Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.948
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 160(6): 1196-208, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25728669

RESUMO

Most cell-surface receptors for cytokines and growth factors signal as dimers, but it is unclear whether remodeling receptor dimer topology is a viable strategy to "tune" signaling output. We utilized diabodies (DA) as surrogate ligands in a prototypical dimeric receptor-ligand system, the cytokine Erythropoietin (EPO) and its receptor (EpoR), to dimerize EpoR ectodomains in non-native architectures. Diabody-induced signaling amplitudes varied from full to minimal agonism, and structures of these DA/EpoR complexes differed in EpoR dimer orientation and proximity. Diabodies also elicited biased or differential activation of signaling pathways and gene expression profiles compared to EPO. Non-signaling diabodies inhibited proliferation of erythroid precursors from patients with a myeloproliferative neoplasm due to a constitutively active JAK2V617F mutation. Thus, intracellular oncogenic mutations causing ligand-independent receptor activation can be counteracted by extracellular ligands that re-orient receptors into inactive dimer topologies. This approach has broad applications for tuning signaling output for many dimeric receptor systems.


Assuntos
Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Cristalografia por Raios X , Dimerização , Eritropoetina/metabolismo , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Camundongos , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação Puntual , Engenharia de Proteínas , Receptores da Eritropoetina/agonistas , Receptores da Eritropoetina/antagonistas & inibidores , Alinhamento de Sequência
2.
Cell ; 149(1): 63-74, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22464323

RESUMO

Osteoblasts are an important component of the hematopoietic microenvironment in bone. However, the mechanisms by which osteoblasts control hematopoiesis remain unknown. We show that augmented HIF signaling in osteoprogenitors results in HSC niche expansion associated with selective expansion of the erythroid lineage. Increased red blood cell production occurred in an EPO-dependent manner with increased EPO expression in bone and suppressed EPO expression in the kidney. In contrast, inactivation of HIF in osteoprogenitors reduced EPO expression in bone. Importantly, augmented HIF activity in osteoprogenitors protected mice from stress-induced anemia. Pharmacologic or genetic inhibition of prolyl hydroxylases1/2/3 in osteoprogenitors elevated EPO expression in bone and increased hematocrit. These data reveal an unexpected role for osteoblasts in the production of EPO and modulation of erythropoiesis. Furthermore, these studies demonstrate a molecular role for osteoblastic PHD/VHL/HIF signaling that can be targeted to elevate both HSCs and erythroid progenitors in the local hematopoietic microenvironment.


Assuntos
Eritropoese , Eritropoetina/metabolismo , Osteoblastos/metabolismo , Transdução de Sinais , Anemia/prevenção & controle , Animais , Células Precursoras Eritroides/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Rim/metabolismo , Camundongos , Fator de Transcrição Sp7 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Nature ; 596(7871): 291-295, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34321659

RESUMO

So far, gene therapies have relied on complex constructs that cannot be finely controlled1,2. Here we report a universal switch element that enables precise control of gene replacement or gene editing after exposure to a small molecule. The small-molecule inducers are currently in human use, are orally bioavailable when given to animals or humans and can reach both peripheral tissues and the brain. Moreover, the switch system, which we denote Xon, does not require the co-expression of any regulatory proteins. Using Xon, the translation of the desired elements for controlled gene replacement or gene editing machinery occurs after a single oral dose of the inducer, and the robustness of expression can be controlled by the drug dose, protein stability and redosing. The ability of Xon to provide temporal control of protein expression can be adapted for cell-biology applications and animal studies. Additionally, owing to the oral bioavailability and safety of the drugs used, the Xon switch system provides an unprecedented opportunity to refine and tailor the application of gene therapies in humans.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Edição de Genes/métodos , Terapia Genética/métodos , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína 9 Associada à CRISPR/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Eritropoetina/biossíntese , Eritropoetina/genética , Eritropoetina/metabolismo , Éxons/genética , Feminino , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular Espinal/metabolismo , Lipofuscinoses Ceroides Neuronais/metabolismo , Progranulinas/biossíntese , Progranulinas/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
4.
Blood ; 141(4): 422-432, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36322932

RESUMO

Transferrin receptor 1 (TfR1) performs a critical role in cellular iron uptake. Hepatocyte TfR1 is also proposed to influence systemic iron homeostasis by interacting with the hemochromatosis protein HFE to regulate hepcidin production. Here, we generated hepatocyte Tfrc knockout mice (Tfrcfl/fl;Alb-Cre+), either alone or together with Hfe knockout or ß-thalassemia, to investigate the extent to which hepatocyte TfR1 function depends on HFE, whether hepatocyte TfR1 impacts hepcidin regulation by serum iron and erythropoietic signals, and its contribution to hepcidin suppression and iron overload in ß-thalassemia. Compared with Tfrcfl/fl;Alb-Cre- controls, Tfrcfl/fl;Alb-Cre+ mice displayed reduced serum and liver iron; mildly reduced hematocrit, mean cell hemoglobin, and mean cell volume; increased erythropoietin and erythroferrone; and unchanged hepcidin levels that were inappropriately high relative to serum iron, liver iron, and erythroferrone levels. However, ablation of hepatocyte Tfrc had no impact on iron phenotype in Hfe knockout mice. Tfrcfl/fl;Alb-Cre+ mice also displayed a greater induction of hepcidin by serum iron compared with Tfrcfl/fl;Alb-Cre- controls. Finally, although acute erythropoietin injection similarly reduced hepcidin in Tfrcfl/fl;Alb-Cre+ and Tfrcfl/fl;Alb-Cre- mice, ablation of hepatocyte Tfrc in a mouse model of ß-thalassemia intermedia ameliorated hepcidin deficiency and liver iron loading. Together, our data suggest that the major nonredundant function of hepatocyte TfR1 in iron homeostasis is to interact with HFE to regulate hepcidin. This regulatory pathway is modulated by serum iron and contributes to hepcidin suppression and iron overload in murine ß-thalassemia.


Assuntos
Proteína da Hemocromatose , Ferro , Receptores da Transferrina , Talassemia beta , Animais , Camundongos , Talassemia beta/genética , Talassemia beta/metabolismo , Eritropoetina/metabolismo , Proteína da Hemocromatose/genética , Proteína da Hemocromatose/metabolismo , Hepatócitos/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Homeostase , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos Knockout , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo
5.
Mol Psychiatry ; 29(10): 2979-2996, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38622200

RESUMO

Severe psychiatric illnesses, for instance schizophrenia, and affective diseases or autism spectrum disorders, have been associated with cognitive impairment and perturbed excitatory-inhibitory balance in the brain. Effects in juvenile mice can elucidate how erythropoietin (EPO) might aid in rectifying hippocampal transcriptional networks and synaptic structures of pyramidal lineages, conceivably explaining mitigation of neuropsychiatric diseases. An imminent conundrum is how EPO restores synapses by involving interneurons. By analyzing ~12,000 single-nuclei transcriptomic data, we generated a comprehensive molecular atlas of hippocampal interneurons, resolved into 15 interneuron subtypes. Next, we studied molecular alterations upon recombinant human (rh)EPO and saw that gene expression changes relate to synaptic structure, trans-synaptic signaling and intracellular catabolic pathways. Putative ligand-receptor interactions between pyramidal and inhibitory neurons, regulating synaptogenesis, are altered upon rhEPO. An array of in/ex vivo experiments confirms that specific interneuronal populations exhibit reduced dendritic complexity, synaptic connectivity, and changes in plasticity-related molecules. Metabolism and inhibitory potential of interneuron subgroups are compromised, leading to greater excitability of pyramidal neurons. To conclude, improvement by rhEPO of neuropsychiatric phenotypes may partly owe to restrictive control over interneurons, facilitating re-connectivity and synapse development.


Assuntos
Eritropoetina , Hipocampo , Interneurônios , Células Piramidais , Animais , Interneurônios/metabolismo , Interneurônios/efeitos dos fármacos , Camundongos , Hipocampo/metabolismo , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Eritropoetina/genética , Células Piramidais/metabolismo , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Masculino , Transcriptoma , Plasticidade Neuronal/fisiologia , Camundongos Endogâmicos C57BL , Humanos
6.
Immunity ; 44(2): 209-11, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26885850

RESUMO

Phagocytes clear dying cells within an organism to prevent damaging inflammation and autoimmunity. In this issue of Immunity, Luo et al. (2016) describe how "find-me" signals from apoptotic cells induce erythropoietin signaling within macrophages to prime them for efferocytosis.


Assuntos
Eritropoetina/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lisofosfolipídeos/metabolismo , Macrófagos/fisiologia , Receptores da Eritropoetina/metabolismo , Esfingosina/análogos & derivados , Animais , Feminino
7.
Immunity ; 44(2): 287-302, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26872696

RESUMO

The failure of apoptotic cell clearance is linked to autoimmune diseases, nonresolving inflammation, and developmental abnormalities; however, pathways that regulate phagocytes for efficient apoptotic cell clearance remain poorly known. Apoptotic cells release find-me signals to recruit phagocytes to initiate their clearance. Here we found that find-me signal sphingosine 1-phosphate (S1P) activated macrophage erythropoietin (EPO) signaling promoted apoptotic cell clearance and immune tolerance. Dying cell-released S1P activated macrophage EPO signaling. Erythropoietin receptor (EPOR)-deficient macrophages exhibited impaired apoptotic cell phagocytosis. EPO enhanced apoptotic cell clearance through peroxisome proliferator activated receptor-γ (PPARγ). Moreover, macrophage-specific Epor(-/-) mice developed lupus-like symptoms, and interference in EPO signaling ameliorated the disease progression in lupus-like mice. Thus, we have identified a pathway that regulates macrophages to clear dying cells, uncovered the priming function of find-me signal S1P, and found a role of the erythropoiesis regulator EPO in apoptotic cell disposal, with implications for harnessing dying cell clearance.


Assuntos
Eritropoetina/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Lisofosfolipídeos/metabolismo , Macrófagos/fisiologia , Receptores da Eritropoetina/metabolismo , Esfingosina/análogos & derivados , Animais , Apoptose , Linhagem Celular , Feminino , Tolerância Imunológica/genética , Lisofosfolipídeos/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PPAR gama/genética , PPAR gama/metabolismo , Comunicação Parácrina , Fagocitose/genética , Receptores da Eritropoetina/genética , Transdução de Sinais , Esfingosina/genética , Esfingosina/metabolismo
8.
Dev Dyn ; 253(10): 906-921, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38450920

RESUMO

BACKGROUND: Anemia is defined as a lack of erythrocytes, low hemoglobin levels, or abnormal erythrocyte morphology. Diamond-Blackfan anemia (DBA) is a rare and severe congenital hypoplastic anemia that occurs due to the dominant inheritance of a ribosomal protein gene mutation. Even rarer is a case described as Diamond-Blackfan anemia like (DBAL), which occurs due to a loss-of-function EPO mutation recessive inheritance. The effective cures for DBAL are bone marrow transfusion and treatment with erythropoiesis-stimulating agents (ESAs). To effectively manage the condition, construction of DBAL models to identify new medical methods or screen drugs are necessary. RESULTS: Here, an epoa-deficient mutant zebrafish called epoaszy8 was generated to model DBAL. The epoa-deficiency in zebrafish caused developmental defects in erythroid cells, leading to severe congenital anemia. Using the DBAL model, we validated a loss-of-function EPO mutation using an in vivo functional analysis and explored the ability of ESAs to alleviate congenital anemia. CONCLUSIONS: Together, our study demonstrated that epoa deficiency in zebrafish leads to a phenotype resembling DBAL. The DBAL zebrafish model was found to be beneficial for the in vivo assessment of patient-derived EPO variants with unclear implications and for devising potential therapeutic approaches for DBAL.


Assuntos
Anemia de Diamond-Blackfan , Modelos Animais de Doenças , Peixe-Zebra , Animais , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/terapia , Eritropoetina/metabolismo , Eritropoetina/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Eritropoese , Mutação
9.
Mol Med ; 30(1): 151, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278948

RESUMO

Erythropoietin (EPO), expressed in red blood progenitor cells, primarily regulates erythropoiesis by binding to its receptor. Besides anemia, recent studies have identified new therapeutic indications for EPO that are not connected to red blood cell formation. Elevated EPO levels harm bone homeostasis in adult organisms and are associated with increased osteoclast; however, the underlying molecular mechanisms remain unclear. This study demonstrated that EPO enhanced osteoclast differentiation and bone resorption in vitro. We showed that EPO promoted osteoclast formation by up-regulating PPARγ expression through activating the Jak2/ERK signaling pathway. Consistently, PPARγ antagonists rescued the hyperactivation of osteoclasts due to EPO, while PPARγ agonists reversed the EMP9-mediated decrease in osteoclast differentiation. Further, exposing female mice to EPO for two months led to a decrease in bone mass and increased osteoclast numbers. The present results suggested that EPO promotes osteoclastogenesis by regulating the Jak2/ERK/ PPARγ signaling pathway. From a clinical perspective, the risk of compromised bone health should be considered when using EPO to treat anemia in post-operative patients with intertrochanteric fractures of the femur, as it could significantly impact the patient's recovery and quality of life.


Assuntos
Diferenciação Celular , Eritropoetina , Osteoclastos , PPAR gama , Eritropoetina/farmacologia , Eritropoetina/metabolismo , Animais , PPAR gama/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Camundongos , Feminino , Diferenciação Celular/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Janus Quinase 2/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Humanos , Regulação para Cima/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Reabsorção Óssea/metabolismo , Camundongos Endogâmicos C57BL
10.
Biochem Biophys Res Commun ; 734: 150783, 2024 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-39383829

RESUMO

While myofibroblasts are the key cause of abnormal extracellular matrix accumulation, the origin of which has not yet been fully elucidated. Recently, it has been found that macrophage-myofibroblast transformation (MMT) defined by the expression of both macrophage markers (F4/80 or CD68) and myofibroblast markers (α-SMA) is one of its important sources. In the process of MMT, it is unclear whether epor is involved. In this study, when BMDM was induced by tgf-ß1, the number of F4/80+α-SMA+ cells increased, the cells polarized toward M2, and the expression of tgf-ß1 increased. After the activation of epor, the number of F4/80 +α-SMA + cells and the polarization level of M2 were further increased. At the same time, we found that the conditioned medium from MMT cells could induce the activation of 3T3 cells with increased the expression of α-SMA and col-1. In contrast, the number of F4/80+α-SMA + cells, the polarization of M2, and the expression of Tgf-ß1 decreased after epor was inhibited by siRNA. Our results demonstrate that the activation of epor in BMDMs could promote the transformation of macrophage-myofibroblast induced by TGF-ß1.


Assuntos
Diferenciação Celular , Eritropoetina , Macrófagos , Miofibroblastos , Transdução de Sinais , Miofibroblastos/metabolismo , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Animais , Camundongos , Macrófagos/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/citologia , Fator de Crescimento Transformador beta1/metabolismo
11.
Plant Biotechnol J ; 22(11): 3018-3027, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38968612

RESUMO

Microalgae are considered as attractive expression systems for the production of biologics. As photosynthetic unicellular organisms, they do not require costly and complex media for growing and are able to secrete proteins and perform protein glycosylation. Some biologics have been successfully produced in the green microalgae Chlamydomonas reinhardtii. However, post-translational modifications like glycosylation of these Chlamydomonas-made biologics have poorly been investigated so far. Therefore, in this study, we report on the first structural investigation of glycans linked to human erythropoietin (hEPO) expressed in a wild-type C. reinhardtii strain and mutants impaired in key Golgi glycosyltransferases. The glycoproteomic analysis of recombinant hEPO (rhEPO) expressed in the wild-type strain demonstrated that the three N-glycosylation sites are 100% glycosylated with mature N-glycans containing four to five mannose residues and carrying core xylose, core fucose and O-methyl groups. Moreover, expression in C. reinhardtii insertional mutants defective in xylosyltransferases A and B and fucosyltransferase resulted in drastic decreases of core xylosylation and core fucosylation of glycans N-linked to the rhEPOs, thus demonstrating that this strategy offers perspectives for humanizing the N-glycosylation of the Chlamydomonas-made biologics.


Assuntos
Chlamydomonas reinhardtii , Eritropoetina , Proteínas Recombinantes , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Glicosilação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Eritropoetina/metabolismo , Eritropoetina/genética , Humanos , Mutação/genética , Polissacarídeos/metabolismo
12.
Ann Rheum Dis ; 83(5): 564-575, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38272667

RESUMO

OBJECTIVE: Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS: The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS: The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION: EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.


Assuntos
Artrite Experimental , Artrite Reumatoide , Eritropoetina , Neuraminidase , Sinoviócitos , Animais , Humanos , Camundongos , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Eritropoetina/metabolismo , Fibroblastos/metabolismo , Neuraminidase/metabolismo , Fator de Transcrição STAT5/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
13.
Blood ; 139(21): 3181-3193, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35040907

RESUMO

Anemia of inflammation, also known as anemia of chronic disease, is refractory to erythropoietin (EPO) treatment, but the mechanisms underlying the EPO refractory state are unclear. Here, we demonstrate that high mobility group box-1 protein (HMGB1), a damage-associated molecular pattern molecule recently implicated in anemia development during sepsis, leads to reduced expansion and increased death of EPO-sensitive erythroid precursors in human models of erythropoiesis. HMGB1 significantly attenuates EPO-mediated phosphorylation of the Janus kinase 2/STAT5 and mTOR signaling pathways. Genetic ablation of receptor for advanced glycation end products, the only known HMGB1 receptor expressed by erythroid precursors, does not rescue the deleterious effects of HMGB1 on EPO signaling, either in human or murine precursors. Furthermore, surface plasmon resonance studies highlight the ability of HMGB1 to interfere with the binding between EPO and the EPOR. Administration of a monoclonal anti-HMGB1 antibody after sepsis onset in mice partially restores EPO signaling in vivo. Thus, HMGB1-mediated restriction of EPO signaling contributes to the chronic phase of anemia of inflammation.


Assuntos
Anemia , Eritropoetina , Proteína HMGB1 , Sepse , Anemia/genética , Animais , Eritropoese/genética , Eritropoetina/metabolismo , Inflamação , Camundongos , Receptores da Eritropoetina/metabolismo , Sepse/complicações
14.
Blood ; 140(22): 2371-2384, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36054916

RESUMO

We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.


Assuntos
Eritropoetina , Transtornos Mieloproliferativos , Neoplasias , Policitemia , Humanos , Eritropoese/fisiologia , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Policitemia/metabolismo , Eritropoetina/metabolismo , Transtornos Mieloproliferativos/metabolismo , Células Precursoras Eritroides/metabolismo , Neoplasias/metabolismo , Receptor IGF Tipo 1/metabolismo
15.
Cytokine ; 177: 156559, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38412767

RESUMO

Over the years, there has been progress in understanding the molecular aspects of iron metabolism and erythropoiesis. However, despite research conducted both in laboratories and living organisms, there are still unanswered questions due to the complex nature of these fields. In this study we investigated the effects of hookworm infection on iron metabolism and how the hosts response to anemia is affected using hamsters infected with Ancylostoma ceylanicum as a model. Our data revealed interesting relationships between infection-induced anemia, erythropoiesis, iron metabolism, and immune modulation, such that the elevated production of erythropoietin (EPO) in renal tissue indicated intensified erythropoiesis in response to anemia. Additionally, the increased expression of the erythroferrone (ERFE) gene in the spleen suggested its involvement in iron regulation and erythropoiesis. Gene expression patterns of genes related to iron metabolism varied in different tissues, indicating tissue-specific adaptations to hypoxia. The modulation of pro-inflammatory and anti-inflammatory cytokines highlighted the delicate balance between immune response and erythropoiesis. Data derived from the investigation of changes induced in iron metabolism and stress erythropoiesis following anemia aid in our understanding of mechanisms related to blood spoliation and anemia, which could potentially be extrapolated or compared to other types or causes of anemia. These findings also contribute to our understanding of the pathophysiology of erythropoiesis in the context of blood loss.


Assuntos
Anemia , Eritropoetina , Infecções por Uncinaria , Humanos , Eritropoese/fisiologia , Hepcidinas/genética , Anemia/etiologia , Ferro , Eritropoetina/metabolismo , Infecções por Uncinaria/complicações
16.
Am J Nephrol ; 55(2): 255-259, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37231827

RESUMO

Renal anemia is treated with erythropoiesis-stimulating agents (ESAs), even though epoetin alfa and darbepoetin increase the risk of cardiovascular death and thromboembolic events, including stroke. Hypoxia-inducible factor prolyl hydroxylase domain (HIF-PHD) inhibitors have been developed as an alternative to ESAs, producing comparable increases in hemoglobin. However, in advanced chronic kidney disease, HIF-PHD inhibitors can increase the risk of cardiovascular death, heart failure, and thrombotic events to a greater extent than that with ESAs, indicating that there is a compelling need for safer alternatives. Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce the risk of major cardiovascular events, and they increase hemoglobin, an effect that is related to an increase in erythropoietin and an expansion in red blood cell mass. SGLT2 inhibitors increase hemoglobin by ≈0.6-0.7 g/dL, resulting in the alleviation of anemia in many patients. The magnitude of this effect is comparable to that seen with low-to-medium doses of HIF-PHD inhibitors, and it is apparent even in advanced chronic kidney disease. Interestingly, HIF-PHD inhibitors act by interfering with the prolyl hydroxylases that degrade both HIF-1α and HIF-2α, thus enhancing both isoforms. However, HIF-2α is the physiological stimulus to the production of erythropoietin, and upregulation of HIF-1α may be an unnecessary ancillary property of HIF-PHD inhibitors, which may have adverse cardiac and vascular consequences. In contrast, SGLT2 inhibitors act to selectively increase HIF-2α, while downregulating HIF-1α, a distinctive profile that may contribute to their cardiorenal benefits. Intriguingly, for both HIF-PHD and SGLT2 inhibitors, the liver is likely to be an important site of increased erythropoietin production, recapitulating the fetal phenotype. These observations suggest that the use of SGLT2 inhibitors should be seriously evaluated as a therapeutic approach to treat renal anemia, yielding less cardiovascular risk than other therapeutic options.


Assuntos
Anemia , Eritropoetina , Hematínicos , Inibidores de Prolil-Hidrolase , Insuficiência Renal Crônica , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Anemia/tratamento farmacológico , Anemia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico , Epoetina alfa/uso terapêutico , Eritropoese , Eritropoetina/metabolismo , Hematínicos/efeitos adversos , Hemoglobinas , Prolina Dioxigenases do Fator Induzível por Hipóxia , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
17.
Synapse ; 78(1): e22282, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37794768

RESUMO

Memory and learning allow animals to appropriate certain properties of nature with which they can navigate in it successfully. Memory is acquired slowly and consists of two major phases, a fragile early phase (short-term memory, <4 h) and a more robust and long-lasting late one (long-term memory, >4 h). Erythropoietin (EPO) prolongs memory from 24 to 72 h when animals are trained for 5 min in a place recognition task but not when training lasted 3 min (short-term memory). It is not known whether it promotes the formation of remote memory (≥21 days). We address whether the systemic administration of EPO can convert a short-term memory into a long-term remote memory, and the neural plasticity mechanisms involved. We evaluated the effect of training duration (3 or 5 min) on the expression of endogenous EPO and its receptor to shed light on the role of EPO in coordinating mechanisms of neural plasticity using a single-trial spatial learning test. We administered EPO 10 min post-training and evaluated memory after 24 h, 96 h, 15 days, or 21 days. We also determined the effect of EPO administered 10 min after training on the expression of arc and bdnf during retrieval at 24 h and 21 days. Data show that learning induces EPO/EPOr expression increase linked to memory extent, exogenous EPO prolongs memory up to 21 days; and prefrontal cortex bdnf expression at 24 h and in the hippocampus at 21 days, whereas arc expression increases at 21 days in the hippocampus and prefrontal cortex.


Assuntos
Eritropoetina , Consolidação da Memória , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Eritropoetina/farmacologia , Eritropoetina/metabolismo , Receptores da Eritropoetina/metabolismo , Encéfalo/metabolismo , Hipocampo/metabolismo , Memória de Longo Prazo
18.
Mol Biol Rep ; 51(1): 1065, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39422776

RESUMO

Erythropoietin (EPO) is the main hematopoietic growth factor prescribed to overcome anemia. It is also a neuroprotective agent. EPO binds to the erythropoietin receptor (EPOR), expressed on neurons and glial cells in the central nervous system (CNS), and exerts its neuroprotective potencies through the EPO-EPOR complex. The mechanism of the signal transduction pathways of EPO on glial cells is defined. EPO-EPOR complex can affect neurological disorders, such as Alzheimer's disease, Parkinson's disease, ischemia, retinal injury, stroke, hypoxia, trauma, and demyelinating diseases, through acting downstream signaling pathways. This review focuses on the roles of EPO in different types of glial cells (astrocytes, microglia, oligodendrocytes, and Schwann cells) and their relationships with signaling pathways. Information on the non-erythropoietic action of EPO and related signaling systems in connection with glial cells could enhance EPO treatment to restore different CNS disorders and propose new perspectives on the neuroprotective potential of EPO.


Assuntos
Sistema Nervoso Central , Eritropoetina , Neuroglia , Sistema Nervoso Periférico , Receptores da Eritropoetina , Transdução de Sinais , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Humanos , Neuroglia/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Receptores da Eritropoetina/metabolismo , Sistema Nervoso Periférico/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo
19.
Mol Biol Rep ; 51(1): 916, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158746

RESUMO

INTRODUCTION: In end stage renal disease )ESRD(, reduced EPO production resulted in decreased oxygen diffusion that cause Hypoxia-inducible factors (HIFs) stabilization. The mechanism of beneficial effects of H2S in chronic kidney disease (CKD) is the aim of the present study to examine the effects of the H2S donor sodium hydrosulfide (NaHS) on renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein in 5/6 nephrectomy-induced chronic renal failure in rats. METHODS AND MATERIALS: Male rats were assigned into 3 groups (n = 8): Sham, CKD and NaHS groups. In the CKD group, 5/6 nephrectomy was performed. In the sham group, rats were anesthetized but 5/6 nephrectomy was not induced. In the NaHS group, 30 µmol/L of NaHS in drinking water for 8 weeks was adminstrated 4 weeks after 5/6 nephrectomy induction. At the end of the 12 week, blood and renal tissues were taken to evaluate renal function parameters, oxidative stress indices and expression levels of HIF-2α gene and erythropoietin protein. RESULTS: The induction of 5/6 nephrectomy significantly caused renal dysfunction, oxidative stress, increased HIF-2α gene expression and decreased erythropoietin levels in renal tissue samples. NaHS administration resulted in a marked improvement in renal function and oxidative stress indicators, a marked reduction in HIF-2α gene expression as well as an increase in erythropoietin protein levels in comparison with the CKD group. CONCLUSION: In this study, regional hypoxia and oxidative stress in CKD, may cause the stabilization of the HIFs complexes, although erythropoietin synthesis was not increased due to destructive effects of CKD on the kidney tissues. Administration of NaHS caused up-regulating HIF-erythropoietin signaling pathway.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Eritropoetina , Sulfeto de Hidrogênio , Nefrectomia , Estresse Oxidativo , Insuficiência Renal Crônica , Animais , Eritropoetina/genética , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Masculino , Ratos , Sulfeto de Hidrogênio/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estresse Oxidativo/efeitos dos fármacos , Rim/metabolismo , Rim/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Sulfetos/farmacologia , Modelos Animais de Doenças
20.
Zoolog Sci ; 41(4): 329-341, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093279

RESUMO

Enucleated erythrocytes are characteristic of adult mammals. In contrast, fish, amphibians, reptiles, birds, and fetal mammals possess nucleated erythrocytes in their circulation. Erythroid maturation is regulated by erythropoietin (EPO) and its receptor (EPOR), which are conserved among vertebrates. In mammals, EPOR on the erythroid progenitor membrane disappears after terminal differentiation. However, in western clawed frog, Xenopus tropicalis, mature erythrocytes maintain EPOR expression, suggesting that they have non-canonical functions of the EPO-EPOR axis rather than proliferation and differentiation. In this study, we investigated the non-canonical functions of EPOR in Xenopus mature erythrocytes. EPO stimulation of peripheral erythrocytes did not induce proliferation but induced phosphorylation of intracellular proteins, including signal transducer and activator of transcription 5 (STAT5). RNA-Seq analysis of EPO-stimulated peripheral erythrocytes identified 45 differentially expressed genes (DEGs), including cytokine inducible SH2 containing protein gene (cish) and suppressor of cytokine signaling 3 gene (socs3), negative regulators of the EPOR-Janus kinase (JAK)-STAT pathway. These phosphorylation studies and pathway analysis demonstrated the activation of the JAK-STAT pathway through EPO-EPOR signaling in erythrocytes. Through comparison with EPO-responsive genes in mouse erythroid progenitors obtained from a public database, we identified 31 novel EPO-responsive genes indicating non-canonical functions. Among these, we focused on ornithine decarboxylase 1 gene (odc1), which is the rate-limiting enzyme in polyamine synthesis and affects hematopoietic progenitor differentiation and the endothelial cell response to hypoxic stress. An EPO-supplemented culture of erythrocytes showed increased odc1 expression followed by a decrease in polyamine-rich erythrocytes, suggesting EPO-responsive polyamine excretion. These findings will advance our knowledge of the unknown regulatory systems under the EPO-EPOR axis and functional differences between vertebrates' nucleated and enucleated erythrocytes.


Assuntos
Eritrócitos , Eritropoetina , Receptores da Eritropoetina , Xenopus , Animais , Eritropoetina/metabolismo , Eritropoetina/genética , Receptores da Eritropoetina/metabolismo , Receptores da Eritropoetina/genética , Eritrócitos/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica , Eritroblastos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA