Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 441
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 20(12): 1644-1655, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31636468

RESUMO

Invariant natural killer T (iNKT) cells recognize activating self and microbial lipids presented by CD1d. CD1d can also bind non-activating lipids, such as sphingomyelin. We hypothesized that these serve as endogenous regulators and investigated humans and mice deficient in acid sphingomyelinase (ASM), an enzyme that degrades sphingomyelin. We show that ASM absence in mice leads to diminished CD1d-restricted antigen presentation and iNKT cell selection in the thymus, resulting in decreased iNKT cell levels and resistance to iNKT cell-mediated inflammatory conditions. Defective antigen presentation and decreased iNKT cells are also observed in ASM-deficient humans with Niemann-Pick disease, and ASM activity in healthy humans correlates with iNKT cell phenotype. Pharmacological ASM administration facilitates antigen presentation and restores the levels of iNKT cells in ASM-deficient mice. Together, these results demonstrate that control of non-agonistic CD1d-associated lipids is critical for iNKT cell development and function in vivo and represents a tight link between cellular sphingolipid metabolism and immunity.


Assuntos
Inflamação/imunologia , Células T Matadoras Naturais/imunologia , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/imunologia , Timo/imunologia , Animais , Apresentação de Antígeno , Antígenos CD1d/metabolismo , Diferenciação Celular , Seleção Clonal Mediada por Antígeno , Terapia de Reposição de Enzimas , Humanos , Ativação Linfocitária , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Esfingomielina Fosfodiesterase/genética , Esfingomielinas/metabolismo
2.
J Biol Chem ; 299(8): 105024, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423302

RESUMO

Niemann-Pick type C1 (NPC1) protein is a multimembrane spanning protein of the lysosome limiting membrane that facilitates intracellular cholesterol and sphingolipid transport. Loss-of-function mutations in the NPC1 protein cause Niemann-Pick disease type C1, a lysosomal storage disorder characterized by the accumulation of cholesterol and sphingolipids within lysosomes. To investigate whether the NPC1 protein could also play a role in the maturation of the endolysosomal pathway, here, we have investigated its role in a lysosome-related organelle, the melanosome. Using a NPC1-KO melanoma cell model, we found that the cellular phenotype of Niemann-Pick disease type C1 is associated with a decreased pigmentation accompanied by low expression of the melanogenic enzyme tyrosinase. We propose that the defective processing and localization of tyrosinase, occurring in the absence of NPC1, is a major determinant of the pigmentation impairment in NPC1-KO cells. Along with tyrosinase, two other pigmentation genes, tyrosinase-related protein 1 and Dopachrome-tautomerase have lower protein levels in NPC1 deficient cells. In contrast with the decrease in pigmentation-related protein expression, we also found a significant intracellular accumulation of mature PMEL17, the structural protein of melanosomes. As opposed to the normal dendritic localization of melanosomes, the disruption of melanosome matrix generation in NPC1 deficient cells causes an accumulation of immature melanosomes adjacent to the plasma membrane. Together with the melanosomal localization of NPC1 in WT cells, these findings suggest that NPC1 is directly involved in tyrosinase transport from the trans-Golgi network to melanosomes and melanosome maturation, indicating a novel function for NPC1.


Assuntos
Doença de Niemann-Pick Tipo C , Doenças de Niemann-Pick , Humanos , Melanossomas/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Colesterol/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo
3.
J Inherit Metab Dis ; 47(2): 317-326, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38131230

RESUMO

Hundreds of NPC1 variants cause highly heterogeneous phenotypes. This study aims to explore the genotype-phenotype correlation of NPC1, especially for missense variants. In a well-characterized cohort, phenotypes are graded into three clinical forms: mild, intermediate, and severe. Missense residue structural location was stratified into three categories: surface, partially, and fully buried. The association of phenotypes with the topography of the amino acid substitution in the protein structure was investigated in our cohort and validated in two reported cohorts. One hundred six unrelated NPC1 patients were enrolled. A significant correlation of genotype-phenotype was found in 81 classified individuals with two or one (the second was null variant) missense variant (p < 0.001): of 25 patients with at least one missense variant of surface (group A), 19 (76%) mild, six (24%) intermediate, and none severe; of 31 cases with at least one missense variant of partially buried without surface variants (group B), 11 (35%) mild, 16 (52%) intermediate, and four (13%) severe; of the remaining 25 patients with two or one buried missense variants (group C), eight (32%) mild, nine (36%) intermediate, and eight (32%) severe. Additionally, 7-ketocholesterol, the biomarker, was lower in group A than in group B (p = 0.024) and group C (p = 0.029). A model was proposed that accurately predicted phenotypes of 72 of 90 (80%), 73 of85 (86%), and 64 of 69 (93%) patients in our cohort, Italian, and UK cohort, respectively. This study proposed a novel genotype-phenotype correlation in NPC1, linking the underlying molecular pathophysiology with clinical phenotype and aiding genetic counseling and evaluation in clinical practice.


Assuntos
Doença de Niemann-Pick Tipo C , Doenças de Niemann-Pick , Humanos , Genótipo , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Fenótipo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Estudos de Associação Genética , Doença de Niemann-Pick Tipo C/genética
4.
Cell Biochem Funct ; 42(4): e4028, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38715125

RESUMO

Niemann-Pick disease (NPD) is another type of metabolic disorder that is classified as lysosomal storage diseases (LSDs). The main cause of the disease is mutation in the SMPD1 (type A and B) or NPC1 or NPC2 (type C) genes, which lead to the accumulation of lipid substrates in the lysosomes of the liver, brain, spleen, lung, and bone marrow cells. This is followed by multiple cell damage, dysfunction of lysosomes, and finally dysfunction of body organs. So far, about 346, 575, and 30 mutations have been reported in SMPD1, NPC1, and NPC2 genes, respectively. Depending on the type of mutation and the clinical symptoms of the disease, the treatment will be different. The general aim of the current study is to review the clinical and molecular characteristics of patients with NPD and study various treatment methods for this disease with a focus on gene therapy approaches.


Assuntos
Terapia Genética , Mutação , Proteína C1 de Niemann-Pick , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/terapia , Doenças de Niemann-Pick/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/terapia , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/patologia , Animais
5.
Mol Genet Metab ; 139(1): 107563, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37086570

RESUMO

The clinical manifestation of sphingolipidosis leads often to misclassification between acid sphingomyelinase deficiency (ASMD) and Gaucher disease. In this multicenter, prospective study, we investigated a cohort of 31,838 individuals suspected to have Gaucher disease, due to clinical presentation, from 61 countries between 2017 and 2022. For all samples, both Acid-ß-glucocerebrosidase and acid sphingomyelinase enzyme activities were measured in dried blood spot specimens by tandem mass spectrometry followed by genetic confirmatory testing in potential positive cases. In total, 5933 symptomatic cases showed decreased enzyme activities and were submitted for genetic confirmatory testing. 1411/5933 (24%) cases were finally identified with Gaucher disease and 550/5933 (9%) with ASMD. Most of the confirmed ASMD cases were newborns and children below 2 years of age (63%). This study reveals that one in four cases suspected for Gaucher disease is diagnosed with ASMD. An early appropriate diagnostic work-up is essential because of the availability of a recently approved enzyme replacement therapy for ASMD. In conclusion, a diagnostic strategy using differential biochemical testing including genetic confirmatory testing in clinically suspected cases for sphingolipidosis is highly recommended.


Assuntos
Doença de Gaucher , Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Criança , Humanos , Recém-Nascido , Doença de Niemann-Pick Tipo A/diagnóstico , Doença de Niemann-Pick Tipo A/genética , Doença de Gaucher/diagnóstico , Doença de Gaucher/genética , Estudos Prospectivos , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Espectrometria de Massas em Tandem/métodos
6.
Hereditas ; 160(1): 11, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907956

RESUMO

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) disorder, also known as Niemann-Pick disease (NPD) is a rare genetic disease caused by mutations in SMPD1 gene, which encodes sphingomyelin phosphodiesterase (ASM). Except for liver and spleen enlargement and lung disease, two subtypes (Type A and B) of NDP have different onset times, survival times, ASM activities, and neurological abnormalities. To comprehensively explore NPD's genotype-phenotype association and pathophysiological characteristics, we collected 144 NPD cases with strict quality control through literature mining. RESULTS: The difference in ASM activity can differentiate NPD type A from other subtypes, with the ratio of ASM activity to the reference values being lower in type A (threshold 0.045 (4.45%)). Severe variations, such as deletion and insertion, can cause complete loss of ASM function, leading to type A, whereas relatively mild missense mutations generally result in type B. Among reported mutations, the p.Arg3AlafsX76 mutation is highly prevalent in the Chinese population, and the p.R608del mutation is common in Mediterranean countries. The expression profiles of SMPD1 from GTEx and single-cell RNA sequencing data of multiple fetal tissues showed that high expressions of SMPD1 can be observed in the liver, spleen, and brain tissues of adults and hepatoblasts, hematopoietic stem cells, STC2_TLX1-positive cells, mesothelial cells of the spleen, vascular endothelial cells of the cerebellum and the cerebrum of fetuses, indicating that SMPD1 dysfunction is highly likely to have a significant effect on the function of those cell types during development and the clinicians need pay attention to these organs or tissues as well during diagnosis. In addition, we also predicted 21 new pathogenic mutations in the SMPD1 gene that potentially cause the NPD, signifying that more rare cases will be detected with those mutations in SMPD1. Finally, we also analysed the function of the NPD type A cells following the extracellular milieu. CONCLUSIONS: Our study is the first to elucidate the effects of SMPD1 mutation on cell types and at the tissue level, which provides new insights into the genotype-phenotype association and can help in the precise diagnosis of NPD.


Assuntos
Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Esfingomielina Fosfodiesterase , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estudos de Associação Genética , Mutação , Doença de Niemann-Pick Tipo A/diagnóstico , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
7.
BMC Gastroenterol ; 22(1): 227, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534800

RESUMO

BACKGROUND: Patients with acid sphingomyelinase deficiency (ASMD) may be referred to a hepatologist for liver manifestations. This study summarized the liver manifestations of patients with ASMD in the early disease course. METHODS: This study enrolled ASMD patients diagnosed by genetic tests between July 2016 and December 2020 in a national pediatric liver center. The significance of low High-density lipoprotein cholesterol (HDL-C) for aid diagnosis of ASMD in infancy was explored by reviewing 160 consecutive infants with liver manifestations, who underwent both genetic tests and lipid profile studies, between January 2020 and December 2020. RESULTS: A total of 7 patients were diagnosed as ASMD, and 10 known disease-causing variants were identified. Hepatosplenomegaly, elevated transaminases, and liver foam cells were observed in all the 7 patients at age ranging from 4 to 31 months. Low HDL-C was detected in 5 patients, cherry red spot in 4 patients, development delay in 3 patients, and interstitial lung diseases in 1 patient. Three ASMD patients developed cholestasis around 1 month of age, and bilirubin levels normalized at age ranging from 3 to 10 months. They had persistently elevated transaminases and hepatosplenomegaly, and died within 4 years of age. Among the 160 infants with liver manifestations, 125 (78.1%) had low HDL-C. Fifty-four had both low HDL-C and splenomegaly, including 48 cholestatic infants, but only 1 (1.9%, 1/54) infant without cholestasis was diagnosed as ASMD. CONCLUSIONS: ASMD can manifest as neonatal cholestasis in the early disease course. Cholestasis is a pitfall when low HDL-C is used for aid diagnosis of ASMD in infants with splenomegaly.


Assuntos
Colestase , Hepatopatias , Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Pré-Escolar , Hepatomegalia/etiologia , Humanos , Lactente , Doenças de Niemann-Pick/genética , Esplenomegalia/etiologia , Transaminases
8.
Hum Mutat ; 42(10): 1336-1350, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34273913

RESUMO

Pathogenic variations in SMPD1 lead to acid sphingomyelinase deficiency (ASMD), that is, Niemann-Pick disease (NPD) type A and B (NPA, NPB), which is a recessive lysosomal storage disease. The knowledge of variant spectrum in Indian patients is crucial for early and accurate NPD diagnosis and genetic counseling of families. In this study, we recruited 40 unrelated pediatric patients manifesting symptoms of ASMD and subnormal ASM enzyme activity. Variations in SMPD1 were studied using Sanger sequencing for all exons, followed by interpretation of variants based on American College of Medical Genetics and Genomics & Association for Molecular Pathology (ACMG/AMP) criteria. We identified 18 previously unreported variants and 21 known variants, including missense, nonsense, deletions, duplications, and splice site variations with disease-causing potential. Eight missense variants were functionally characterized using in silico molecular dynamic simulation and in vitro transient transfection in HEK293T cells, followed by ASM enzyme assay, immunoblot, and immunofluorescence studies. All the variants showed reduced ASM activity in transfected cells confirming their disease-causing potential. The study provides data for efficient prenatal diagnosis and genetic counseling of families with NPD type A and B.


Assuntos
Doença de Niemann-Pick Tipo A , Doenças de Niemann-Pick , Esfingomielina Fosfodiesterase/genética , Criança , Éxons , Feminino , Células HEK293 , Humanos , Mutação , Doença de Niemann-Pick Tipo A/genética , Doença de Niemann-Pick Tipo A/patologia , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Gravidez
9.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925997

RESUMO

Sphingomyelin phosphodiesterase (SMPD1) is a key enzyme in the sphingolipid metabolism. Genetic SMPD1 variants have been related to the Niemann-Pick lysosomal storage disorder, which has different degrees of phenotypic severity ranging from severe symptomatology involving the central nervous system (type A) to milder ones (type B). They have also been linked to neurodegenerative disorders such as Parkinson and Alzheimer. In this paper, we leveraged structural, evolutionary and stability information on SMPD1 to predict and analyze the impact of variants at the molecular level. We developed the SMPD1-ZooM algorithm, which is able to predict with good accuracy whether variants cause Niemann-Pick disease and its phenotypic severity; the predictor is freely available for download. We performed a large-scale analysis of all possible SMPD1 variants, which led us to identify protein regions that are either robust or fragile with respect to amino acid variations, and show the importance of aromatic-involving interactions in SMPD1 function and stability. Our study also revealed a good correlation between SMPD1-ZooM scores and in vitro loss of SMPD1 activity. The understanding of the molecular effects of SMPD1 variants is of crucial importance to improve genetic screening of SMPD1-related disorders and to develop personalized treatments that restore SMPD1 functionality.


Assuntos
Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Simulação por Computador , Bases de Dados Genéticas , Éxons/genética , Variação Genética/genética , Humanos , Mutação/genética , Doenças de Niemann-Pick/metabolismo , Fenótipo , Índice de Gravidade de Doença , Esfingolipídeos/genética , Esfingolipídeos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
10.
Mol Genet Metab ; 131(1-2): 116-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32616389

RESUMO

BACKGROUND: Acid sphingomyelinase deficiency (ASMD) also known as Niemann-Pick disease, is a rare lysosomal storage disorder with a diverse disease spectrum that includes slowly progressive, chronic visceral (type B) and neurovisceral forms (intermediate type A/B), in addition to infantile, rapidly progressive fatal neurovisceral disease (type A). PURPOSE AND METHODS: We review the published evidence on the relevance of splenomegaly and reduced lung diffusion capacity to the clinical burden of chronic forms of ASMD. Targeted literature searches were conducted to identify relevant ASMD and non-ASMD studies for associations between diffusing capacity of the lungs for carbon monoxide (DLCO) and splenomegaly, with clinical parameters and outcome measures. RESULTS: Respiratory disease and organomegaly are primary and independent contributors to mortality, disease burden, and morbidity for patients with chronic ASMD. The degree of splenomegaly correlates with short stature, atherogenic lipid profile, and degree of abnormality of hematologic parameters, and thus may be considered a surrogate marker for bleeding risk, abnormal lipid profiles and possibly, liver fibrosis. Progressive lung disease is a prevalent clinical feature of chronic ASMD, contributing to a decreased quality of life (QoL) and an increased disease burden. In addition, respiratory-related complications are a major cause of mortality in ASMD. CONCLUSIONS: The reviewed evidence from ASMD natural history and observational studies supports the use of lung function and spleen volume as clinically meaningful endpoints in ASMD trials that translate into important measures of disease burden for patients.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Esplenomegalia/genética , Monóxido de Carbono/metabolismo , Terapia de Reposição de Enzimas , Humanos , Pulmão/metabolismo , Pulmão/patologia , Doenças por Armazenamento dos Lisossomos/epidemiologia , Doenças por Armazenamento dos Lisossomos/patologia , Doenças por Armazenamento dos Lisossomos/terapia , Mutação/genética , Doenças de Niemann-Pick/epidemiologia , Doenças de Niemann-Pick/patologia , Doenças de Niemann-Pick/terapia , Baço/enzimologia , Baço/patologia , Esplenomegalia/epidemiologia , Esplenomegalia/patologia , Esplenomegalia/terapia
11.
J Pediatr Hematol Oncol ; 42(6): e499-e502, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-30870388

RESUMO

BACKGROUND: Typically, patients with Acid Sphingomyelinase Deficiency (ASMD) because of p.Arg610del mutation, have mild phenotype with normal linear growth. OBSERVATION: We reported the case of 2 Tunisian brothers who have been referred for splenomegaly, polyadenopathies, pubertal, and growth delay. Molecular testing of SMPD1 gene revealed the presence of a homozygous p.Arg610del mutation. Lysosphingomyelin and its isoform-509 were both increased confirming ASMD for both cases. Growth hormone deficiency was highly suspected but growth hormone response after stimulating tests was acceptable for both patients. CONCLUSIONS: There is no correlation between phenotype-genotype in case of p.Arg610del mutation that could be associated to a severe delay of growth.


Assuntos
Deficiências do Desenvolvimento/patologia , Homozigoto , Mutação , Doenças de Niemann-Pick/complicações , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Adolescente , Adulto , Deficiências do Desenvolvimento/etiologia , Humanos , Masculino , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/patologia , Fenótipo , Prognóstico , Irmãos , Adulto Jovem
12.
Vet Pathol ; 57(4): 559-564, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347185

RESUMO

A 4-month-old female mixed-breed cat showed gait disturbance and eventual dysstasia with intention tremor and died at 14 months of age. Postmortem histological analysis revealed degeneration of neuronal cells, alveolar epithelial cells, hepatocytes, and renal tubular epithelial cells. Infiltration of macrophages was observed in the nervous system and visceral organs. The cytoplasm of neuronal cells was filled with Luxol fast blue (LFB)-negative and periodic acid-Schiff (PAS)-negative granules, and the cytoplasm of macrophages was LFB-positive and PAS-negative. Ultrastructurally, concentric deposits were observed in the brain and visceral organs. Genetic and biochemical analysis revealed a nonsense mutation (c.1017G>A) in the SMPD1 gene, a decrease of SMPD1 mRNA expression, and reduced acid sphingomyelinase immunoreactivity. Therefore, this cat was diagnosed as having Niemann-Pick disease with a mutation in the SMPD1 gene, a syndrome analogous to human Niemann-Pick disease type A.


Assuntos
Doenças do Gato/patologia , Doenças de Niemann-Pick/veterinária , Esfingomielina Fosfodiesterase/genética , Animais , Autopsia/veterinária , Encéfalo/patologia , Encéfalo/ultraestrutura , Gatos , Feminino , Histocitoquímica/veterinária , Macrófagos/patologia , Microscopia Eletrônica de Transmissão/veterinária , Mutação , Sistema Nervoso/patologia , Neurônios/patologia , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/patologia
13.
Mov Disord ; 34(5): 614-624, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726573

RESUMO

Lysosomal storage disorders comprise a clinically heterogeneous group of autosomal-recessive or X-linked genetic syndromes caused by disruption of lysosomal biogenesis or function resulting in accumulation of nondegraded substrates. Although lysosomal storage disorders are diagnosed predominantly in children, many show variable expressivity with clinical presentations possible later in life. Given the important role of lysosomes in neuronal homeostasis, neurological manifestations, including movement disorders, can accompany many lysosomal storage disorders. Over the last decade, evidence from genetics, clinical epidemiology, cell biology, and biochemistry have converged to implicate links between lysosomal storage disorders and adult-onset movement disorders. The strongest evidence comes from mutations in Glucocerebrosidase, which cause Gaucher's disease and are among the most common and potent risk factors for PD. However, recently, many additional lysosomal storage disorder genes have been similarly implicated, including SMPD1, ATP13A2, GALC, and others. Examination of these links can offer insight into pathogenesis of PD and guide development of new therapeutic strategies. We systematically review the emerging genetic links between lysosomal storage disorders and PD. © 2019 International Parkinson and Movement Disorder Society.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Transtornos Parkinsonianos/genética , Adulto , Criança , Galactosilceramidase/genética , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , Leucodistrofia de Células Globoides/genética , Mucopolissacaridose III/genética , Mutação , Lipofuscinoses Ceroides Neuronais/genética , Doenças de Niemann-Pick/genética , Doença de Parkinson/genética , Fenótipo , ATPases Translocadoras de Prótons/genética , Doença de Sandhoff/genética , Esfingomielina Fosfodiesterase/genética
14.
J Lipid Res ; 58(3): 563-577, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28126847

RESUMO

Glucosylceramide (GlcCer) is the primary storage lipid in the lysosomes of Gaucher patients and a secondary one in Niemann-Pick disease types A, B, and C. The regulatory roles of lipids on the hydrolysis of membrane bound GlcCer by lysosomal ß-glucocerebrosidase (GBA1) was probed using a detergent-free liposomal assay. The degradation rarely occurs at uncharged liposomal surfaces in the absence of saposin (Sap) C. However, anionic lipids stimulate GlcCer hydrolysis at low pH by up to 1,000-fold depending on the nature and position of the negative charges in their head groups while cationic lipids inhibit the degradation, thus showing the importance of electrostatic interactions between the polycationic GBA1 and the negatively charged vesicle surfaces at low pH. Ceramide, fatty acids, monoacylglycerol, and diacylglycerol also stimulate GlcCer hydrolysis while SM, sphingosine, and sphinganine play strong inhibitory roles, thereby explaining the secondary storage of GlcCer in Niemann-Pick diseases. Surprisingly, cholesterol stimulates GlcCer degradation in the presence of bis(monoacylglycero)phosphate (BMP). Sap C strongly stimulates GlcCer hydrolysis even in the absence of BMP and the regulatory roles of the intraendolysosomal lipids on its activity is discussed. Our data suggest that these strong modifiers of GlcCer hydrolysis affect the genotype-phenotype correlation in several cases of Gaucher patients independent of the types.


Assuntos
Doença de Gaucher/metabolismo , Glucosilceramidase/genética , Glucosilceramidas/metabolismo , Doenças de Niemann-Pick/metabolismo , Colesterol/metabolismo , Doença de Gaucher/genética , Doença de Gaucher/patologia , Estudos de Associação Genética , Glucosilceramidase/metabolismo , Humanos , Hidrólise , Metabolismo dos Lipídeos/genética , Lisofosfolipídeos/metabolismo , Lisossomos/enzimologia , Monoglicerídeos/metabolismo , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/patologia , Saposinas/metabolismo
15.
Mol Genet Metab ; 120(1-2): 27-33, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28164782

RESUMO

The eponym Niemann-Pick disease (NPD) refers to a group of patients who present with varying degrees of lipid storage and foam cell infiltration in tissues, as well as overlapping clinical features including hepatosplenomegaly, pulmonary insufficiency and/or central nervous system (CNS) involvement. Due to the pioneering work of Roscoe Brady and co-workers, we now know that there are two distinct metabolic abnormalities that account for NPD. The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM; "types A & B" NPD), and the second is due to defective function in cholesterol transport ("type C" NPD). Herein only types A and B NPD will be discussed. Type A NPD patients exhibit hepatosplenomegaly in infancy and profound CNS involvement. They rarely survive beyond 2-3years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no CNS signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Intermediate patients also have been reported with mild to moderate neurological findings. All patients with types A and B NPD have mutations in the gene encoding ASM (SMPD1), and thus the disease is more accurately referred to as ASM deficiency (ASMD). Herein we will review the clinical, pathological, biochemical, and genetic findings in types A and B NPD, and emphasize the seminal contributions of Dr. Brady to this disease. We will also discuss the current status of therapy for this disorder.


Assuntos
Colesterol/metabolismo , Doenças de Niemann-Pick/classificação , Esfingomielina Fosfodiesterase/deficiência , Idade de Início , Animais , Progressão da Doença , Feminino , História do Século XX , História do Século XXI , Humanos , Masculino , Mutação , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética
16.
Biochem Biophys Res Commun ; 479(3): 496-501, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27659707

RESUMO

Niemann-Pick disease (NPD) type A and B are recessive hereditary disorders caused by deficiency in acid sphingomyelinase (ASM). The p.Ala359Asp mutation has been described in several patients but its functional and structural effects in the protein are unknown. In order to characterize this mutation, we modeled the three-dimensional ASM structure using the recent available crystal of the mammalian ASM as a template. We found that the p.Ala359Asp mutation is localized in the hydrophobic core and far from the sphingomyelin binding site. However, energy function calculations using statistical potentials indicate that the mutation causes a decrease in ASM stability. Therefore, we investigated the functional effect of the p.Ala359Asp mutation in ASM expression, secretion, localization and activity in human fibroblasts. We found a 3.8% residual ASM activity compared to the wild-type enzyme, without changes in the other parameters evaluated. These results support the hypothesis that the p.Ala359Asp mutation causes structural alterations in the hydrophobic environment where ASM is located, decreasing its enzymatic activity. A similar effect was observed in other previously described NPDB mutations located outside the active site of the enzyme. This work shows the first full size ASM mutant model describe at date, providing a complete analysis of the structural and functional effects of the p.Ala359Asp mutation over the stability and activity of the enzyme.


Assuntos
Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/metabolismo , Alanina/química , Ácido Aspártico/química , Domínio Catalítico , Fibroblastos/metabolismo , Humanos , Substâncias Macromoleculares , Microscopia de Fluorescência , Conformação Molecular , Mutação , Doenças de Niemann-Pick/metabolismo , Domínios Proteicos , Esfingomielina Fosfodiesterase/deficiência , Esfingomielina Fosfodiesterase/genética , Eletricidade Estática
17.
J Hum Genet ; 61(4): 345-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26740238

RESUMO

Lysosomal storage disorders (LSDs) are a group of >50 different types of inherited metabolic disorders that result from defects in the lysosome. The aim of this study was to investigate the distribution and demographic characteristics of the different subtypes of LSDs in Eastern China. From 2006 to 2012, 376 out of 1331 clinically suspected patients were diagnosed with 17 different subtypes of LSDs at our hospital. Mucopolysaccharidoses (MPS) were the most common group of LSDs (50.5%), followed by sphingolipidoses (25.4%) and Pompe disease (19.8%). Mucolipidosis type II/III accounted for the remaining 4% of diagnosed LSDs. MPS II was the most common form of MPS, comprising 47.4% of all MPS cases diagnosed, followed by MPS IVA (26.8%) and MPS I (16.3%). Gaucher disease and Niemann-Pick disease type A/B were the two most common forms of sphingolipidoses. There was a large variation in the time between disease onset and eventual diagnosis, from 0.3 years in infantile-onset Pompe disease to 30 years in Fabry disease, highlighting timely and accurate diagnosis of LSDs as the main challenge in China.


Assuntos
Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/genética , Adolescente , Adulto , Idade de Início , Criança , Pré-Escolar , China , Doença de Fabry/genética , Doença de Fabry/patologia , Feminino , Doença de Gaucher/genética , Doença de Gaucher/patologia , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Lactente , Doenças por Armazenamento dos Lisossomos/classificação , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/patologia , Masculino , Mucolipidoses/genética , Mucolipidoses/patologia , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/patologia , Esfingolipidoses/genética , Esfingolipidoses/patologia
18.
Am J Med Genet A ; 170(10): 2719-30, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27338287

RESUMO

Acid sphingomyelinase (ASM)-deficient Niemann-Pick disease is an autosomal recessive lysosomal storage disorder caused by biallelic mutations in the SMPD1 gene. To date, around 185 mutations have been reported in patients with ASM-deficient NPD world-wide, but the mutation spectrum of this disease in India has not yet been reported. The aim of this study was to ascertain the mutation profile in Indian patients with ASM-deficient NPD. We sequenced SMPD1 in 60 unrelated families affected with ASM-deficient NPD. A total of 45 distinct pathogenic sequence variants were found, of which 14 were known and 31 were novel. The variants included 30 missense, 4 nonsense, and 9 frameshift (7 single base deletions and 2 single base insertions) mutations, 1 indel, and 1 intronic duplication. The pathogenicity of the novel mutations was inferred with the help of the mutation prediction software MutationTaster, SIFT, Polyphen-2, PROVEAN, and HANSA. The effects of the identified sequence variants on the protein structure were studied using the structure modeled with the help of the SWISS-MODEL workspace program. The p. (Arg542*) (c.1624C>T) mutation was the most commonly identified mutation, found in 22% (26 out of 120) of the alleles tested, but haplotype analysis for this mutation did not identify a founder effect for the Indian population. To the best of our knowledge, this is the largest study on mutation analysis of patients with ASM-deficient Niemann-Pick disease reported in literature and also the first study on the SMPD1 gene mutation spectrum in India. © 2016 Wiley Periodicals, Inc.


Assuntos
Mutação , Doenças de Niemann-Pick/diagnóstico , Doenças de Niemann-Pick/genética , Esfingomielina Fosfodiesterase/genética , Adolescente , Alelos , Substituição de Aminoácidos , Biomarcadores , Criança , Pré-Escolar , Biologia Computacional/métodos , Consanguinidade , Análise Mutacional de DNA , Ativação Enzimática , Éxons , Fácies , Genótipo , Haplótipos , Humanos , Índia , Lactente , Recém-Nascido , Modelos Moleculares , Doenças de Niemann-Pick/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único , Diagnóstico Pré-Natal , Conformação Proteica , Esfingomielina Fosfodiesterase/química , Esfingomielina Fosfodiesterase/metabolismo , Esplenomegalia
19.
J Lipid Res ; 56(9): 1747-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26175473

RESUMO

Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with ß-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids.


Assuntos
Proteína Ativadora de G(M2)/metabolismo , Gangliosídeo G(M2)/metabolismo , Lipossomos/metabolismo , Lipídeos de Membrana/metabolismo , Ceramidas/metabolismo , Colesterol/genética , Colesterol/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteína Ativadora de G(M2)/genética , Células HEK293 , Humanos , Hidrólise/efeitos dos fármacos , Lisofosfolipídeos/administração & dosagem , Lipídeos de Membrana/genética , Monoglicerídeos/administração & dosagem , Doenças de Niemann-Pick/genética , Doenças de Niemann-Pick/metabolismo , Doenças de Niemann-Pick/patologia , Esfingomielinas/metabolismo , Ressonância de Plasmônio de Superfície , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/patologia , Cadeia alfa da beta-Hexosaminidase/metabolismo
20.
J Biol Chem ; 289(28): 19714-25, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24891511

RESUMO

Most cases with Niemann-Pick disease type C carry mutations in NPC1. Some of the mutations, including the most frequent I1061T, give rise to unstable proteins selected for endoplasmic reticulum-associated degradation. The purpose of the current study was to shed mechanistic insights into the degradation process. A proteasome inhibitor MG132 prolonged the life span of the wild-type NPC1 expressed in COS cells. The expressed protein associated with multiple chaperones including heat shock protein 90 (Hsp90), Hsp70, heat shock cognate protein 70 (Hsc70), and calnexin. Accordingly, expression of an E3 ligase CHIP (carboxyl terminus of Hsp70-interacting protein) enhanced MG132-induced accumulation of ubiquitylated NPC1. Co-expression and RNAi knockdown experiments in HEK cells indicated that Hsp70/Hsp90 stabilized NPC1, whereas Hsc70 destabilized it. In human fibroblasts carrying the I1061T mutation, adenovirus-mediated expression of Hsp70 or treatment with an HSP-inducer geranylgeranylacetone (GGA) increased the level of the mutant protein. In GGA-treated cells, the rescued protein was localized in the late endosome and ameliorated cholesterol accumulation. MALDI-TOF mass spectrometry revealed three lysine residues at amino acids 318, 792, and 1180 as potential ubiquitin-conjugation sites. Substitutions of the three residues with alanine yielded a mutant protein with a steady-state level more than three times higher than that of the wild-type. Introduction of the same substitutions to the I1061T mutant resulted in an increase in its protein level and functional restoration. These findings indicated the role of HSPs in quality control of NPC1 and revealed the role of three lysine residues as ubiquitin-conjugation sites.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Membrana/metabolismo , Doenças de Niemann-Pick/metabolismo , Ubiquitina/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Inibidores de Cisteína Proteinase/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Leupeptinas/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Mutação de Sentido Incorreto , Doenças de Niemann-Pick/genética , Terpenos/farmacologia , Ubiquitina/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA