Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(2): e202301963, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38117264

RESUMO

Seven steroidal saponins including three new 16,23-cyclocholestanes (1-3) and one new pregane (4) were isolated from the roots of Dracaena cambodiana Pierre ex Gagnep. Their chemical structures were elucidated to be (23R,25R)-26-O-ß-D-glucopyranosyl-16,23-cyclocholesta-5,17(20)-dien-22-one-3ß,16α,26-triol-3-O-α-L-rhamnopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→3)]-ß-D-glucopyranoside (1), (23R,25R)-26-O-ß-D-glucopyranosyl-16,23-cyclocholesta-5,17,20(22)-trien-3ß,22,26-triol-3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranoside (2), (23R,25R)-16,23-cyclocholesta-5,16,20(22)-trien-3ß,22,26-triol-3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranoside (3), 3ß-[(O-α-L-rhamnopyranosyl-(1→3)-[α-L-rhamnopyranosyl-(1→2)]-ß-D-gluco-pyranosyl)oxy]-pregna-5,17(20)-diene-16-one-20-carboxylic acid 4''''-O-ß-D-glucopyranosylisopentyl ester (4), cambodianoside A (5), diosbulbiside C (6), and diosbulbiside D (7), by IR, HR-ESI-MS, 1D and 2D NMR spectra. Compounds 1 and 4-7 inhibited nitric oxide (NO) production in lipopolysaccharide activated RAW 264.7 cells with IC50 values ranging from 19.03±1.84 to 67.92±3.81 µM, whereas compounds 2 and 3 were inactive with IC50 values over 100 µM.


Assuntos
Dracaena , Lipopolissacarídeos , Saponinas , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Óxido Nítrico , Células RAW 264.7 , Trientina , Saponinas/farmacologia , Saponinas/química , Estrutura Molecular
2.
Molecules ; 29(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38675708

RESUMO

Dragon's blood (DB) is a traditional Chinese medicine (TCM) with hemostatic effects and antibacterial properties. However, it is still challenging to use for rapid hemostasis because of its insolubility. In this study, different amounts of DB were loaded on mesoporous silica nanoparticles (MSNs) to prepare a series of DB-MSN composites (5DB-MSN, 10DB-MSN, and 20DB-MSN). DB-MSN could quickly release DB and activate the intrinsic blood coagulation cascade simultaneously by DB and MSN. Hemostasis tests demonstrated that DB-MSN showed superior hemostatic effects than either DB or MSNs alone, and 10DB-MSN exhibited the best hemostatic effect. In addition, the antibacterial activities of DB-MSN against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) improved with the increase in DB. Furthermore, the hemolysis assay and cytocompatibility assay demonstrated that all DB-MSNs exhibited excellent biocompatibility. Based on these results, 10DB-MSN is expected to have potential applications for emergency hemostatic and antibacterial treatment in pre-hospital trauma.


Assuntos
Antibacterianos , Escherichia coli , Hemostasia , Hemostáticos , Nanopartículas , Extratos Vegetais , Dióxido de Silício , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Dióxido de Silício/química , Nanopartículas/química , Escherichia coli/efeitos dos fármacos , Hemostasia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Porosidade , Animais , Hemólise/efeitos dos fármacos , Coagulação Sanguínea/efeitos dos fármacos , Humanos , Dracaena/química , Camundongos , Testes de Sensibilidade Microbiana
3.
Sci Data ; 11(1): 873, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138230

RESUMO

Dracaena cambodiana Pierre ex Gagn. (Asparagaceae) is the source plant of Dragon's blood and has high ornamental values in gardening. Currently, this species is classified as the second-class state-protected species in the National Key Protected Wild Plants (NKPWP) of China. However, limited genomic data has hindered a more comprehensive scientific understanding of the processes involved in the production of Dragon's blood and the related conservation genomics research. In this study, we assembled a haplotype-resolved genome of D. cambodiana. The haploid genomes, haplotype A and haplotype B, are 1,015.22 Mb and 1,003.13 Mb in size, respectively. The completeness of haplotype A and haplotype B genomes was 98.60% and 98.20%, respectively, using the "embryophyta_10" dataset. Haplotype A and haplotype B genomes contained 27,361 and 27,066 protein-coding genes, respectively, with nearly all being functionally annotated. These findings provide new insights into the genomic characteristics of D. cambodiana and will offer additional genomic resources for studying the biosynthesis mechanism of Dragon's blood and the horticultural application of Dragon trees.


Assuntos
Dracaena , Genoma de Planta , Haplótipos , Dracaena/genética , China , Cromossomos de Plantas/genética , Extratos Vegetais
4.
Sci Rep ; 14(1): 6165, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486003

RESUMO

Dragon's blood, the red resin derived from the wounded Dracaena, is a precious traditional medicine used by different culture. Dracaena cochinchinensis is one of the main species of Dracaena, and is the endangered medicinal plants in China. The vulnerable status severely limits the medicinal value and wide application of dragon's blood. Therefore, it's essential to analyze the mechanisms that form dragon's blood in order to increase artificial production. To clarify the mechanisms forming dragon's blood, understanding gene expression in the flavonoid biosynthesis pathway is the foundation. However, reference genes of D. cochinchinensis haven't been analyzed. In this study, expression profiles of seven commonly used housekeeping genes (Actin, α-EF, UBC, ß-tubulin, 18S, GAPDH, His) were evaluated by using quantitative real-time PCR combined with the algorithms geNorm, NormFinder, BestKeeper, and RefFinder. On the basis of overall stability ranking, the best reference genes were the combinations ß-tubulin +UBC for wounded stems and α-EF +18S + Actin for different organs. Reliability of the recommended reference genes was validated by normalizing relative expression of two key enzyme genes PAL1 and CHI1 in the flavonoid biosynthesis pathway. The results provide a foundation to study gene expression in future research on D. cochinchinensis or other Dracaena.


Assuntos
Actinas , Dracaena , Tubulina (Proteína) , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Extratos Vegetais , Flavonoides
5.
Biosci. j. (Online) ; 39: e39050, 2023. ilus, tab, graf
Artigo em Inglês | LILACS | ID: biblio-1428236

RESUMO

Dracaena cochinchinensis (Lour.) S.C. Chen (Chandaeng) is an important traditional medicinal plant used in ancient Thai household remedies. This research focused on investigating the biological properties, including the antibacterial, anti-tyrosinase, antioxidant activities, and phytochemical characteristics of crude Chandaeng extracts. Dried Chandaeng heartwood powder was extracted using ethanol, methanol, and deionized water. The antibacterial activities of the extracts were then tested against skin pathogens, including Cutibacterium acnes (DMST14916), Staphylococcus epidermidis (TISTR518), and Staphylococcus aureus (TISTR321). The ethanolic extract showed antibacterial activity. In a time-kill assay, all bacteria were completely killed after being exposed to it, while the cell membranes were found to have leaked when viewed under a scanning electron microscope. Antioxidant potential was determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2¢-azino-bis -3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. According to the findings, the crude ethanolic extract of Chandaeng showed the highest level of antioxidant activity. Furthermore, the potential of the extract to treat skin hyperpigmentation by inhibiting tyrosinase, an important melanin synthesis enzyme, was determined and the ethanolic extract was found to be an anti-tyrosinase agent. Finally, the crude ethanolic extract showed the highest total phenolic compound and flavonoid content. In conclusion, crude Chandaeng extract showed significant potential in activity against skin pathogenic bacteria, antioxidant activity, and tyrosinase inhibition. These properties of the extract could be applied to skincare cosmetics.


Assuntos
Monofenol Mono-Oxigenase , Dracaena , Inibidores Enzimáticos , Antibacterianos , Antioxidantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA