Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.767
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 583(7814): 66-71, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32612224

RESUMO

Dental enamel is a principal component of teeth1, and has evolved to bear large chewing forces, resist mechanical fatigue and withstand wear over decades2. Functional impairment and loss of dental enamel, caused by developmental defects or tooth decay (caries), affect health and quality of life, with associated costs to society3. Although the past decade has seen progress in our understanding of enamel formation (amelogenesis) and the functional properties of mature enamel, attempts to repair lesions in this material or to synthesize it in vitro have had limited success4-6. This is partly due to the highly hierarchical structure of enamel and additional complexities arising from chemical gradients7-9. Here we show, using atomic-scale quantitative imaging and correlative spectroscopies, that the nanoscale crystallites of hydroxylapatite (Ca5(PO4)3(OH)), which are the fundamental building blocks of enamel, comprise two nanometric layers enriched in magnesium flanking a core rich in sodium, fluoride and carbonate ions; this sandwich core is surrounded by a shell with lower concentration of substitutional defects. A mechanical model based on density functional theory calculations and X-ray diffraction data predicts that residual stresses arise because of the chemical gradients, in agreement with preferential dissolution of the crystallite core in acidic media. Furthermore, stresses may affect the mechanical resilience of enamel. The two additional layers of hierarchy suggest a possible new model for biological control over crystal growth during amelogenesis, and hint at implications for the preservation of biomarkers during tooth development.


Assuntos
Amelogênese , Esmalte Dentário/química , Ácidos/química , Cálcio/química , Carbonatos/química , Cristalização , Teoria da Densidade Funcional , Esmalte Dentário/ultraestrutura , Durapatita/química , Fluoretos/química , Humanos , Magnésio/química , Microscopia Eletrônica de Transmissão e Varredura , Sódio/química , Tomografia , Difração de Raios X
2.
Proc Natl Acad Sci U S A ; 120(17): e2220565120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37071684

RESUMO

DNA-based biomaterials have been proposed for tissue engineering approaches due to their predictable assembly into complex morphologies and ease of functionalization. For bone tissue regeneration, the ability to bind Ca2+ and promote hydroxyapatite (HAP) growth along the DNA backbone combined with their degradation and release of extracellular phosphate, a known promoter of osteogenic differentiation, make DNA-based biomaterials unlike other currently used materials. However, their use as biodegradable scaffolds for bone repair remains scarce. Here, we describe the design and synthesis of DNA hydrogels, gels composed of DNA that swell in water, their interactions in vitro with the osteogenic cell lines MC3T3-E1 and mouse calvarial osteoblast, and their promotion of new bone formation in rat calvarial wounds. We found that DNA hydrogels can be readily synthesized at room temperature, and they promote HAP growth in vitro, as characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. Osteogenic cells remain viable when seeded on DNA hydrogels in vitro, as characterized by fluorescence microscopy. In vivo, DNA hydrogels promote the formation of new bone in rat calvarial critical size defects, as characterized by micro-computed tomography and histology. This study uses DNA hydrogels as a potential therapeutic biomaterial for regenerating lost bone.


Assuntos
Hidrogéis , Osteogênese , Camundongos , Ratos , Animais , Hidrogéis/química , Microtomografia por Raio-X , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Durapatita/farmacologia , Durapatita/química , Engenharia Tecidual , Alicerces Teciduais/química
3.
Nano Lett ; 24(33): 10388-10395, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39116280

RESUMO

Biomaterials in nature form hierarchical structures and functions across various length scales through binding and assembly processes. Inspired by nature, we developed hierarchically organized tissue engineering materials through evolutionary screening and self-templating assembly. Leveraging the M13 bacteriophage (phage), we employed an evolutionary selection process against hydroxyapatite (HA) to isolate HA-binding phage (HAPh). The newly discovered phage exhibits a bimodal length, comprising 950 nm and 240 nm, where the synergistic effect of these dual lengths promotes the formation of supramolecular fibrils with periodic banded structures. The assembled HAPh fibrils show the capability of HA mineralization and the directional growth of osteoblast cells. When applied to a dentin surface, it induces the regeneration of dentin-like tissue structures, showcasing its potential applications as a scaffold in tissue engineering. The integration of evolutionary screening and self-templating assembly holds promise for the future development of hierarchically organized tissue engineering materials.


Assuntos
Bacteriófago M13 , Durapatita , Engenharia Tecidual , Engenharia Tecidual/métodos , Bacteriófago M13/química , Bacteriófago M13/genética , Durapatita/química , Osteoblastos/citologia , Humanos , Materiais Biocompatíveis/química , Alicerces Teciduais/química , Dentina/química
4.
Nano Lett ; 24(18): 5481-5489, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38639407

RESUMO

Natural killer (NK) cells have become a powerful candidate for adoptive tumor immunotherapy, while their therapeutic efficacy in solid tumors remains unsatisfactory. Here, we developed a hybrid module with an injectable hydrogel and hydroxyapatite (HAp) nanobelts for the controlled delivery of NK cells to enhance the therapy of solid tumors. Surface-functionalized HAp nanobelts modified with agonistic antibodies against NKG2D and 4-1BB and cytokines IL-2 and IL-21 support survival and dynamic activation. Thus, the HAp-modified chitosan (CS) thermos-sensitive hydrogel not only improved the retention of NK cells for more than 20 days in vivo but also increased NK cell function by more than one-fold. The unique architecture of this biomaterial complex protects NK cells from the hostile tumor environment and improves antitumor efficacy. The generation of a transient inflammatory niche for NK cells through a biocompatible hydrogel reservoir may be a conversion pathway to prevent cancer recurrence of resectable tumors.


Assuntos
Hidrogéis , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Animais , Camundongos , Hidrogéis/química , Humanos , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Durapatita/química , Linhagem Celular Tumoral , Quitosana/química , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Interleucinas/imunologia , Interleucina-2/imunologia
5.
J Gene Med ; 26(7): e3716, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961849

RESUMO

BACKGROUND: Differentiation of pluripotent stem cells into desired lineages is the key aspect of regenerative medicine and cell-based therapy. Although RNA interference (RNAi) technology is exploited extensively for this, methods for long term silencing of the target genes leading to differentiation remain a challenge. Sustained knockdown of the target gene by RNAi is often inefficient as a result of low delivery efficiencies, protocol induced toxicity and safety concerns related to viral vectors. Earlier, we established octa-arginine functionalized hydroxyapatite nano vehicles (R8HNPs) for delivery of small interfering RNA (siRNA) against a pluripotency marker gene in mouse embryonic stem cells. Although we demonstrated excellent knockdown efficiency of the target gene, sustained gene silencing leading to differentiation was yet to be achieved. METHODS: To establish a sustained non-viral gene silencing protocol using R8HNP, we investigated various methods of siRNA delivery: double delivery of adherent cells (Adh-D), suspension delivery followed by adherent delivery (Susp + Adh), single delivery in suspension (Susp-S) and multiple deliveries in suspension (Susp-R). Sustained knockdown of a pluripotent marker gene followed by differentiation was analysed by reverse transcriptase-PCR, fluoresence-activated cell sorting and immunofluorescence techniques. Impact on cell viability as a result of repeated exposure of the R8HNP was also tested. RESULTS: Amongst the protocols tested, the most efficient knockdown of the target gene for a prolonged period of time was obtained by repeated suspension delivery of the R8HNP-siRNA conjugate. The long-term silencing of a pluripotency marker gene resulted in differentiation of R1 ESCs predominantly towards the extra embryonic and ectodermal lineages. Cells displayed excellent tolerance to repeated exposures of R8HNPs. CONCLUSIONS: The results demonstrate that R8HNPs are promising, biocompatible, non-viral alternatives for prolonged gene silencing and obtaining differentiated cells for therapeutics.


Assuntos
Diferenciação Celular , Durapatita , Células-Tronco Embrionárias Murinas , RNA Interferente Pequeno , Animais , Camundongos , Durapatita/química , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , RNA Interferente Pequeno/genética , Inativação Gênica , Materiais Biocompatíveis/química , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Nanopartículas/química , Transdução Genética , Interferência de RNA , Técnicas de Silenciamento de Genes
6.
Small ; 20(40): e2401989, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38855993

RESUMO

The minimally invasive deployment of scaffolds is a key safety factor for the regeneration of cartilage and bone defects. Osteogenesis relies primarily on cell-matrix interactions, whereas chondrogenesis relies on cell-cell aggregation. Bone matrix expansion requires osteoconductive scaffold degradation. However, chondrogenic cell aggregation is promoted on the repellent scaffold surface, and minimal scaffold degradation supports the avascular nature of cartilage regeneration. Here, a material satisfying these requirements for osteochondral regeneration is developed by integrating osteoconductive hydroxyapatite (HAp) with a chondroconductive shape memory polymer (SMP). The shape memory function-derived fixity and recovery of the scaffold enabled minimally invasive deployment and expansion to fill irregular defects. The crystalline phases on the SMP surface inhibited cell aggregation by suppressing water penetration and subsequent protein adsorption. However, HAp conjugation SMP (H-SMP) enhanced surface roughness and consequent cell-matrix interactions by limiting cell aggregation using crystal peaks. After mouse subcutaneous implantation, hydrolytic H-SMP accelerated scaffold degradation compared to that by the minimal degradation observed for SMP alone for two months. H-SMP and SMP are found to promote osteogenesis and chondrogenesis, respectively, in vitro and in vivo, including the regeneration of rat osteochondral defects using the binary scaffold form, suggesting that this material is promising for osteochondral regeneration.


Assuntos
Condrogênese , Osteogênese , Alicerces Teciduais , Alicerces Teciduais/química , Animais , Osteogênese/efeitos dos fármacos , Durapatita/química , Camundongos , Regeneração , Regeneração Óssea/efeitos dos fármacos , Propriedades de Superfície , Polímeros/química , Cartilagem/fisiologia , Engenharia Tecidual/métodos
7.
Small ; 20(37): e2400771, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38751055

RESUMO

Periodontitis is the leading cause of adult tooth missing. Thorny bacterial biofilm and high reactive oxygen species (ROS) levels in tissue are key elements for the periodontitis process. It is meaningful to develop an advanced therapeutic system with sequential antibacterial/ antioxidant ability to meet the overall goals of periodontitis therapy. Herein, a dual-polymer functionalized melanin-AgNPs (P/D-MNP-Ag) with biofilm penetration, hydroxyapatite binding, and sequentially treatment ability are fabricated. Polymer enriched with 2-(Dimethylamino)ethyl methacrylate (D), can be protonated in an acid environment with enhanced positive charge, promoting penetration in biofilm. The other polymer is rich in phosphate group (P) and can chelate Ca2+, promoting the polymer to adhere to the hydroxyapatite surface. Melanin has good ROS scavenging and photothermal abilities, after in situ reduction Ag, melanin-AgNPs composite has sequentially transitioned between antibacterial and antioxidative ability due to heat and acid accelerated Ag+ release. The released Ag+ and heat have synergistic antibacterial effects for bacterial killing. With Ag+ consumption, the antioxidant ability of MNP recovers to scavenge ROS in the inflammatory area. When applied in the periodontitis model, P/D-MNP-Ag has good therapeutical effects to ablate biofilm, relieve inflammation state, and reduce alveolar bone loss. P/D-MNP-Ag with sequential treatment ability provides a reference for developing advanced oral biofilm eradication systems.


Assuntos
Biofilmes , Durapatita , Melaninas , Nanocompostos , Periodontite , Polímeros , Prata , Biofilmes/efeitos dos fármacos , Melaninas/química , Melaninas/metabolismo , Periodontite/tratamento farmacológico , Periodontite/microbiologia , Durapatita/química , Nanocompostos/química , Prata/química , Prata/farmacologia , Animais , Polímeros/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Espécies Reativas de Oxigênio/metabolismo
8.
Small ; 20(43): e2403201, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39016938

RESUMO

Immune checkpoint inhibitors, are the fourth most common therapeutic tool after surgery, chemotherapy, and radiotherapy for colorectal cancer (CRC). However, only a small proportion (≈5%) of CRC patients, those with "hot" (immuno-activated) tumors, benefit from the therapy. Pyroptosis, an innovative form of programmed cell death, is a potentially effective means to mediate a "cold" to "hot" transformation of the tumor microenvironment (TME). Calcium-releasing hydroxyapatite (HAP) nanoparticles (NPs) trigger calcium overload and pyroptosis in tumor cells. However, current limitations of these nanomedicines, such as poor tumor-targeting capabilities and insufficient calcium (Ca) ion release, limit their application. In this study, chondroitin sulfate (CS) is used to target tumors via binding to CD44 receptors and kaempferol (KAE) is used as a Ca homeostasis disruptor to construct CS-HAP@KAE NPs that function as pyroptosis inducers in CRC cells. CS-HAP@KAE NPs bind to the tumor cell membrane, HAP released Ca in response to the acidic environment of the TME, and kaempferol (KAE) enhances the influx of extracellular Ca, resulting in intracellular Ca overload and pyroptosis. This is associated with excessive endoplasmic reticulum stress triggered activation of the stimulator of interferon genes/interferon regulatory factor 3 pathway, ultimately transforming the TME from "cold" to "hot".


Assuntos
Cálcio , Caspase 1 , Sulfatos de Condroitina , Neoplasias Colorretais , Durapatita , Estresse do Retículo Endoplasmático , Piroptose , Sulfatos de Condroitina/química , Sulfatos de Condroitina/metabolismo , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Durapatita/química , Piroptose/efeitos dos fármacos , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Caspase 1/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Nanopartículas/química , Proteínas de Membrana/metabolismo , Camundongos , Microambiente Tumoral
9.
J Transl Med ; 22(1): 437, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720345

RESUMO

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Assuntos
Durapatita , Glicólise , Macrófagos , Fosforilação Oxidativa , Ratos Sprague-Dawley , Animais , Durapatita/química , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Ratos , Suínos , Proliferação de Células/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Crânio/patologia , Crânio/efeitos dos fármacos , Camundongos , Microambiente Celular/efeitos dos fármacos , Células RAW 264.7 , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos
10.
Biopolymers ; 115(4): e23583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661371

RESUMO

Hydrogels from natural polysaccharides are of great interest for tissue engineering. This study aims (1) to prepare hydroxyapatite-loaded macroporous calcium alginate hydrogels by novel one-step technique using internal gelation in water-frozen solutions; (2) to evaluate their physicochemical properties; (3) to estimate their ability to support cell growth and proliferation in vitro. The structure of the hydrogel samples in a swollen state was studied by confocal laser scanning microscopy and was shown to represent a system of interconnected macropores with sizes of tens micron. The swelling behavior of the hydrogels, their mechanical properties (Young's moduli) in function of a hydroxyapatite content (5-30 mass%) were studied. All hydrogel samples loaded with hydroxyapatite were found to support growth and proliferation of mouse fibroblasts (L929) at long-term cultivation for 7 days. The obtained macroporous composite Ca-Alg-HA hydrogels could be promising for tissue engineering.


Assuntos
Alginatos , Durapatita , Hidrogéis , Alginatos/química , Hidrogéis/química , Hidrogéis/síntese química , Durapatita/química , Camundongos , Animais , Porosidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Engenharia Tecidual/métodos , Proliferação de Células/efeitos dos fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Linhagem Celular , Materiais Biocompatíveis/química
11.
Biotechnol Bioeng ; 121(9): 2767-2779, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837342

RESUMO

Injectable, tissue mimetic, bioactive, and biodegradable hydrogels offer less invasive regeneration and repair of tissues. The monitoring swelling and in vitro degradation capacities of hydrogels are highly important for drug delivery and tissue regeneration processes. Bioactivity of bone tissue engineered constructs in terms of mineralized apatite formation capacity is also pivotal. We have previously reported in situ forming chitosan-based injectable hydrogels integrated with hydroxyapatite and heparin for bone regeneration, promoting angiogenesis. These hydrogels were functionalized by glycerol and pH to improve their mechano-structural properties. In the present study, functionalized hybrid hydrogels were investigated for their swelling, in vitro degradation, and bioactivity performances. Hydrogels have degraded gradually in phosphate-buffered saline (PBS) with and without lysozyme enzyme. The percentage weight loss of hydrogels and their morphological and chemical properties, and pH of media were analyzed. The swelling ratio of hydrogels (55%-68%(wt), 6 h of equilibrium) indicated a high degree of cross-linking, can be suitable for controlled drug release. Hydrogels have gradually degraded reaching to 60%-70% (wt%) in 42 days in the presence and absence of lysozyme, respectively. Simulated body fluid (SBF)-treated hydrogels containing hydroxyapatite-induced needle-like carbonated-apatite mineralization was further enhanced by heparin content significantly.


Assuntos
Regeneração Óssea , Quitosana , Hidrogéis , Quitosana/química , Hidrogéis/química , Hidrogéis/farmacologia , Regeneração Óssea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Durapatita/química , Durapatita/farmacologia , Muramidase/química , Muramidase/farmacologia , Concentração de Íons de Hidrogênio , Materiais Biocompatíveis/química , Heparina/química , Heparina/farmacologia
12.
Mol Pharm ; 21(5): 2375-2382, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38573777

RESUMO

We investigated the importance of the carboxy group density in bone affinity during the development of peptide-based bone-seeking radiopharmaceuticals and carriers. Oligo-γ-carboxy glutamic acid peptides [(Gla)n] with higher carboxy group density than oligo-glutamic acid peptides [(Glu)n] and oligo-aspartic acid peptides [(Asp)n] were chosen. Using the radiogallium chelator N,N'-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N'-diacetic acid (HBED-CC), we synthesized [67Ga]Ga-HBED-CC-(Gla)n (n = 1, 2, 5, 8, 11, or 14) with high yields. Hydroxyapatite-binding assays, biodistribution, and SPECT imaging showed higher affinity and bone accumulation for [67Ga]Ga-HBED-CC-(Gla)n compared to [67Ga]Ga-HBED-CC-(Glu)n. Notably, [67Ga]Ga-HBED-CC-(Gla)8 and [67Ga]Ga-HBED-CC-(Gla)11 exhibited superior bone accumulation and rapid blood clearance. SPECT/CT imaging with [67Ga]Ga-HBED-CC-(Gla)8 exclusively visualized the bone tissue. These findings support the potential use of [67Ga]Ga-HBED-CC-(Gla)n as excellent bone-imaging PET probes, suggesting (Gla)n peptides are superior bone-seeking carriers.


Assuntos
Osso e Ossos , Radioisótopos de Gálio , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único , Animais , Radioisótopos de Gálio/farmacocinética , Radioisótopos de Gálio/química , Compostos Radiofarmacêuticos/farmacocinética , Camundongos , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/metabolismo , Peptídeos/química , Durapatita/química , Masculino , Ácido Glutâmico/metabolismo , Feminino
13.
Langmuir ; 40(31): 16557-16570, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39056438

RESUMO

Nanocrystalline apatites have been intensively studied for decades, not only for their well-known mimesis of bone apatite but also for applicative purposes, whether as biomaterials for skeletal repair or more recently for a variety of nanomedical applications enabled by their peculiar surface characteristics. Particularly, ion-doped apatites are of great interest because the incorporation of foreign ions in the composition of apatite (nano)crystals alters the bulk and surface properties, modifying their ability to interact with the external environment. This is clearly seen in the physiology of bone tissue, whose mineral phase, a low crystallinity apatitic phase, can dynamically exchange ions with cells, thus driving bone metabolism. Taking bone mineral as a model, the present work describes the development of Mg-doped hydroxyapatite nanoparticles, exploiting hydrothermal synthesis to achieve extents of Mg2+ doping hardly achieved before and using citrate to develop stable apatite colloidal dispersions. Morphological and physicochemical analyses, associated with in-depth investigation of ions populating the apatitic lattice and the nonapatitic surface layer, concurred to demonstrate the cooperative presence of Mg2+ and citrate ions, affecting the dynamic ion retention/release mechanisms. Achieving high Mg2+ doping rates and understanding how Mg doping translates into surface activation of apatite-based nanoparticles is expected to foster the design of novel smart and tunable devices, to adsorb and release ionic species and cargo molecules, with potential innovations in the biomedical field or even beyond, as in catalysis or for environmental remediation.


Assuntos
Magnésio , Nanopartículas , Nanopartículas/química , Magnésio/química , Apatitas/química , Durapatita/química , Propriedades de Superfície , Osso e Ossos/química , Tamanho da Partícula
14.
Langmuir ; 40(42): 22136-22144, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39387562

RESUMO

Extensive efforts have been made to improve the understanding of hard tissue regeneration, essential for advancing medical applications like bone graft materials. However, the mechanisms of bone biomineralization, particularly the regulation of hydroxyapatite growth by proteins/peptides, remain debated. Small biomolecules such as amino acids are ideal for studying these mechanisms due to their simplicity and relevance as protein/peptide building blocks. This study investigates the binding affinity of four amino acids including glycine (Gly), proline (Pro), lysine (Lys), and aspartic acid (Asp) to the hydroxyapatite (HAP) (100) surface through molecular dynamics simulations. Our findings reveal that aspartic acid exhibits the most energetically favorable binding affinity, attributed to its additional carboxylate group (-COO-), which facilitates stronger interactions with Ca2+ ions on the HAP surface compared to other amino acids with single carboxylate groups. This highlights the critical role of specific functional groups in modulating binding strength, emphasizing that the presence of multiple binding sites in amino acids enhances binding stability. Interestingly, the study also uncovers the significance of water-mediated interactions, as the compact water layer above the HAP surface acts as a barrier, complicating direct binding and underscoring the need to consider solvation effects in simulations. Glycine, due to its small size, demonstrates a unique ability to penetrate this tightly bound water monolayer, suggesting that molecular size influences binding dynamics. These simulations offer detailed insights into the atomic-level interactions, providing a deeper understanding of binding affinity and stability. These insights are pertinent for designing peptides or proteins with enhanced interactions with biomaterials, particularly in mimicking natural bone-binding processes.


Assuntos
Aminoácidos , Materiais Biocompatíveis , Durapatita , Simulação de Dinâmica Molecular , Durapatita/química , Aminoácidos/química , Aminoácidos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Sítios de Ligação
15.
Langmuir ; 40(28): 14476-14485, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38967501

RESUMO

Breast cancer is a common malignant tumor arising in normal mammary epithelial tissues. Nearly 75% of the patients with advanced mammary cancer develop bone metastases, resulting in secondary tumor growth, osteolytic bone degradation, and poor prognosis. The bone matrix comprises a highly hierarchical architecture and is composed of a nonmineral organic part, a predominantly type-I collagen, and a mineral inorganic part composed of hydroxyapatite (HA) nanocrystals (Ca10(PO4)6(OH)2). Although there has been extensive research indicating that the material properties of bone minerals affect metastatic breast cancer, it remains unclear how the microenvironment of the bone matrix, such as the roughness, which changes as a result of osteolytic bone remodeling, affects this disease. In this study, we created HA coatings in situ on polyelectrolyte multilayers (PEMs) by incubating PEMs in a mixture of phosphate and calcium ions. The HA films with distinctive roughness were successfully collected by controlling the incubation time, which served as the simulated microenvironment of the bone matrix. MDA-MB231 breast cancer cells were cultured on HA films, and an optimal roughness was observed in the adhesion, proliferation, and expression of two cytokines closely related to bone metastasis. This study contributed to the understanding of the effect of the microenvironment of the bone matrix, such as the roughness, on the metastasis behavior of breast cancer.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Durapatita , Durapatita/química , Humanos , Neoplasias da Mama/patologia , Neoplasias Ósseas/secundário , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Feminino , Microambiente Tumoral/efeitos dos fármacos , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos
16.
Biomacromolecules ; 25(3): 1871-1886, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38324764

RESUMO

Severe bone defects resulting from trauma and diseases remain a persistent clinical challenge. In this study, a hierarchical biomimetic microporous hydrogel composite scaffold was constructed by mimicking the hierarchical structure of bone. Initially, gelatin methacrylamide (GelMA) and methacrylic anhydride silk fibroin (SilMA) were synthesized, and GelMA/SilMA inks with suitable rheological and mechanical properties were prepared. Biomimetic micropores were then generated by using an aqueous two-phase emulsification method. Subsequently, biomimetic microporous GelMA/SilMA was mixed with hydroxyapatite (HAp) to prepare biomimetic microporous GelMA/SilMA/HAp ink. Hierarchical biomimetic microporous GelMA/SilMA/HAp (M-GSH) scaffolds were then fabricated through digital light processing (DLP) 3D printing. Finally, in vitro experiments were conducted to investigate cell adhesion, proliferation, and inward migration as well as osteogenic differentiation and vascular regeneration effects. In vivo experiments indicated that the biomimetic microporous scaffold significantly promoted tissue integration and bone regeneration after 12 weeks of implantation, achieving 42.39% bone volume fraction regeneration. In summary, this hierarchical biomimetic microporous scaffold provides a promising strategy for the repair and treatment of bone defects.


Assuntos
Acrilamidas , Durapatita , Alicerces Teciduais , Durapatita/química , Alicerces Teciduais/química , Gelatina/química , Osteogênese , Biomimética , Regeneração Óssea , Impressão Tridimensional , Engenharia Tecidual
17.
Biomacromolecules ; 25(4): 2286-2301, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38502906

RESUMO

Bone defects show a slow rate of osteoconduction and imperfect reconstruction, and the current treatment strategies to treat bone defects suffer from limitations like immunogenicity, lack of cell adhesion, and the absence of osteogenic activity. In this context, bioactive supramolecular peptides and peptide gels offer unique opportunities to develop biomaterials that can play a dominant role in the biomineralization of bone tissues and promote bone formation. In this article, we have demonstrated the potential of six tetrapeptides for specific binding to hydroxyapatite (HAp), a major inorganic component of the bone, and their effect on the growth and osteogenic differentiation of mesenchymal stem cells (MSCs). We adopted a simplistic approach of rationally designing amphiphilic peptides by incorporating amino acids, Ser, pSer, Pro, Hyp, Asp, and Glu, which are present in either collagenous or noncollagenous proteins and render properties like antioxidant, calcification, and mineralization. A total of six tetrapeptides, Trp-Trp-His-Ser (WWHS), Trp-Trp-His-pSer (WWHJ), Trp-Trp-His-Pro (WWHP), Trp-Trp-His-Hyp (WWHO), Trp-Trp-His-Asp (WWHD), and Trp-Trp-His-Glu (WWHE), were synthesized. Four peptides were found to self-assemble into nanofibrillar gels resembling the extracellular matrix (ECM), and the remaining two peptides (WWHJ, WWHP) self-assembled into nanorods. The peptides showed excellent cell adhesion, encapsulation, proliferation, and migration and induced the differentiation of mesenchymal stem cells (MSCs), as evident from the enhanced mineralization, resulting from the upregulation of osteogenic markers, RUNX 2, COL I, OPN, and OCN, alkaline phosphatase (ALP) production, and calcium deposition. The peptides also induced the downregulation of inflammatory markers, TNF-α and iNOS, and the upregulation of the anti-inflammatory marker, IL-10, resulting in M2 macrophage polarization. RANKL and TRAP genes were downregulated in a coculture system of MC3T3-E1 and RAW 264.7 cells, implying that peptides promote osteogenesis and inhibit osteoclastogenesis. The peptide-based biomaterials developed in this work can enhance bone regeneration capacity and show strong potential as scaffolds for bone tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Aminoácidos/metabolismo , Regeneração Óssea , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Diferenciação Celular , Durapatita/química , Peptídeos/farmacologia , Peptídeos/metabolismo , Géis/farmacologia , Células Cultivadas
18.
Biomacromolecules ; 25(6): 3784-3794, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38743836

RESUMO

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.


Assuntos
Regeneração Óssea , Células-Tronco Mesenquimais , Osteogênese , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Ratos , Regeneração Óssea/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Osteogênese/fisiologia , Engenharia Tecidual/métodos , Poliésteres/química , Diferenciação Celular , Ratos Sprague-Dawley , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Células Cultivadas , Proliferação de Células , Crânio/lesões , Crânio/patologia , Durapatita/química , Durapatita/farmacologia
19.
Ecol Appl ; 34(1): e2833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36864716

RESUMO

Few studies tried to explore the mitigation effect and underlying mechanisms of biochar and their complex for negative allelopathy from invasive plants, which may provide a new way in the invasive plant management. Herein, an invasive plant (Solidago canadensis)-derived biochar (IBC) and its composite with hydroxyapatite (HAP/IBC) were synthesized by high temperature pyrolysis, and characterized by scanning electron microscopy, energy dispersion spectrometer, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Then, both the batch adsorption and pot experiments were conducted to compare the removal effects of kaempferol-3-O-ß-D-glucoside (C21 H20 O11 , kaempf), an allelochemical from S. canadensis, on IBC and HAP/IBC, respectively. HAP/IBC showed a stronger affinity for kaempf than IBC due to its higher specific surface area, more functional groups (P-O, P-O-P, PO4 3- ), stronger crystallization [Ca3 (PO4 )2 ]. The maximum kaempf adsorption capacity on HAP/IBC was six times higher than on IBC (10.482 mg/g > 1.709 mg/g) via π-π interactions, functional groups, and metal complexation. The kaempf adsorption process could be fitted best by both pseudo-second-order kinetic and Langmuir isotherm models. Furthermore, HAP/IBC addition into soils could enhance and even recover the germination rate and/or seedling growth of tomato inhibited by negative allelopathy from the invasive S. canadensis. These results indicate that the composite of HAP/IBC could more effectively mitigate the allelopathy from S. canadensis than IBC, which may be a potential efficient approach to control the invasive plant and improve invaded soils.


Assuntos
Solidago , Poluentes Químicos da Água , Alelopatia , Durapatita/química , Carvão Vegetal/química , Solo , Poluentes Químicos da Água/análise
20.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 135-141, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38836669

RESUMO

Epigenetic change has been found to play an important role in cell differentiation and regulation and the dental pulp stem cell in tissue engineering is gaining attention due to the ability of cells to differentiate into odontoblast and other cells. This study evaluated the influence of poly L- lactic acid with hydroxyapatite-coated with polyaniline scaffold (PLLA/HA/PANI) on dental pulp stem cell (DPSC) proliferation and differentiation. After scaffold preparation and DPSCs seeding, the cells proliferation and differentiation were evaluated by immunocytochemistry assay and cell viability was measured by cytotoxicity / MTT assay. The results showed (PLLA/HA/PANI) scaffold facilitates DPSC proliferation and differentiation with gene expression. This finding underscores the promise of this biomaterial combination as a scaffold for dental tissue regeneration and application.


Assuntos
Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Polpa Dentária , Durapatita , Odontoblastos , Osteoblastos , Células-Tronco , Alicerces Teciduais , Polpa Dentária/citologia , Humanos , Diferenciação Celular/efeitos dos fármacos , Odontoblastos/citologia , Odontoblastos/efeitos dos fármacos , Odontoblastos/metabolismo , Alicerces Teciduais/química , Células-Tronco/citologia , Células-Tronco/metabolismo , Células-Tronco/efeitos dos fármacos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Proliferação de Células/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Compostos de Anilina/farmacologia , Compostos de Anilina/química , Poliésteres/química , Poliésteres/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA