Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 880
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23413, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38243760

RESUMO

Sphingosine-1-phosphate receptor (S1PR) modulators are clinically used to treat relapse-remitting multiple sclerosis (MS) and the early phase of progressive MS when inflammation still prevails. In the periphery, S1PR modulators prevent lymphocyte egress from lymph nodes, hence hampering neuroinflammation. Recent findings suggest a role for S1PR modulation in remyelination. As the Giα-coupled S1P1 subtype is the most prominently expressed S1PR in oligodendrocyte precursor cells (OPCs), selective modulation (functional antagonism) of S1P1 may have direct effects on OPC functionality. We hypothesized that functional antagonism of S1P1 by ponesimod induces remyelination by boosting OPC differentiation. In the cuprizone mouse model of demyelination, we found ponesimod to decrease the latency time of visual evoked potentials compared to vehicle conditions, which is indicative of functional remyelination. In addition, the Y maze spontaneous alternations test revealed that ponesimod reversed cuprizone-induced working memory deficits. Myelin basic protein (MBP) immunohistochemistry and transmission electron microscopy of the corpus callosum revealed an increase in myelination upon ponesimod treatment. Moreover, treatment with ponesimod alone or in combination with A971432, an S1P5 monoselective modulator, significantly increased primary mouse OPC differentiation based on O4 immunocytochemistry. In conclusion, S1P1 functional antagonism by ponesimod increases remyelination in the cuprizone model of demyelination and significantly increases OPC differentiation in vitro.


Assuntos
Cuprizona , Doenças Desmielinizantes , Tiazóis , Camundongos , Animais , Cuprizona/toxicidade , Receptores de Esfingosina-1-Fosfato/metabolismo , Oligodendroglia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Potenciais Evocados Visuais , Diferenciação Celular/fisiologia , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Modelos Animais de Doenças
2.
Brain ; 147(4): 1206-1215, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38085047

RESUMO

Low serum levels of 25-hydroxyvitamin D [25(OH)D] and low sunlight exposure are known risk factors for the development of multiple sclerosis. Add-on vitamin D supplementation trials in established multiple sclerosis have been inconclusive. The effects of vitamin D supplementation to prevent multiple sclerosis is unknown. We aimed to test the hypothesis that oral vitamin D3 supplementation in high-risk clinically isolated syndrome (abnormal MRI, at least three T2 brain and/or spinal cord lesions), delays time to conversion to definite multiple sclerosis, that the therapeutic effect is dose-dependent, and that all doses are safe and well tolerated. We conducted a double-blind trial in Australia and New Zealand. Eligible participants were randomized 1:1:1:1 to placebo, 1000, 5000 or 10 000 international units (IU) of oral vitamin D3 daily within each study centre (n = 23) and followed for up to 48 weeks. Between 2013 and 2021, we enrolled 204 participants. Brain MRI scans were performed at baseline, 24 and 48 weeks. The main study outcome was conversion to clinically definite multiple sclerosis based on the 2010 McDonald criteria defined as either a clinical relapse or new brain MRI T2 lesion development. We included 199 cases in the intention-to-treat analysis based on assigned dose. Of these, 116 converted to multiple sclerosis by 48 weeks (58%). Compared to placebo, the hazard ratios (95% confidence interval) for conversion were 1000 IU 0.87 (0.50, 1.50); 5000 IU 1.37 (0.82, 2.29); and 10 000 IU 1.28 (0.76, 2.14). In an adjusted model including age, sex, latitude, study centre and baseline symptom number, clinically isolated syndrome onset site, presence of infratentorial lesions and use of steroids, the hazard ratios (versus placebo) were 1000 IU 0.80 (0.45, 1.44); 5000 IU 1.36 (0.78, 2.38); and 10 000 IU 1.07 (0.62, 1.85). Vitamin D3 supplementation was safe and well tolerated. We did not demonstrate reduction in multiple sclerosis disease activity by vitamin D3 supplementation after a high-risk clinically isolated syndrome.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Colecalciferol/uso terapêutico , Colecalciferol/efeitos adversos , Calcifediol , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/tratamento farmacológico , Método Duplo-Cego
3.
Neurol Sci ; 45(7): 3061-3068, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38374458

RESUMO

The presence of central nervous system lesions fulfilling the criteria of dissemination in space and time on MRI leads to the diagnosis of a radiologically isolated syndrome (RIS), which may be an early sign of multiple sclerosis (MS). However, some patients who do not fulfill the necessary criteria for RIS still evolve to MS, and some T2 hyperintensities that resemble demyelinating lesions may originate from mimics. In light of the recent recognition of the efficacy of disease-modifying therapy (DMT) in RIS, it is relevant to consider additional imaging features that are more specific of MS. We performed a narrative review on cortical lesions (CL), the central vein sign (CVS), and paramagnetic rim lesions (PRL) in patients with RIS. In previous RIS studies, the reported prevalence of CLs ranges between 20.0 and 40.0%, CVS + white matter lesions (WMLs) between 87.0 and 93.0% and PRLs between 26.7 and 63.0%. Overall, these imaging findings appear to be frequent in RIS cohorts, although not consistently taken into account in previous studies. The search for CLs, CVS + WML and PRLs in RIS patients could lead to earlier identification of patients who will evolve to MS and benefit from DMTs.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Imageamento por Ressonância Magnética/métodos , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/tratamento farmacológico , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
4.
Inflammopharmacology ; 32(1): 809-823, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177566

RESUMO

The treatment of immunomodulation in multiple sclerosis (MS) can alleviate the severity and relapses. However, it cannot improve the neurological disability of patients due to a lack of myelin protection and regeneration. Therefore, remyelinating therapies may be one of the feasible strategies that can prevent axonal degeneration and restore neurological disability. Natural product icariin (ICA) is a flavonol compound extracted from epimedium flavonoids, which has neuroprotective effects in several models of neurological diseases. Here, we attempt to explore whether ICA has the potential to treat demyelination and its possible mechanisms of action using lipopolysaccharide-treated BV2 microglia, primary microglia, bone marrow-derived macrophages, and cuprizone-induced demyelination model. The indicators of oxidative stress and inflammatory response were evaluated using commercial kits. The results showed that ICA significantly reduced the levels of oxidative intermediates nitric oxide, hydrogen peroxide, malondialdehyde, and inflammatory cytokines TNF-α, IL-1ß, and increased the levels of antioxidants superoxide dismutase, catalase, glutathione peroxidase, and anti-inflammatory cytokines IL-10 and TGF-ß in vitro cell experiments. In vivo demyelination model, ICA significantly alleviated the behavioral abnormalities and enhanced the integrated optical density/mm2 of Black Gold II and myelin basic protein myelin staining, accompanied by the inhibition of oxidative stress/inflammatory response. Immunohistochemical staining showed that ICA significantly induced the expression of nuclear factor erythroid derived 2/heme oxygenase-1 (Nrf2/HO-1) and inhibited the expression of toll-like receptor 4/ nuclear factor kappa B (TLR4/NF-κB), which are two key signaling pathways in antioxidant and anti-inflammatory processes. Our results strongly suggest that ICA may be used as a potential agent to treat demyelination via regulating Nrf2/HO-1-mediated antioxidative stress and TLR4/NF-κB-mediated inflammatory responses.


Assuntos
Antioxidantes , Doenças Desmielinizantes , Flavonoides , Humanos , Antioxidantes/farmacologia , Cuprizona/farmacologia , Receptor 4 Toll-Like , NF-kappa B , Fator 2 Relacionado a NF-E2 , Anti-Inflamatórios/farmacologia , Citocinas , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico
5.
Inflammopharmacology ; 32(2): 1295-1315, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38512652

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system that injures the myelin sheath, provoking progressive axonal degeneration and functional impairments. No efficient therapy is available at present to combat such insults, and hence, novel safe and effective alternatives for MS therapy are extremely required. Rutin (RUT) is a flavonoid that exhibits antioxidant, anti-inflammatory, and neuroprotective effects in several brain injuries. The present study evaluated the potential beneficial effects of two doses of RUT in a model of pattern-III lesion of MS, in comparison to the conventional standard drug; dimethyl fumarate (DMF). Demyelination was induced in in male adult C57BL/6 mice by dietary 0.2% (w/w) cuprizone (CPZ) feeding for 6 consecutive weeks. Treated groups received either oral RUT (50 or 100 mg/kg) or DMF (15 mg/kg), along with CPZ feeding, for 6 consecutive weeks. Mice were then tested for behavioral changes, followed by biochemical analyses and histological examinations of the corpus callosum (CC). Results revealed that CPZ caused motor dysfunction, demyelination, and glial activation in demyelinated lesions, as well as significant oxidative stress, and proinflammatory cytokine elevation. Six weeks of RUT treatment significantly improved locomotor activity and motor coordination. Moreover, RUT considerably improved remyelination in the CC of CPZ + RUT-treated mice, as revealed by luxol fast blue staining and transmission electron microscopy. Rutin also significantly attenuated CPZ-induced oxidative stress and inflammation in the CC of tested animals. The effect of RUT100 was obviously more marked than either that of DMF, regarding most of the tested parameters, or even its smaller tested dose. In silico docking revealed that RUT binds tightly within NF-κB at the binding site of the protein-DNA complex, with a good negative score of -6.79 kcal/mol. Also, RUT-Kelch-like ECH-associated protein 1 (Keap1) model clarifies the possible inhibition of Keap1-Nrf2 protein-protein interaction. Findings of the current study provide evidence for the protective effect of RUT in CPZ-induced demyelination and behavioral dysfunction in mice, possibly by modulating NF-κB and Nrf2 signaling pathways. The present study may be one of the first to indicate a pro-remyelinating effect for RUT, which might represent a potential additive benefit in treating MS.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Masculino , Animais , Camundongos , Esclerose Múltipla/induzido quimicamente , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Cuprizona/efeitos adversos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , NF-kappa B/metabolismo , Rutina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
6.
Med Princ Pract ; 33(3): 198-214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38350432

RESUMO

Myelin plays a pivotal role in the efficient transmission of nerve impulses. Disruptions in myelin integrity are associated with numerous neurological disorders, including multiple sclerosis. In the central nervous system (CNS), myelin is formed by oligodendrocytes. Remyelination refers to the re-formation of the damaged myelin sheath by newly formed oligodendrocytes. Steroids have gained attention for their potential modulatory effects on myelin in both health and disease. Steroids are traditionally associated with endocrine functions, but their local synthesis within the nervous system has generated significant interest. The term "neuroactive steroids" refers to steroids that can act on cells of the nervous system. In the healthy state, neuroactive steroids promote myelin formation, maintenance, and repair by enhancing oligodendrocyte differentiation and maturation. In pathological conditions, such as demyelination injury, multiple neuroactive steroids have shown promise in promoting remyelination. Understanding the effects of neuroactive steroids on myelin could lead to novel therapeutic approaches for demyelinating diseases and neurodegenerative disorders. This review highlights the potential therapeutic significance of neuroactive steroids in myelin-related health and diseases. We review the synthesis of steroids by neurons and glial cells and discuss the roles of neuroactive steroids on myelin structure and function in health and disease. We emphasize the potential promyelinating effects of the varying levels of neuroactive steroids during different female physiological states such as the menstrual cycle, pregnancy, lactation, and postmenopause.


Assuntos
Bainha de Mielina , Humanos , Bainha de Mielina/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Doenças Desmielinizantes/tratamento farmacológico , Neuroesteroides , Esclerose Múltipla/tratamento farmacológico , Feminino , Gravidez , Animais
7.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 487-494, 2024 Jun 18.
Artigo em Zh | MEDLINE | ID: mdl-38864135

RESUMO

OBJECTIVE: To unveil the pathological changes associated with demyelination in schizophrenia (SZ) and its consequential impact on interstitial fluid (ISF) drainage, and to investigate the therapeutic efficacy of ursolic acid (UA) in treating demyelination and the ensuing abnormalities in ISF drainage in SZ. METHODS: Female C57BL/6J mice, aged 6-8 weeks and weighing (20±2) g, were randomly divided into three groups: control, SZ model, and UA treatment. The control group received intraperitoneal injection (ip) of physiological saline and intragastric administration (ig) of 1% carboxymethylcellulose sodium (CMC-Na). The SZ model group was subjected to ip injection of 2 mg/kg dizocilpine maleate (MK-801) and ig administration of 1% CMC-Na. The UA treatment group underwent ig administration of 25 mg/kg UA and ip injection of 2 mg/kg MK-801. The treatment group received UA pretreatment via ig administration for one week, followed by a two-week drug intervention for all the three groups. Behavioral assessments, including the open field test and prepulse inhibition experiment, were conducted post-modeling. Subsequently, changes in the ISF partition drainage were investigated through fluorescent tracer injection into specific brain regions. Immunofluorescence analysis was employed to examine alterations in aquaporin 4 (AQP4) polarity distribution in the brain and changes in protein expression. Myelin reflex imaging using Laser Scanning Confocal Microscopy (LSCM) was utilized to study modifications in myelin within the mouse brain. Quantitative data underwent one-way ANOVA, followed by TukeyHSD for post hoc pairwise comparisons between the groups. RESULTS: The open field test revealed a significantly longer total distance [(7 949.39±1 140.55) cm vs. (2 831.01±1 212.72) cm, P < 0.001] and increased central area duration [(88.43±22.06) s vs. (56.85±18.58) s, P=0.011] for the SZ model group compared with the controls. The UA treatment group exhibited signifi-cantly reduced total distance [(2 415.80±646.95) cm vs. (7 949.39±1 140.55) cm, P < 0.001] and increased central area duration [(54.78±11.66) s vs. (88.43±22.06) s, P=0.007] compared with the model group. Prepulse inhibition test results demonstrated a markedly lower inhibition rate of the startle reflex in the model group relative to the controls (P < 0.001 for both), with the treatment group displaying significant improvement (P < 0.001 for both). Myelin sheath analysis indicated significant demyelination in the model group, while UA treatment reversed this effect. Fluorescence tracing exhibited a significantly larger tracer diffusion area towards the rostral cortex and reflux area towards the caudal thalamus in the model group relative to the controls [(13.93±3.35) mm2 vs. (2.79±0.94) mm2, P < 0.001 for diffusion area; (2.48±0.38) mm2 vs. (0.05±0.12) mm2, P < 0.001 for reflux area], with significant impairment of drainage in brain regions. The treatment group demonstrated significantly reduced tracer diffusion and reflux areas [(7.93±2.48) mm2 vs. (13.93±3.35) mm2, P < 0.001 for diffusion area; (0.50±0.30) mm2 vs. (2.48±0.38) mm2, P < 0.001 for reflux area]. Immunofluorescence staining revealed disrupted AQP4 polarity distribution and reduced AQP4 protein expression in the model group compared with the controls [(3 663.88±733.77) µm2 vs. (13 354.92±4 054.05) µm2, P < 0.001]. The treatment group exhibited restored AQP4 polarity distribution and elevated AQP4 protein expression [(11 104.68±3 200.04) µm2 vs. (3 663.88±733.77) µm2, P < 0.001]. CONCLUSION: UA intervention ameliorates behavioral performance in SZ mice, Thus alleviating hyperactivity and anxiety symptoms and restoring sensorimotor gating function. The underlying mechanism may involve the improvement of demyelination and ISF drainage dysregulation in SZ mice.


Assuntos
Doenças Desmielinizantes , Modelos Animais de Doenças , Líquido Extracelular , Camundongos Endogâmicos C57BL , Esquizofrenia , Triterpenos , Ácido Ursólico , Animais , Camundongos , Triterpenos/uso terapêutico , Triterpenos/farmacologia , Esquizofrenia/tratamento farmacológico , Feminino , Doenças Desmielinizantes/tratamento farmacológico , Líquido Extracelular/efeitos dos fármacos , Líquido Extracelular/metabolismo , Maleato de Dizocilpina , Aquaporina 4/metabolismo
8.
Glia ; 71(6): 1402-1413, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36762504

RESUMO

Oligodendrocytes are highly specialized glial cells characterized by their production of multilayer myelin sheaths that wrap axons to speed up action potential propagation. It is due to their specific role in supporting axons that impairment of myelin structure and function leads to debilitating symptoms in a wide range of degenerative diseases, including Multiple Sclerosis and Leukodystrophies. It is known that myelin damage can be receptor-mediated and recently oligodendrocytes have been shown to express Ca2+ -permeable Transient Receptor Potential Ankyrin-1 (TRPA1) channels, whose activation can result in myelin damage in ischemia. Here, we show, using organotypic cortical slice cultures, that TRPA1 activation, by TRPA1 agonists JT010 and Carvacrol for varying lengths of time, induces myelin damage. Although TRPA1 activation does not appear to affect oligodendrocyte progenitor cell number or proliferation, it prevents myelin formation and after myelination causes internodal shrinking and significant myelin degradation. This does not occur when the TRPA1 antagonist, A967079, is also applied. Of note is that when TRPA1 agonists are applied for either 24 h, 3 days or 7 days, axon integrity appears to be preserved while mature myelinated oligodendrocytes remain but with significantly shortened internodes. These results provide further evidence that TRPA1 inhibition could be protective in demyelination diseases and a promising therapy to prevent demyelination and promote remyelination.


Assuntos
Anquirinas , Doenças Desmielinizantes , Humanos , Anquirinas/metabolismo , Bainha de Mielina/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Oligodendroglia/metabolismo , Neuroglia/metabolismo , Canal de Cátion TRPA1/metabolismo
9.
Neurobiol Dis ; 177: 105988, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603746

RESUMO

CXC chemokine receptor 2 (CXCR2) plays an important role in demyelinating diseases, but the detailed mechanisms were not yet clarified. In the present study, we mainly investigated the critical function and the potential molecular mechanisms of CXCR2 on oligodendrocyte precursor cell (OPC) differentiation and remyelination. The present study demonstrated that inhibiting CXCR2 significantly enhanced OPC differentiation and remyelination in primary cultured OPCs and ethidium bromide (EB)-intoxicated rats by facilitating the formation of myelin proteins, including PDGFRα, MBP, MAG, MOG, and Caspr. Further investigation identified phosphodiesterase 10A (PDE10A) as a main downstream protein of CXCR2, interacting with the receptor to regulate OPC differentiation, in that inhibition of CXCR2 reduced PDE10A expression while suppression of PDE10A did not affect CXCR2. Furthermore, inhibition of PDE10A promoted OPC differentiation, whereas overexpression of PDE10A down-regulated OPC differentiation. Our data also revealed that inhibition of CXCR2/PDE10A activated the cAMP/ERK1/2 signaling pathway, and up-regulated the expression of key transcription factors, including SOX10, OLIG2, MYRF, and ZFP24, that ultimately promoted remyelination and myelin protein biosynthesis. In conclusion, our findings suggested that inhibition of CXCR2 promoted OPC differentiation and enhanced remyelination by regulating PDE10A/cAMP/ERK1/2 signaling pathway. The present data also highlighted that CXCR2 may serve as a potential target for the treatment of demyelination diseases.


Assuntos
Doenças Desmielinizantes , Remielinização , Ratos , Animais , Camundongos , Remielinização/fisiologia , Receptores de Interleucina-8B/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Transdução de Sinais , Diferenciação Celular/fisiologia , Camundongos Endogâmicos C57BL , Diester Fosfórico Hidrolases/metabolismo
10.
J Neuroinflammation ; 20(1): 83, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966295

RESUMO

Multiple sclerosis (MS) is an inflammatory-mediated demyelinating disease of the central nervous system (CNS). Although studies have demonstrated that microglia facilitate remyelination in demyelinating diseases, the underlying mechanisms are still not fully characterized. We found that aryl hydrocarbon receptor (AhR), an environment sensor, was upregulated within the corpus callosum in the cuprizone model of CNS demyelination, and upregulated AhR was mainly confined to microglia. Deletion of AhR in adult microglia inhibited efficient remyelination. Transcriptome analysis using RNA-seq revealed that AhR-deficient microglia displayed impaired gene expression signatures associated with lysosome and phagocytotic pathways. Furthermore, AhR-deficient microglia showed impaired clearance of myelin debris and defected phagocytic capacity. Further investigation of target genes of AhR revealed that spleen tyrosine kinase (SYK) is the downstream effector of AhR and mediated the phagocytic capacity of microglia. Additionally, AhR deficiency in microglia aggravated CNS inflammation during demyelination. Altogether, our study highlights an essential role for AhR in microglial phagocytic function and suggests the therapeutic potential of AhR in demyelinating diseases.


Assuntos
Doenças Desmielinizantes , Receptores de Hidrocarboneto Arílico , Remielinização , Animais , Camundongos , Corpo Caloso/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Bainha de Mielina/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Remielinização/fisiologia
11.
Neurochem Res ; 48(7): 2138-2147, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36808020

RESUMO

Cuprizone causes consistent demyelination and oligodendrocyte damage in the mouse brain. Cu,Zn-superoxide dismutase 1 (SOD1) has neuroprotective potential against various neurological disorders, such as transient cerebral ischemia and traumatic brain injury. In this study, we investigated whether SOD1 has neuroprotective effects against cuprizone-induced demyelination and adult hippocampal neurogenesis in C57BL/6 mice, using the PEP-1-SOD1 fusion protein to facilitate the delivery of SOD1 protein into hippocampal neurons. Eight weeks feeding of cuprizone-supplemented (0.2%) diets caused a significant decrease in myelin basic protein (MBP) expression in the stratum lacunosum-moleculare of the CA1 region, the polymorphic layer of the dentate gyrus, and the corpus callosum, while ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia showed activated and phagocytic phenotypes. In addition, cuprizone treatment reduced proliferating cells and neuroblasts as shown using Ki67 and doublecortin immunostaining. Treatment with PEP-1-SOD1 to normal mice did not show any significant changes in MBP expression and Iba-1-immunoreactive microglia. However, Ki67-positive proliferating cells and doublecortin-immunoreactive neuroblasts were significantly decreased. Simultaneous treatment with PEP-1-SOD1 and cuprizone-supplemented diets did not ameliorate the MBP reduction in these regions, but mitigated the increase of Iba-1 immunoreactivity in the corpus callosum and alleviated the reduction of MBP in corpus callosum and proliferating cells, not neuroblasts, in the dentate gyrus. In conclusion, PEP-1-SOD1 treatment only has partial effects to reduce cuprizone-induced demyelination and microglial activation in the hippocampus and corpus callosum and has minimal effects on proliferating cells in the dentate gyrus.


Assuntos
Cuprizona , Doenças Desmielinizantes , Animais , Camundongos , Cuprizona/toxicidade , Superóxido Dismutase-1/metabolismo , Microglia/metabolismo , Antígeno Ki-67/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/genética , Camundongos Endogâmicos C57BL , Hipocampo/metabolismo , Neurogênese , Corpo Caloso , Proteínas do Domínio Duplacortina , Zinco/metabolismo , Modelos Animais de Doenças
12.
Acta Pharmacol Sin ; 44(4): 766-779, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36229601

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel that is activated by capsaicin (CAP), the main component of chili pepper. Despite studies in several neurological diseases, the role of TRPV1 in demyelinating diseases remains unknown. Herein, we reported that TRPV1 expression was increased within the corpus callosum during demyelination in a cuprizone (CPZ)-induced demyelination mouse model. TRPV1 deficiency exacerbated motor coordinative dysfunction and demyelination in CPZ-treated mice, whereas the TRPV1 agonist CAP improved the behavioral performance and facilitated remyelination. TRPV1 was predominantly expressed in Iba1+ microglia/macrophages in human brain sections of multiple sclerosis patients and mouse corpus callosum under demyelinating conditions. TRPV1 deficiency decreased microglial recruitment to the corpus callosum, with an associated increase in the accumulation of myelin debris. Conversely, the activation of TRPV1 by CAP enhanced the recruitment of microglia to the corpus callosum and potentiated myelin debris clearance. Using real-time live imaging we confirmed an increased phagocytic function of microglia following CAP treatment. In addition, the expression of the scavenger receptor CD36 was increased, and that of the glycolysis regulators Hif1a and Hk2 was decreased. We conclude that TRPV1 is an important regulator of microglial function in the context of demyelination and may serve as a promising therapeutic target for demyelinating diseases such as multiple sclerosis.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Humanos , Camundongos , Cuprizona , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Canais de Cátion TRPV , Capsaicina/farmacologia
13.
Proc Natl Acad Sci U S A ; 117(35): 21527-21535, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817520

RESUMO

Given the known neuroreparative actions of IL-33 in experimental models of central nervous system (CNS) injury, we predicted that compounds which induce IL-33 are likely to promote remyelination. We found anacardic acid as a candidate molecule to serve as a therapeutic agent to promote remyelination. Addition of anacardic acid to cultured oligodendrocyte precursor cells (OPCs) rapidly increased expression of myelin genes and myelin proteins, suggesting a direct induction of genes involved in myelination by anacardic acid. Also, when added to OPCs, anacardic acid resulted in the induction of IL-33. In vivo, treatment of with anacardic acid in doses which ranged from 0.025 mg/kg to 2.5 mg/kg, improved pathologic scores in experimental allergic encephalitis (EAE) and in the cuprizone model of demyelination/remyelination. Electron microscopic studies performed in mice fed with cuprizone and treated with anacardic acid showed lower g-ratio scores when compared to controls, suggesting increased remyelination of axons. In EAE, improvement in paralytic scores was seen when the drug was given prior to or following the onset of paralytic signs. In EAE and in the cuprizone model, areas of myelin loss, which are likely to remyelinate, was associated with a greater recruitment of IL-33-expressing OPCs in mice which received anacardic acid when compared to controls.


Assuntos
Ácidos Anacárdicos/farmacologia , Interleucina-33/biossíntese , Remielinização/efeitos dos fármacos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Feminino , Interleucina-33/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Células-Tronco/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-36775342

RESUMO

Intravenous immunoglobulin (IVIg) has been used to treat inflammatory demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barré syndrome, and multifocal motor neuropathy. Despite studies demonstrating the clinical effectiveness of IVIg, the mechanisms underlying its effects remain to be elucidated in detail. Herein, we examined the effects of IVIg on lysolecithin-induced demyelination of the sciatic nerve in a mouse model. Mice -administered with IVIg 1 and 3 days post-injection (dpi) of lysolecithin -exhibited a significantly decreased demyelination area at 7 dpi. Immunoblotting analysis using two different preparations revealed that IVIg reacted with a 36-kDa membrane glycoprotein in the sciatic nerve. Subsequent analyses of peptide absorption identified the protein as a myelin protein in the peripheral nervous system (PNS) known as large myelin protein zero (L-MPZ). Moreover, injected IVIg penetrated the demyelinating lesion, leading to deposition on L-MPZ in the myelin debris. These results indicate that IVIg may modulate PNS demyelination, possibly by binding to L-MPZ on myelin debris.


Assuntos
Doenças Desmielinizantes , Imunoglobulinas Intravenosas , Camundongos , Animais , Imunoglobulinas Intravenosas/farmacologia , Imunoglobulinas Intravenosas/uso terapêutico , Proteína P0 da Mielina/metabolismo , Lisofosfatidilcolinas/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo
15.
Molecules ; 28(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570807

RESUMO

Myelin repair, which is known as remyelination, is critical to the treatment of neurodegenerative diseases, and myelination depends on not only the differentiation of oligodendrocyte precursor cells toward oligodendrocytes but also the renewal of oligodendrocyte precursor cells under pathological conditions. However, simultaneously promoting the differentiation and proliferation of oligodendrocyte precursor cells in lesions remains an unmet challenge and might affect demyelinating diseases. Kidney-tonifying herbs of traditional Chinese medicine (TCM) are effective in improving the symptoms of degenerative patients. However, herbs or compounds with dual functions are unverified. The purpose of this study was to find a kidney-tonifying TCM that synchronously improved the differentiation and proliferation of oligodendrocyte precursor cells under pathological conditions. Compounds with dual functions were screened from highly frequently used kidney-tonifying TCM, and the effects of the obtained compound on remyelination were investigated in an in vitro oligodendrocyte precursor cell differentiation model under pathological conditions and in demyelinating mice in vivo. The compound icaritin, which is an active component of Yin-Yang-Huo (the leaves of Epimedium brevicornu Maxim), demonstrated multiple effects on the remyelination process, including enhancing oligodendrocyte precursor cell proliferation, facilitating the differentiation of neural progenitor cells toward oligodendrocyte precursor cells and further toward oligodendrocytes, and maturation of oligodendrocytes under corticosterone- or glutamate-induced pathological conditions. Importantly, icaritin effectively rescued behavioral functions and increased the formation of myelin in a cuprizone-induced demyelination mouse model. The multiple effects of icaritin make it a promising lead compound for remyelination therapy.


Assuntos
Doenças Desmielinizantes , Células Precursoras de Oligodendrócitos , Camundongos , Animais , Células Precursoras de Oligodendrócitos/patologia , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/patologia , Diferenciação Celular , Proliferação de Células , Camundongos Endogâmicos C57BL
16.
J Neurochem ; 160(6): 643-661, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34935149

RESUMO

Multiple sclerosis (MS), especially in its progressive phase, involves early axonal and neuronal damage resulting from a combination of inflammatory mediators, demyelination, and loss of trophic support. During progressive disease stages, a microenvironment is created within the central nervous system (CNS) favoring the arrival and retention of inflammatory cells. Active demyelination and neurodegeneration have also been linked to microglia (MG) and astrocyte (AST)-activation in early lesions. While reactive MG can damage tissue, exacerbate deleterious effects, and contribute to neurodegeneration, it should be noted that activated MG possess neuroprotective functions as well, including debris phagocytosis and growth factor secretion. The progressive form of MS can be modeled by the prolonged administration to cuprizone (CPZ) in adult mice, as CPZ induces highly reproducible demyelination of different brain regions through oligodendrocyte (OLG) apoptosis, accompanied by MG and AST activation and axonal damage. Therefore, our goal was to evaluate the effects of a reduction in microglial activation through orally administered brain-penetrant colony-stimulating factor-1 receptor (CSF-1R) inhibitor BLZ945 (BLZ) on neurodegeneration and its correlation with demyelination, astroglial activation, and behavior in a chronic CPZ-induced demyelination model. Our results show that BLZ treatment successfully reduced the microglial population and myelin loss. However, no correlation was found between myelin preservation and neurodegeneration, as axonal degeneration was more prominent upon BLZ treatment. Concomitantly, BLZ failed to significantly offset CPZ-induced astroglial activation and behavioral alterations. These results should be taken into account when proposing the modulation of microglial activation in the design of therapies relevant for demyelinating diseases. Cover Image for this issue: https://doi.org/10.1111/jnc.15394.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Animais , Fatores Estimuladores de Colônias/efeitos adversos , Fatores Estimuladores de Colônias/metabolismo , Cuprizona/metabolismo , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo
17.
Mult Scler ; 28(3): 453-462, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34595962

RESUMO

BACKGROUND: Combined central and peripheral demyelination (CCPD) is a disease of inflammatory demyelination that affects central and peripheral nerves simultaneously or temporally separated. OBJECTIVES: This study evaluated the clinical characteristics and the existence of antinodal/paranodal antibodies in patients with CCPD. METHODS: We reviewed the clinical manifestations, laboratory tests, electrophysiological examinations, neuroimaging findings, treatment, and prognosis of 31 patients with CCPD. Using a live cell-based assay, we tested antinodal/paranodal antibodies. RESULTS: The most common symptoms were motor weakness (83.3%), hyporeflexia (63.3%), and sphincter disturbance (58.1%). In total, 16.6% of patients had impaired vision symptoms, whereas 33.3% of patients had abnormal visual-evoked potentials (VEPs). A total of 21.1% (4/19) of patients were positive for anti-AQP4 (aquaporin 4) antibodies, 20.0% (2/10) of patients were positive for anti-NF155 (neurofascin-155) antibodies, and 10.0% (1/10) of patients were positive for anti-MAG (myelin-associated glycoprotein) antibodies. The effective rates of intravenous corticosteroids, intravenous immunoglobulins, and rituximab were 72.2%, 37.5%, and 100%, respectively. At the illness peak, 75% of patients with CCPD had an mRS (modified Rankin Scale) score of 4 or greater. In remission, 37.5% had an mRS score of 4 or greater. CONCLUSION: The clinical manifestations of patients with CCPD are highly heterogeneous. We recommend testing antinodal/paranodal antibodies for patients with CCPD.


Assuntos
Autoanticorpos , Doenças Desmielinizantes , Doenças Desmielinizantes/tratamento farmacológico , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Prognóstico , Rituximab
18.
Mult Scler ; 28(13): 2081-2089, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35848622

RESUMO

BACKGROUND: In the trial of Minocycline in Clinically Isolated Syndrome (MinoCIS), minocycline significantly reduced the risk of conversion to clinically definite multiple sclerosis (CDMS). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) are emerging biomarkers in MS, and minocycline modulates matrix metalloproteinases (MMPs). OBJECTIVE: To assess the value of blood NfL and GFAP as a biomarker of baseline and future disease activity and its utility to monitor treatment response in minocycline-treated patients with clinically isolated syndrome (CIS). METHODS: We measured NfL, GFAP, and MMPs in blood samples from 96 patients with CIS from the MinoCIS study and compared biomarkers with clinical and radiologic characteristics and outcome. RESULTS: At baseline, NfL levels correlated with T2 lesion load and number of gadolinium-enhancing lesions. Baseline NfL levels predicted conversion into CDMS at month 6. GFAP levels at baseline were correlated with T2 lesion volume. Minocycline treatment significantly increased NfL levels at 3 months but not at 6 months, and decreased GFAP levels at month 6. Minocycline decreased MMP-7 concentrations at month 1. DISCUSSION: Blood NfL levels are associated with measures of disease activity in CIS and have prognostic value. Minocycline increased NfL levels at month 3, but reduced GFAP and MMP-7 levels.


Assuntos
Doenças Desmielinizantes , Esclerose Múltipla , Biomarcadores , Doenças Desmielinizantes/tratamento farmacológico , Gadolínio , Proteína Glial Fibrilar Ácida , Humanos , Filamentos Intermediários , Metaloproteinase 7 da Matriz , Minociclina/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Proteínas de Neurofilamentos
19.
Can J Physiol Pharmacol ; 100(2): 107-116, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34935529

RESUMO

Demyelination disorder is an unusual pathologic event, which occurs in the central nervous system (CNS). Multiple sclerosis (MS) is an inflammatory demyelinating disease that affects the CNS, and it is the leading cause of disability in young adults. Lysolecithin (LPC) is one of the best toxin-induced demyelination models. In this study, a suitable model is created, and the effect of fluoxetine treatment is examined on this model. In this case, it was assumed that daily fluoxetine treatment had increased the endogenous remyelination in the LPC model. This study was focused on investigating the influence of the fluoxetine dose of 5 or 10 mg/kg per day for 1 and 4 weeks on LPC-induced neurotoxicity in the corpus callosum region. It was performed as a demyelinating model in male Wistar rats. After 3 days, fluoxetine was injected intraperitoneally (5 or 10 mg/kg per day) for 1 and 4 weeks in each group. After completing the treatment course, the corpus callosum was removed to examine the gene expression and histological analysis was performed. The results of the histopathological study of hematoxylin and eosin staining of the corpus callosum showed that in 1 and 4-week treatment groups, fluoxetine has reduced the level of inflammation at the LPC injection site (5 and 10 mg/kg per day). Fluoxetine treatment in the luxol fast blue (LFB) staining of the corpus callosum has been led to an increase in myelination capacity in all doses and times. The results of the genetic study showed that the fluoxetine has significantly reduced the expression level of tumor necrosis factor-α, nuclear factor κß, and induced nitric oxide synthase in comparison with the untreated LPC group. Also, the fluoxetine treatment has enhanced the expression level of the forkhead box P3 (FOXP3) gene in comparison with the untreated group. Fluoxetine has increased the expression level of myelination and neurotrophic genes such as myelin basic protein (MBP), oligodendrocyte transcription factor 2 (OLIG2), and brain-derived neurotrophic factor (BDNF). The outcomes demonstrated that fluoxetine reduces inflammation and strengthens the endogenous myelination in the LPC-induced demyelination model; however, supplementary studies are required for specifying the details of its mechanisms.


Assuntos
Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Modelos Animais de Doenças , Fluoxetina/uso terapêutico , Lisofosfatidilcolinas/efeitos adversos , Lisofosfatidilcolinas/toxicidade , Ratos Wistar , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Fluoxetina/administração & dosagem , Fluoxetina/farmacologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica/efeitos dos fármacos , Masculino , Proteína Básica da Mielina/genética , Proteína Básica da Mielina/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
20.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142668

RESUMO

Maintaining the normal function of oligodendrocyte precursor cells (OPCs) and protecting OPCs from damage is the basis of myelin regeneration in multiple sclerosis (MS). In this paper, we investigated the effect of stemazole, a novel small molecule, on the promotion of oligodendrocyte precursor cell survival and remyelination. The results show that stemazole enhanced the survival rate and the number of clone formation in a dose-dependent manner and decreased the percentage of cell apoptosis. In particular, the number of cell clones was increased up to 6-fold (p < 0.001) in the stemazole group compared with the control group. In vivo, we assessed the effect of stemazole on recovering the motor dysfunction and demyelination induced by cuprizone (CPZ). The results show that stemazole promoted the recovery of motor dysfunction and the repair of myelin sheaths. Compared with the CPZ group, the stemazole group showed a 30.46% increase in the myelin area (p < 0.001), a 37.08% increase in MBP expression (p < 0.01), and a 1.66-fold increase in Olig2 expression (p < 0.001). Histologically, stemazole had a better effect than the positive control drugs. In conclusion, stemazole promoted OPC survival in vitro and remyelination in vivo, suggesting that this compound may be used as a therapeutic agent against demyelinating disease.


Assuntos
Doenças Desmielinizantes , Células Precursoras de Oligodendrócitos , Remielinização , Animais , Diferenciação Celular , Cuprizona/efeitos adversos , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Modelos Animais de Doenças , Hidrazinas , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Oxidiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA