RESUMO
High-resolution electron microscopy of nervous systems has enabled the reconstruction of synaptic connectomes. However, we do not know the synaptic sign for each connection (i.e., whether a connection is excitatory or inhibitory), which is implied by the released transmitter. We demonstrate that artificial neural networks can predict transmitter types for presynapses from electron micrographs: a network trained to predict six transmitters (acetylcholine, glutamate, GABA, serotonin, dopamine, octopamine) achieves an accuracy of 87% for individual synapses, 94% for neurons, and 91% for known cell types across a D. melanogaster whole brain. We visualize the ultrastructural features used for prediction, discovering subtle but significant differences between transmitter phenotypes. We also analyze transmitter distributions across the brain and find that neurons that develop together largely express only one fast-acting transmitter (acetylcholine, glutamate, or GABA). We hope that our publicly available predictions act as an accelerant for neuroscientific hypothesis generation for the fly.
Assuntos
Drosophila melanogaster , Microscopia Eletrônica , Neurotransmissores , Sinapses , Animais , Encéfalo/ultraestrutura , Encéfalo/metabolismo , Conectoma , Drosophila melanogaster/ultraestrutura , Drosophila melanogaster/metabolismo , Ácido gama-Aminobutírico/metabolismo , Microscopia Eletrônica/métodos , Redes Neurais de Computação , Neurônios/metabolismo , Neurônios/ultraestrutura , Neurotransmissores/metabolismo , Sinapses/ultraestrutura , Sinapses/metabolismoRESUMO
Many animals use visual information to navigate1-4, but how such information is encoded and integrated by the navigation system remains incompletely understood. In Drosophila melanogaster, EPG neurons in the central complex compute the heading direction5 by integrating visual input from ER neurons6-12, which are part of the anterior visual pathway (AVP)10,13-16. Here we densely reconstruct all neurons in the AVP using electron-microscopy data17. The AVP comprises four neuropils, sequentially linked by three major classes of neurons: MeTu neurons10,14,15, which connect the medulla in the optic lobe to the small unit of the anterior optic tubercle (AOTUsu) in the central brain; TuBu neurons9,16, which connect the AOTUsu to the bulb neuropil; and ER neurons6-12, which connect the bulb to the EPG neurons. On the basis of morphologies, connectivity between neural classes and the locations of synapses, we identify distinct information channels that originate from four types of MeTu neurons, and we further divide these into ten subtypes according to the presynaptic connections in the medulla and the postsynaptic connections in the AOTUsu. Using the connectivity of the entire AVP and the dendritic fields of the MeTu neurons in the optic lobes, we infer potential visual features and the visual area from which any ER neuron receives input. We confirm some of these predictions physiologically. These results provide a strong foundation for understanding how distinct sensory features can be extracted and transformed across multiple processing stages to construct higher-order cognitive representations.
Assuntos
Conectoma , Drosophila melanogaster , Navegação Espacial , Vias Visuais , Percepção Visual , Animais , Feminino , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Drosophila melanogaster/ultraestrutura , Microscopia Eletrônica , Neurônios/classificação , Neurônios/fisiologia , Neurônios/ultraestrutura , Neurópilo/citologia , Neurópilo/fisiologia , Neurópilo/ultraestrutura , Lobo Óptico de Animais não Mamíferos/anatomia & histologia , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/fisiologia , Lobo Óptico de Animais não Mamíferos/ultraestrutura , Navegação Espacial/fisiologia , Sinapses/fisiologia , Sinapses/ultraestrutura , Vias Visuais/anatomia & histologia , Vias Visuais/citologia , Vias Visuais/fisiologia , Vias Visuais/ultraestrutura , Percepção Visual/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/citologia , Encéfalo/fisiologia , Encéfalo/ultraestruturaRESUMO
The blood-brain barrier (BBB) protects the central nervous system from infections or harmful substances1; its impairment can lead to or exacerbate various diseases of the central nervous system2-4. However, the mechanisms of BBB disruption during infection and inflammatory conditions5,6 remain poorly defined. Here we find that activation of the pore-forming protein GSDMD by the cytosolic lipopolysaccharide (LPS) sensor caspase-11 (refs. 7-9), but not by TLR4-induced cytokines, mediates BBB breakdown in response to circulating LPS or during LPS-induced sepsis. Mice deficient in the LBP-CD14 LPS transfer and internalization pathway10-12 resist BBB disruption. Single-cell RNA-sequencing analysis reveals that brain endothelial cells (bECs), which express high levels of GSDMD, have a prominent response to circulating LPS. LPS acting on bECs primes Casp11 and Cd14 expression and induces GSDMD-mediated plasma membrane permeabilization and pyroptosis in vitro and in mice. Electron microscopy shows that this features ultrastructural changes in the disrupted BBB, including pyroptotic endothelia, abnormal appearance of tight junctions and vasculature detachment from the basement membrane. Comprehensive mouse genetic analyses, combined with a bEC-targeting adeno-associated virus system, establish that GSDMD activation in bECs underlies BBB disruption by LPS. Delivery of active GSDMD into bECs bypasses LPS stimulation and opens the BBB. In CASP4-humanized mice, Gram-negative Klebsiella pneumoniae infection disrupts the BBB; this is blocked by expression of a GSDMD-neutralizing nanobody in bECs. Our findings outline a mechanism for inflammatory BBB breakdown, and suggest potential therapies for diseases of the central nervous system associated with BBB impairment.
Assuntos
Barreira Hematoencefálica , Encéfalo , Células Endoteliais , Gasderminas , Inflamação , Animais , Feminino , Humanos , Masculino , Camundongos , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/ultraestrutura , Barreira Hematoencefálica/virologia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Caspases Iniciadoras/metabolismo , Dependovirus , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Gasderminas/antagonistas & inibidores , Gasderminas/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Klebsiella pneumoniae/fisiologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/sangue , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Piroptose , Sepse/metabolismo , Sepse/patologia , Sepse/microbiologia , Análise de Célula Única , Junções Íntimas/metabolismo , Junções Íntimas/ultraestruturaRESUMO
A defining pathological feature of most neurodegenerative diseases is the assembly of proteins into amyloid that form disease-specific structures1. In Alzheimer's disease, this is characterized by the deposition of ß-amyloid and tau with disease-specific conformations. The in situ structure of amyloid in the human brain is unknown. Here, using cryo-fluorescence microscopy-targeted cryo-sectioning, cryo-focused ion beam-scanning electron microscopy lift-out and cryo-electron tomography, we determined in-tissue architectures of ß-amyloid and tau pathology in a postmortem Alzheimer's disease donor brain. ß-amyloid plaques contained a mixture of fibrils, some of which were branched, and protofilaments, arranged in parallel arrays and lattice-like structures. Extracellular vesicles and cuboidal particles defined the non-amyloid constituents of ß-amyloid plaques. By contrast, tau inclusions formed parallel clusters of unbranched filaments. Subtomogram averaging a cluster of 136 tau filaments in a single tomogram revealed the polypeptide backbone conformation and filament polarity orientation of paired helical filaments within tissue. Filaments within most clusters were similar to each other, but were different between clusters, showing amyloid heterogeneity that is spatially organized by subcellular location. The in situ structural approaches outlined here for human donor tissues have applications to a broad range of neurodegenerative diseases.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Encéfalo , Microscopia Crioeletrônica , Tomografia com Microscopia Eletrônica , Placa Amiloide , Proteínas tau , Humanos , Masculino , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/ultraestrutura , Autopsia , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/química , Vesículas Extracelulares/ultraestrutura , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Placa Amiloide/química , Placa Amiloide/ultraestrutura , Proteínas tau/química , Proteínas tau/metabolismo , Proteínas tau/ultraestruturaRESUMO
Neurodegenerative diseases are characterized by the abnormal filamentous assembly of specific proteins in the central nervous system1. Human genetic studies have established a causal role for protein assembly in neurodegeneration2. However, the underlying molecular mechanisms remain largely unknown, which is limiting progress in developing clinical tools for these diseases. Recent advances in cryo-electron microscopy have enabled the structures of the protein filaments to be determined from the brains of patients1. All neurodegenerative diseases studied to date have been characterized by the self-assembly of proteins in homomeric amyloid filaments, including that of TAR DNA-binding protein 43 (TDP-43) in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) types A and B3,4. Here we used cryo-electron microscopy to determine filament structures from the brains of individuals with FTLD-TDP type C, one of the most common forms of sporadic FTLD-TDP. Unexpectedly, the structures revealed that a second protein, annexin A11 (ANXA11), co-assembles with TDP-43 in heteromeric amyloid filaments. The ordered filament fold is formed by TDP-43 residues G282/G284-N345 and ANXA11 residues L39-Y74 from their respective low-complexity domains. Regions of TDP-43 and ANXA11 that were previously implicated in protein-protein interactions form an extensive hydrophobic interface at the centre of the filament fold. Immunoblots of the filaments revealed that the majority of ANXA11 exists as an approximately 22 kDa N-terminal fragment lacking the annexin core domain. Immunohistochemistry of brain sections showed the colocalization of ANXA11 and TDP-43 in inclusions, redefining the histopathology of FTLD-TDP type C. This work establishes a central role for ANXA11 in FTLD-TDP type C. The unprecedented formation of heteromeric amyloid filaments in the human brain revises our understanding of amyloid assembly and may be of significance for the pathogenesis of neurodegenerative diseases.
Assuntos
Amiloide , Anexinas , Encéfalo , Proteínas de Ligação a DNA , Demência Frontotemporal , Humanos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Anexinas/química , Anexinas/metabolismo , Anexinas/ultraestrutura , Afasia/complicações , Afasia/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Demência Frontotemporal/classificação , Demência Frontotemporal/complicações , Demência Frontotemporal/metabolismo , Modelos Moleculares , Multimerização ProteicaRESUMO
Parkinson's disease (PD) is the most common movement disorder, with resting tremor, rigidity, bradykinesia and postural instability being major symptoms1. Neuropathologically, it is characterized by the presence of abundant filamentous inclusions of α-synuclein in the form of Lewy bodies and Lewy neurites in some brain cells, including dopaminergic nerve cells of the substantia nigra2. PD is increasingly recognised as a multisystem disorder, with cognitive decline being one of its most common non-motor symptoms. Many patients with PD develop dementia more than 10 years after diagnosis3. PD dementia (PDD) is clinically and neuropathologically similar to dementia with Lewy bodies (DLB), which is diagnosed when cognitive impairment precedes parkinsonian motor signs or begins within one year from their onset4. In PDD, cognitive impairment develops in the setting of well-established PD. Besides PD and DLB, multiple system atrophy (MSA) is the third major synucleinopathy5. It is characterized by the presence of abundant filamentous α-synuclein inclusions in brain cells, especially oligodendrocytes (Papp-Lantos bodies). We previously reported the electron cryo-microscopy structures of two types of α-synuclein filament extracted from the brains of individuals with MSA6. Each filament type is made of two different protofilaments. Here we report that the cryo-electron microscopy structures of α-synuclein filaments from the brains of individuals with PD, PDD and DLB are made of a single protofilament (Lewy fold) that is markedly different from the protofilaments of MSA. These findings establish the existence of distinct molecular conformers of assembled α-synuclein in neurodegenerative disease.
Assuntos
Química Encefálica , Encéfalo , Microscopia Crioeletrônica , Doença por Corpos de Lewy , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestrutura , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Doença por Corpos de Lewy/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Demência/complicações , Demência/patologiaRESUMO
Optical imaging of the dynamics of living specimens involves tradeoffs between spatial resolution, temporal resolution, and phototoxicity, made more difficult in three dimensions. Here, however, we report that rapid three-dimensional (3D) dynamics can be studied beyond the diffraction limit in thick or densely fluorescent living specimens over many time points by combining ultrathin planar illumination produced by scanned Bessel beams with super-resolution structured illumination microscopy. We demonstrate in vivo karyotyping of chromosomes during mitosis and identify different dynamics for the actin cytoskeleton at the dorsal and ventral surfaces of fibroblasts. Compared to spinning disk confocal microscopy, we demonstrate substantially reduced photodamage when imaging rapid morphological changes in D. discoideum cells, as well as improved contrast and resolution at depth within developing C. elegans embryos. Bessel beam structured plane illumination thus promises new insights into complex biological phenomena that require 4D subcellular spatiotemporal detail in either a single or multicellular context.
Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Imagem Óptica/métodos , Animais , Encéfalo/citologia , Encéfalo/ultraestrutura , Caenorhabditis elegans/citologia , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem Celular , Linhagem Celular Tumoral , Dermatite Fototóxica , Dictyostelium/ultraestrutura , Drosophila melanogaster/citologia , Fibroblastos/ultraestrutura , Humanos , Cariotipagem/métodos , Larva/citologia , Larva/ultraestrutura , MitoseRESUMO
An animal's nervous system changes as its body grows from birth to adulthood and its behaviours mature1-8. The form and extent of circuit remodelling across the connectome is unknown3,9-15. Here we used serial-section electron microscopy to reconstruct the full brain of eight isogenic Caenorhabditis elegans individuals across postnatal stages to investigate how it changes with age. The overall geometry of the brain is preserved from birth to adulthood, but substantial changes in chemical synaptic connectivity emerge on this consistent scaffold. Comparing connectomes between individuals reveals substantial differences in connectivity that make each brain partly unique. Comparing connectomes across maturation reveals consistent wiring changes between different neurons. These changes alter the strength of existing connections and create new connections. Collective changes in the network alter information processing. During development, the central decision-making circuitry is maintained, whereas sensory and motor pathways substantially remodel. With age, the brain becomes progressively more feedforward and discernibly modular. Thus developmental connectomics reveals principles that underlie brain maturation.
Assuntos
Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Caenorhabditis elegans/citologia , Conectoma , Modelos Neurológicos , Vias Neurais , Sinapses/fisiologia , Envelhecimento/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/ultraestrutura , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/ultraestrutura , Individualidade , Interneurônios/citologia , Microscopia Eletrônica , Neurônios/citologia , Comportamento EstereotipadoRESUMO
Synucleinopathies, which include multiple system atrophy (MSA), Parkinson's disease, Parkinson's disease with dementia and dementia with Lewy bodies (DLB), are human neurodegenerative diseases1. Existing treatments are at best symptomatic. These diseases are characterized by the presence of, and believed to be caused by the formation of, filamentous inclusions of α-synuclein in brain cells2,3. However, the structures of α-synuclein filaments from the human brain are unknown. Here, using cryo-electron microscopy, we show that α-synuclein inclusions from the brains of individuals with MSA are made of two types of filament, each of which consists of two different protofilaments. In each type of filament, non-proteinaceous molecules are present at the interface of the two protofilaments. Using two-dimensional class averaging, we show that α-synuclein filaments from the brains of individuals with MSA differ from those of individuals with DLB, which suggests that distinct conformers or strains characterize specific synucleinopathies. As is the case with tau assemblies4-9, the structures of α-synuclein filaments extracted from the brains of individuals with MSA differ from those formed in vitro using recombinant proteins, which has implications for understanding the mechanisms of aggregate propagation and neurodegeneration in the human brain. These findings have diagnostic and potential therapeutic relevance, especially because of the unmet clinical need to be able to image filamentous α-synuclein inclusions in the human brain.
Assuntos
Encéfalo/metabolismo , Microscopia Crioeletrônica , Corpos de Inclusão/química , Corpos de Inclusão/ultraestrutura , Atrofia de Múltiplos Sistemas/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/ultraestrutura , Encéfalo/patologia , Encéfalo/ultraestrutura , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão/patologia , Modelos Moleculares , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Atrofia de Múltiplos Sistemas/terapia , Dobramento de Proteína , Putamen/metabolismo , Putamen/ultraestrutura , alfa-Sinucleína/metabolismoRESUMO
Dense reconstruction of synaptic connectivity requires high-resolution electron microscopy images of entire brains and tools to efficiently trace neuronal wires across the volume. To generate such a resource, we sectioned and imaged a larval zebrafish brain by serial block-face electron microscopy at a voxel size of 14 × 14 × 25 nm3. We segmented the resulting dataset with the flood-filling network algorithm, automated the detection of chemical synapses and validated the results by comparisons to transmission electron microscopic images and light-microscopic reconstructions. Neurons and their connections are stored in the form of a queryable and expandable digital address book. We reconstructed a network of 208 neurons involved in visual motion processing, most of them located in the pretectum, which had been functionally characterized in the same specimen by two-photon calcium imaging. Moreover, we mapped all 407 presynaptic and postsynaptic partners of two superficial interneurons in the tectum. The resource developed here serves as a foundation for synaptic-resolution circuit analyses in the zebrafish nervous system.
Assuntos
Sinapses , Peixe-Zebra , Animais , Larva , Sinapses/ultraestrutura , Encéfalo/ultraestrutura , Microscopia EletrônicaRESUMO
Alterations in brain size and organization represent some of the most distinctive changes in the emergence of our species. Yet, there is limited understanding of how genetic factors contributed to altered neuroanatomy during human evolution. Here, we analyze neuroimaging and genetic data from up to 30,000 people in the UK Biobank and integrate with genomic annotations for different aspects of human evolution, including those based on ancient DNA and comparative genomics. We show that previously reported signals of recent polygenic selection for cortical anatomy are not replicable in a more ancestrally homogeneous sample. We then investigate relationships between evolutionary annotations and common genetic variants shaping cortical surface area and white-matter connectivity for each hemisphere. Our analyses identify single-nucleotide polymorphism heritability enrichment in human-gained regulatory elements that are active in early brain development, affecting surface areas of several parts of the cortex, including left-hemispheric speech-associated regions. We also detect heritability depletion in genomic regions with Neanderthal ancestry for connectivity of the uncinate fasciculus; this is a white-matter tract involved in memory, language, and socioemotional processing with relevance to neuropsychiatric disorders. Finally, we show that common genetic loci associated with left-hemispheric pars triangularis surface area overlap with a human-gained enhancer and affect regulation of ZIC4, a gene implicated in neurogenesis. This work demonstrates how genomic investigations of present-day neuroanatomical variation can help shed light on the complexities of our evolutionary past.
Assuntos
Evolução Biológica , Encéfalo , Genômica , Neuroimagem , Polimorfismo de Nucleotídeo Único , Encéfalo/crescimento & desenvolvimento , Encéfalo/ultraestrutura , DNA Antigo , Genômica/métodos , Humanos , Neuroimagem/métodosRESUMO
Adolescence is a time of profound changes in the physical wiring and function of the brain. Here, we analyzed structural and functional brain network development in an accelerated longitudinal cohort spanning 14 to 25 y (n = 199). Core to our work was an advanced in vivo model of cortical wiring incorporating MRI features of corticocortical proximity, microstructural similarity, and white matter tractography. Longitudinal analyses assessing age-related changes in cortical wiring identified a continued differentiation of multiple corticocortical structural networks in youth. We then assessed structure-function coupling using resting-state functional MRI measures in the same participants both via cross-sectional analysis at baseline and by studying longitudinal change between baseline and follow-up scans. At baseline, regions with more similar structural wiring were more likely to be functionally coupled. Moreover, correlating longitudinal structural wiring changes with longitudinal functional connectivity reconfigurations, we found that increased structural differentiation, particularly between sensory/unimodal and default mode networks, was reflected by reduced functional interactions. These findings provide insights into adolescent development of human brain structure and function, illustrating how structural wiring interacts with the maturation of macroscale functional hierarchies.
Assuntos
Desenvolvimento do Adolescente , Encéfalo , Conectoma , Adolescente , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Rede Nervosa/fisiologia , Rede Nervosa/ultraestruturaRESUMO
Chronic wasting disease (CWD) is a widely distributed prion disease of cervids with implications for wildlife conservation and also for human and livestock health. The structures of infectious prions that cause CWD and other natural prion diseases of mammalian hosts have been poorly understood. Here we report a 2.8 Å resolution cryogenic electron microscopy-based structure of CWD prion fibrils from the brain of a naturally infected white-tailed deer expressing the most common wild-type PrP sequence. Like recently solved rodent-adapted scrapie prion fibrils, our atomic model of CWD fibrils contains single stacks of PrP molecules forming parallel in-register intermolecular ß-sheets and intervening loops comprising major N- and C-terminal lobes within the fibril cross-section. However, CWD fibrils from a natural cervid host differ markedly from the rodent structures in many other features, including a ~ 180° twist in the relative orientation of the lobes. This CWD structure suggests mechanisms underlying the apparent CWD transmission barrier to humans and should facilitate more rational approaches to the development of CWD vaccines and therapeutics.
Assuntos
Microscopia Crioeletrônica , Cervos , Doença de Emaciação Crônica , Doença de Emaciação Crônica/patologia , Animais , Microscopia Crioeletrônica/métodos , Encéfalo/patologia , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Príons/química , Príons/metabolismoRESUMO
Difficulty with attention is an important symptom in many conditions in psychiatry, including neurodiverse conditions such as autism. There is a need to better understand the neurobiological correlates of attention and leverage these findings in healthcare settings. Nevertheless, it remains unclear if it is possible to build dimensional predictive models of attentional state in a sample that includes participants with neurodiverse conditions. Here, we use 5 datasets to identify and validate functional connectome-based markers of attention. In dataset 1, we use connectome-based predictive modeling and observe successful prediction of performance on an in-scan sustained attention task in a sample of youth, including participants with a neurodiverse condition. The predictions are not driven by confounds, such as head motion. In dataset 2, we find that the attention network model defined in dataset 1 generalizes to predict in-scan attention in a separate sample of neurotypical participants performing the same attention task. In datasets 3-5, we use connectome-based identification and longitudinal scans to probe the stability of the attention network across months to years in individual participants. Our results help elucidate the brain correlates of attentional state in youth and support the further development of predictive dimensional models of other clinically relevant phenotypes.
Assuntos
Atenção , Transtorno do Espectro Autista , Encéfalo , Conectoma , Humanos , Adolescente , Transtorno do Espectro Autista/fisiopatologia , Transtorno do Espectro Autista/psicologia , Conjuntos de Dados como Assunto , Masculino , Feminino , Encéfalo/fisiopatologia , Encéfalo/ultraestruturaRESUMO
Transmitter receptors constitute a key component of the molecular machinery for intercellular communication in the brain. Recent efforts have mapped the density of diverse transmitter receptors across the human cerebral cortex with an unprecedented level of detail. Here, we distill these observations into key organizational principles. We demonstrate that receptor densities form a natural axis in the human cerebral cortex, reflecting decreases in differentiation at the level of laminar organization and a sensory-to-association axis at the functional level. Along this natural axis, key organizational principles are discerned: progressive molecular diversity (increase of the diversity of receptor density); excitation/inhibition (increase of the ratio of excitatory-to-inhibitory receptor density); and mirrored, orderly changes of the density of ionotropic and metabotropic receptors. The uncovered natural axis formed by the distribution of receptors aligns with the axis that is formed by other dimensions of cortical organization, such as the myelo- and cytoarchitectonic levels. Therefore, the uncovered natural axis constitutes a unifying organizational feature linking multiple dimensions of the cerebral cortex, thus bringing order to the heterogeneity of cortical organization.
Assuntos
Encéfalo/metabolismo , Comunicação Celular/genética , Córtex Cerebral/metabolismo , Receptores de Neurotransmissores/genética , Autorradiografia , Encéfalo/diagnóstico por imagem , Encéfalo/ultraestrutura , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/ultraestrutura , Humanos , Receptores de AMPA/genética , Receptores de AMPA/isolamento & purificação , Receptores de GABA-A/genética , Receptores de GABA-A/isolamento & purificação , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/isolamento & purificação , Receptores de Neurotransmissores/química , Receptores de Neurotransmissores/classificação , Receptores de Neurotransmissores/ultraestruturaRESUMO
Synaptic dysfunction and cognitive decline in Huntington's disease (HD) involve hyperactive A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). To identify the molecular mechanisms through which ADAM10 is associated with synaptic dysfunction in HD, we performed an immunoaffinity purification-mass spectrometry (IP-MS) study of endogenous ADAM10 in the brains of wild-type and HD mice. We found that proteins implicated in synapse organization, synaptic plasticity, and vesicle and organelles trafficking interact with ADAM10, suggesting that it may act as hub protein at the excitatory synapse. Importantly, the ADAM10 interactome is enriched in presynaptic proteins and ADAM10 co-immunoprecipitates with piccolo (PCLO), a key player in the recycling and maintenance of synaptic vesicles. In contrast, reduced ADAM10/PCLO immunoprecipitation occurs in the HD brain, with decreased density of synaptic vesicles in the reserve and docked pools at the HD presynaptic terminal. Conditional heterozygous deletion of ADAM10 in the forebrain of HD mice reduces active ADAM10 to wild-type level and normalizes ADAM10/PCLO complex formation and synaptic vesicle density and distribution. The results indicate that presynaptic ADAM10 and PCLO are a relevant component of HD pathogenesis.
Assuntos
Proteína ADAM10/metabolismo , Proteínas do Citoesqueleto/metabolismo , Doença de Huntington/metabolismo , Neuropeptídeos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína ADAM10/genética , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Humanos , Doença de Huntington/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/genética , Proteômica/métodos , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem/métodosRESUMO
Given the anatomical and functional similarities between the retina and the brain, the retina could be a "window" for viewing brain structures. We investigated the association between retinal nerve fiber layers (peripapillary retinal nerve fiber layer, ppRNFL; macular ganglion cell-inner plexiform layer, GC-IPL; and macular ganglion cell complex, GCC), and brain magnetic resonance imaging (MRI) parameters in young health adults. We included 857 students (mean age: 23.3 years, 71.3% women) from the i-Share study. We used multivariate linear models to study the cross-sectional association of each retinal nerve layer thickness assessed by spectral-domain optical coherence tomography (SD-OCT) with structural (volumes and cortical thickness), and microstructural brain markers, assessed on MRI globally and regionally. Microstructural MRI parameters included diffusion tensor imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI). On global brain analysis, thicker ppRNFL, GC-IPL and GCC were all significantly associated with patterns of diffusion metrics consistent with higher WM microstructural integrity. In regional analyses, after multiple testing corrections, our results suggested significant associations of some retinal nerve layers with brain regional gray matter occipital volumes and with diffusion MRI parameters in a region involved in the visual pathway and in regions containing associative tracts. No associations were found with global volumes or with global or regional cortical thicknesses. Results of this study suggest that some retinal nerve layers may reflect brain structures. Further studies are needed to confirm these results in young subjects.
Assuntos
Encéfalo , Neuroimagem , Células Ganglionares da Retina , Humanos , Masculino , Feminino , Adulto Jovem , Imageamento por Ressonância Magnética , Encéfalo/ultraestrutura , Células Ganglionares da Retina/ultraestruturaRESUMO
We demonstrate gas cluster ion beam scanning electron microscopy (SEM), in which wide-area ion milling is performed on a series of thick tissue sections. This three-dimensional electron microscopy technique acquires datasets with <10 nm isotropic resolution of each section, and these can then be stitched together to span the sectioned volume. Incorporating gas cluster ion beam SEM into existing single-beam and multibeam SEM workflows should be straightforward, increasing reliability while improving z resolution by a factor of three or more.
Assuntos
Encéfalo/ultraestrutura , Córtex Cerebral/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Animais , Drosophila melanogaster , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fixação de TecidosRESUMO
High-resolution serial-section electron microscopy (ssEM) makes it possible to investigate the dense meshwork of axons, dendrites, and synapses that form neuronal circuits. However, the imaging scale required to comprehensively reconstruct these structures is more than ten orders of magnitude smaller than the spatial extents occupied by networks of interconnected neurons, some of which span nearly the entire brain. Difficulties in generating and handling data for large volumes at nanoscale resolution have thus restricted vertebrate studies to fragments of circuits. These efforts were recently transformed by advances in computing, sample handling, and imaging techniques, but high-resolution examination of entire brains remains a challenge. Here, we present ssEM data for the complete brain of a larval zebrafish (Danio rerio) at 5.5 days post-fertilization. Our approach utilizes multiple rounds of targeted imaging at different scales to reduce acquisition time and data management requirements. The resulting dataset can be analysed to reconstruct neuronal processes, permitting us to survey all myelinated axons (the projectome). These reconstructions enable precise investigations of neuronal morphology, which reveal remarkable bilateral symmetry in myelinated reticulospinal and lateral line afferent axons. We further set the stage for whole-brain structure-function comparisons by co-registering functional reference atlases and in vivo two-photon fluorescence microscopy data from the same specimen. All obtained images and reconstructions are provided as an open-access resource.
Assuntos
Encéfalo/ultraestrutura , Microscopia Eletrônica , Peixe-Zebra , Anatomia Artística , Animais , Atlas como Assunto , Axônios/metabolismo , Axônios/ultraestrutura , Encéfalo/anatomia & histologia , Encéfalo/citologia , Conjuntos de Dados como Assunto , Larva/anatomia & histologia , Larva/citologia , Larva/ultraestrutura , Microscopia de Fluorescência por Excitação Multifotônica , Publicação de Acesso Aberto , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/crescimento & desenvolvimentoRESUMO
Profiling molecular features associated with the morphological landscape of tissue is crucial for investigating the structural and spatial patterns that underlie the biological function of tissues. In this study, we present a new method, spatial gene expression patterns by deep learning of tissue images (SPADE), to identify important genes associated with morphological contexts by combining spatial transcriptomic data with coregistered images. SPADE incorporates deep learning-derived image patterns with spatially resolved gene expression data to extract morphological context markers. Morphological features that correspond to spatial maps of the transcriptome were extracted by image patches surrounding each spot and were subsequently represented by image latent features. The molecular profiles correlated with the image latent features were identified. The extracted genes could be further analyzed to discover functional terms and exploited to extract clusters maintaining morphological contexts. We apply our approach to spatial transcriptomic data from different tissues, platforms and types of images to demonstrate an unbiased method that is capable of obtaining image-integrated gene expression trends.