The organisms multiply and spread locally and induce inflammatory responses that, in humans, result in clinical signs and symptoms. Borrelia virulence involves a multiplicity of mechanisms for dissemination and colonization of multiple tissues and evasion of host immune responses. Most of the tissue damage, which is seen in non-reservoir hosts, appears to result from host inflammatory reactions, despite the low numbers of bacteria in affected sites. This host response to the Lyme disease Borrelia can cause neurologic, cardiovascular, arthritic, and dermatologic manifestations during the disseminated and persistent stages of infection. The mechanisms by which a paucity of organisms (in comparison to many other infectious diseases) can cause varied and in some cases profound inflammation and symptoms remains mysterious but are the subjects of diverse ongoing investigations. In this review, we provide an overview of virulence mechanisms and determinants for which roles have been demonstrated in vivo, primarily in mouse models of infection.


Assuntos
Borrelia , Suscetibilidade a Doenças , Doença de Lyme/microbiologia , Animais , Vetores Artrópodes/microbiologia , Borrelia/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/transmissão , Carrapatos/microbiologia , Virulência , Fatores de Virulência/genética
14.
Curr Issues Mol Biol ; 42: 145-190, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33289684

RESUMO

The mammalian host responds to infection with Borrelia spirochetes through a highly orchestrated immune defense involving innate and adaptive effector functions aimed toward limiting pathogen burdens, minimizing tissue injury, and preventing subsequent reinfection. The evolutionary adaptation of Borrelia spirochetes to their reservoir mammalian hosts may allow for its persistence despite this immune defense. This review summarizes our current understanding of the host immune response to B. burgdorferi sensu lato, the most widely studied Borrelia spp. and etiologic agent of Lyme borreliosis. Pertinent literature will be reviewed with emphasis on in vitro, ex vivo and animal studies that influenced our understanding of both the earliest responses to B. burgdorferi as it enters the mammalian host and those that evolve as spirochetes disseminate and establish infection in multiple tissues. Our focus is on the immune response of inbred mice, the most commonly studied animal model of B. burgdorferi infection and surrogate for one of this pathogen's principle natural reservoir hosts, the white-footed deer mouse. Comparison will be made to the immune responses of humans with Lyme borreliosis. Our goal is to provide an understanding of the dynamics of the mammalian immune response during infection with B. burgdorferi and its relation to the outcomes in reservoir (mouse) and non-reservoir (human) hosts.


Assuntos
Infecções por Borrelia/imunologia , Infecções por Borrelia/microbiologia , Borrelia/imunologia , Interações Hospedeiro-Patógeno/imunologia , Animais , Evolução Biológica , Infecções por Borrelia/transmissão , Reservatórios de Doenças , Humanos , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Especificidade de Órgãos/imunologia
15.
Curr Issues Mol Biol ; 42: 191-222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33289681

RESUMO

Lyme disease (LD) is an emerging zoonotic infection that is increasing in incidence in North America, Europe, and Asia. With the development of safe and efficacious vaccines, LD can potentially be prevented. Vaccination offers a cost-effective and safe approach for decreasing the risk of infection. While LD vaccines have been widely used in veterinary medicine, they are not available as a preventive tool for humans. Central to the development of effective vaccines is an understanding of the enzootic cycle of LD, differential gene expression of Borrelia burgdorferi in response to environmental variables, and the genetic and antigenic diversity of the unique bacteria that cause this debilitating disease. Here we review these areas as they pertain to past and present efforts to develop human, veterinary, and reservoir targeting LD vaccines. In addition, we offer a brief overview of additional preventative measures that should employed in conjunction with vaccination.


Assuntos
Vacinas contra Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Doença de Lyme/prevenção & controle , Animais , Borrelia burgdorferi/genética , Borrelia burgdorferi/imunologia , Reservatórios de Doenças/microbiologia , Suscetibilidade a Doenças , Saúde Global , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Vacinas contra Doença de Lyme/administração & dosagem , Vigilância da População , Vacinação
16.
Curr Issues Mol Biol ; 42: 409-454, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33328355

RESUMO

All members of the Borrelia genus that have been examined harbour a linear chromosome that is about 900 kbp in length, as well as a plethora of both linear and circular plasmids in the 5-220 kbp size range. Genome sequences for 27 Lyme disease Borrelia isolates have been determined since the elucidation of the B. burgdorferi B31 genome sequence in 1997. The chromosomes, which carry the vast majority of the housekeeping genes, appear to be very constant in gene content and organization across all Lyme disease Borrelia species. The content of the plasmids, which carry most of the genes that encode the differentially expressed surface proteins that interact with the spirochete's arthropod and vertebrate hosts, is much more variable. Lyme disease Borrelia isolates carry between 7-21 different plasmids, ranging in size from 5-84 kbp. All strains analyzed to date harbor three plasmids, cp26, lp54 and lp17. The plasmids are unusual, as compared to most bacterial plasmids, in that they contain many paralogous sequences, a large number of pseudogenes, and, in some cases, essential genes. In addition, a number of the plasmids have features indicating that they are prophages. Numerous methods have been developed for Lyme disease Borrelia strain typing. These have proven valuable for clinical and epidemiological studies, as well as phylogenomic and population genetic analyses. Increasingly, these approaches have been displaced by whole genome sequencing techniques. Some correlations between genome content and pathogenicity have been deduced, and comparative whole genome analyses promise future progress in this arena.


Assuntos
Borrelia/genética , Genoma Bacteriano , Genômica , Doença de Lyme/microbiologia , Borrelia/classificação , Borrelia/virologia , Suscetibilidade a Doenças , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Tipagem Molecular , Plasmídeos/genética , Prófagos/genética , Sequenciamento Completo do Genoma
17.
Curr Issues Mol Biol ; 42: 333-384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33303701

RESUMO

Lyme disease (Lyme borreliosis) is a tick-borne, zoonosis of adults and children caused by genospecies of the Borrelia burgdorferi sensu lato complex. The ailment, widespread throughout the Northern Hemisphere, continues to increase globally due to multiple environmental factors, coupled with increased incursion of humans into habitats that harbor the spirochete. B. burgdorferi sensu lato is transmitted by ticks from the Ixodes ricinus complex. In North America, B. burgdorferi causes nearly all infections; in Europe, B. afzelii and B. garinii are most associated with human disease. The spirochete's unusual fragmented genome encodes a plethora of differentially expressed outer surface lipoproteins that play a seminal role in the bacterium's ability to sustain itself within its enzootic cycle and cause disease when transmitted to its incidental human host. Tissue damage and symptomatology (i.e., clinical manifestations) result from the inflammatory response elicited by the bacterium and its constituents. The deposition of spirochetes into human dermal tissue generates a local inflammatory response that manifests as erythema migrans (EM), the hallmark skin lesion. If treated appropriately and early, the prognosis is excellent. However, in untreated patients, the disease may present with a wide range of clinical manifestations, most commonly involving the central nervous system, joints, or heart. A small percentage (~10%) of patients may go on to develop a poorly defined fibromyalgia-like illness, post-treatment Lyme disease (PTLD) unresponsive to prolonged antimicrobial therapy. Below we integrate current knowledge regarding the ecologic, epidemiologic, microbiologic, and immunologic facets of Lyme disease into a conceptual framework that sheds light on the disorder that healthcare providers encounter.


Assuntos
Borrelia burgdorferi , Doença de Lyme/microbiologia , Animais , Vetores Artrópodes/microbiologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/crescimento & desenvolvimento , Gerenciamento Clínico , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Humanos , Estágios do Ciclo de Vida , Doença de Lyme/diagnóstico , Doença de Lyme/epidemiologia , Doença de Lyme/transmissão , Especificidade de Órgãos , Carrapatos/microbiologia
18.
Curr Issues Mol Biol ; 42: 223-266, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33300497

RESUMO

Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.


Assuntos
Borrelia burgdorferi/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Doença de Lyme/microbiologia , Transcriptoma , Adaptação Fisiológica , Animais , Vetores Artrópodes/microbiologia , Genes Bacterianos , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/transmissão , Carrapatos/microbiologia
19.
Curr Issues Mol Biol ; 42: 113-144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33289683

RESUMO

Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.


Assuntos
Vetores Aracnídeos/microbiologia , Borrelia burgdorferi , Interações Hospedeiro-Patógeno , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Carrapatos/microbiologia , Animais , Vetores Aracnídeos/crescimento & desenvolvimento , Humanos , Ixodes/microbiologia , Estágios do Ciclo de Vida , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Noroeste dos Estados Unidos/epidemiologia , Carrapatos/crescimento & desenvolvimento
20.
Curr Issues Mol Biol ; 42: 267-306, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33300495

RESUMO

With one exception (epidemic relapsing fever), borreliae are obligately maintained in nature by ticks. Although some Borrelia spp. may be vertically transmitted to subsequent generations of ticks, most require amplification by a vertebrate host because inheritance is not stable. Enzootic cycles of borreliae have been found globally; those receiving the most attention from researchers are those whose vectors have some degree of anthropophily and, thus, cause zoonoses such as Lyme disease or relapsing fever. To some extent, our views on the synecology of the borreliae has been dominated by an applied focus, viz., analyses that seek to understand the elements of human risk for borreliosis. But, the elements of borrelial perpetuation do not necessarily bear upon risk, nor do our concepts of risk provide the best structure for analyzing perpetuation. We identify the major global themes for the perpetuation of borreliae, and summarize local variations on those themes, focusing on key literature to outline the factors that serve as the basis for the distribution and abundance of borreliae.


Assuntos
Borrelia , Febre Recorrente/microbiologia , Animais , Reservatórios de Doenças/microbiologia , Saúde Global , Interações Hospedeiro-Patógeno , Humanos , Doença de Lyme/epidemiologia , Doença de Lyme/microbiologia , Doença de Lyme/transmissão , Vigilância da População , Febre Recorrente/epidemiologia , Febre Recorrente/transmissão , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA