RESUMO
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.
Assuntos
Esclerose Lateral Amiotrófica , Degeneração Lobar Frontotemporal , Córtex Pré-Frontal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Perfilação da Expressão Gênica , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Análise da Expressão Gênica de Célula ÚnicaRESUMO
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that results from many diverse genetic causes. Although therapeutics specifically targeting known causal mutations may rescue individual types of ALS, these approaches cannot treat most cases since they have unknown genetic etiology. Thus, there is a pressing need for therapeutic strategies that rescue multiple forms of ALS. Here, we show that pharmacological inhibition of PIKFYVE kinase activates an unconventional protein clearance mechanism involving exocytosis of aggregation-prone proteins. Reducing PIKFYVE activity ameliorates ALS pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of ALS including C9ORF72, TARDBP, FUS, and sporadic. These findings highlight a potential approach for mitigating ALS pathogenesis that does not require stimulating macroautophagy or the ubiquitin-proteosome system.
Assuntos
Esclerose Lateral Amiotrófica , Fosfatidilinositol 3-Quinases , Animais , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Neurônios Motores , Mutação , Proteína FUS de Ligação a RNA/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de DoençasRESUMO
Protein aggregation and dysfunction of the ubiquitin-proteasome system are hallmarks of many neurodegenerative diseases. Here, we address the elusive link between these phenomena by employing cryo-electron tomography to dissect the molecular architecture of protein aggregates within intact neurons at high resolution. We focus on the poly-Gly-Ala (poly-GA) aggregates resulting from aberrant translation of an expanded GGGGCC repeat in C9orf72, the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. We find that poly-GA aggregates consist of densely packed twisted ribbons that recruit numerous 26S proteasome complexes, while other macromolecules are largely excluded. Proximity to poly-GA ribbons stabilizes a transient substrate-processing conformation of the 26S proteasome, suggesting stalled degradation. Thus, poly-GA aggregates may compromise neuronal proteostasis by driving the accumulation and functional impairment of a large fraction of cellular proteasomes.
Assuntos
Alanina/análogos & derivados , Proteína C9orf72 , Neurônios , Ácido Poliglutâmico , Complexo de Endopeptidases do Proteassoma , Agregados Proteicos , Alanina/genética , Alanina/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Células HEK293 , Humanos , Neurônios/metabolismo , Neurônios/patologia , Ácido Poliglutâmico/genética , Ácido Poliglutâmico/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Ratos , Ratos Sprague-DawleyRESUMO
Most neurodegenerative diseases are characterized by the accumulation of protein aggregates, some of which are toxic to cells. Mounting evidence demonstrates that in several diseases, protein aggregates can pass from neuron to neuron along connected networks, although the role of this spreading phenomenon in disease pathogenesis is not completely understood. Here we briefly review the molecular and histopathological features of protein aggregation in neurodegenerative disease, we summarize the evidence for release of proteins from donor cells into the extracellular space, and we highlight some other mechanisms by which protein aggregates might be transmitted to recipient cells. We also discuss the evidence that supports a role for spreading of protein aggregates in neurodegenerative disease pathogenesis and some limitations of this model. Finally, we consider potential therapeutic strategies to target spreading of protein aggregates in the treatment of neurodegenerative diseases.
Assuntos
Doenças Neurodegenerativas/genética , Neurônios/metabolismo , Agregados Proteicos/genética , Agregação Patológica de Proteínas/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Encefalopatia Traumática Crônica/genética , Encefalopatia Traumática Crônica/patologia , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Doenças Neurodegenerativas/classificação , Doenças Neurodegenerativas/patologia , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doenças Priônicas/genética , Doenças Priônicas/patologia , Agregação Patológica de Proteínas/patologiaRESUMO
Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease characterized by loss of motor neurons. Human genetic studies have linked mutations in RNA-binding proteins as causative for this disease. The hnRNPA1 protein, a known pre-mRNA splicing factor, is mutated in some ALS patients. Here, two human cell models were generated to investigate how a mutation in the C-terminal low-complexity domain (LCD) of hnRNPA1 can cause splicing changes of thousands of transcripts that collectively are linked to the DNA damage response, cilium organization, and translation. We show that the hnRNPA1 D262V mutant protein binds to new binding sites on differentially spliced transcripts from genes that are linked to ALS. We demonstrate that this ALS-linked hnRNPA1 mutation alters normal RNA-dependent protein-protein interactions. Furthermore, cells expressing this hnRNPA1 mutant exhibit a cell aggregation phenotype, markedly reduced growth rates, changes in stress granule kinetics, and aberrant growth of neuronal processes. This study provides insight into how a single amino acid mutation in a splicing factor can alter RNA splicing networks of genes linked to ALS.
Assuntos
Esclerose Lateral Amiotrófica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Mutação , Splicing de RNA/genética , Fatores de Processamento de RNA/genéticaRESUMO
Mutations in Ubiquilin-2 are linked to the onset of amyotrophic lateral sclerosis, but its connection to disease processes has remained unknown. Hjerpe et. al now report that Ubiquilin-2 enables the ubiquitin proteasome system (UPS) to single-handedly clear aggregated proteins, a cellular function previously thought to rely at least partially on autophagy.
Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Esclerose Lateral Amiotrófica/genética , Autofagia , Proteínas de Ciclo Celular/genética , Humanos , Ubiquitinas/genéticaRESUMO
Two complementary approaches were used in search of the intracellular targets of the toxic PR poly-dipeptide encoded by the repeat sequences expanded in the C9orf72 form of amyotrophic lateral sclerosis. The top categories of PRn-bound proteins include constituents of non-membrane invested cellular organelles and intermediate filaments. PRn targets are enriched for the inclusion of low complexity (LC) sequences. Evidence is presented indicating that LC sequences represent the direct target of PRn binding and that interaction between the PRn poly-dipeptide and LC domains is polymer-dependent. These studies indicate that PRn-mediated toxicity may result from broad impediments to the dynamics of cell structure and information flow from gene to message to protein.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Expansão das Repetições de DNA , Dipeptídeos/química , Dipeptídeos/genética , Demência Frontotemporal/genética , Células HeLa , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Peptídeos/química , Peptídeos/genética , Domínios Proteicos , Proteínas/genéticaRESUMO
Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins thought to contribute to disease. Here, we identify the interactome of all DPRs and find that arginine-containing DPRs, polyGly-Arg (GR) and polyPro-Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles. Indeed, most GR/PR interactors are components of membrane-less organelles such as nucleoli, the nuclear pore complex and stress granules. Genetic analysis in Drosophila demonstrated the functional relevance of these interactions to DPR toxicity. Furthermore, we show that GR and PR altered phase separation of LCD-containing proteins, insinuating into their liquid assemblies and changing their material properties, resulting in perturbed dynamics and/or functions of multiple membrane-less organelles.
Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Dipeptídeos/metabolismo , Demência Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72 , Nucléolo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Expansão das Repetições de DNA , Dipeptídeos/genética , Drosophila melanogaster/genética , Demência Frontotemporal/genética , Humanos , Membranas Intracelulares/metabolismo , Poro Nuclear/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas/genéticaRESUMO
Pathogenic repeat sequences underlie several human disorders, including amyotrophic lateral sclerosis, Huntington's disease, and myotonic dystrophy. Here, we speak to several researchers about how repeat sequences have been implicated in affecting all aspects of the Central Dogma of molecular biology through their effects on DNA, RNA, and protein.
Assuntos
Esclerose Lateral Amiotrófica , Doença de Huntington , Distrofia Miotônica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Proteínas/genética , Doença de Huntington/genética , RNA/genética , Distrofia Miotônica/genética , Expansão das Repetições de Trinucleotídeos/genéticaRESUMO
Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.
Assuntos
Mapas de Interação de Proteínas , Proteômica/métodos , Esclerose Lateral Amiotrófica/genética , Humanos , Espectrometria de Massas , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/isolamento & purificação , Proteínas/metabolismoRESUMO
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are considered to be part of a spectrum. Clinically, FTD patients present with dementia frequently characterized by behavioral and speech problems. ALS patients exhibit alterations of voluntary movements caused by degeneration of motor neurons. Both syndromes can be present within the same family or even in the same person. The genetic findings for both diseases also support the existence of a continuum, with mutations in the same genes being found in patients with FTD, ALS, or FTD/ALS.
Assuntos
Esclerose Lateral Amiotrófica/genética , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Demência Frontotemporal/patologia , Demência Frontotemporal/fisiopatologia , Estudo de Associação Genômica Ampla , Humanos , MutaçãoRESUMO
Many proteins contain disordered regions of low-sequence complexity, which cause aging-associated diseases because they are prone to aggregate. Here, we study FUS, a prion-like protein containing intrinsically disordered domains associated with the neurodegenerative disease ALS. We show that, in cells, FUS forms liquid compartments at sites of DNA damage and in the cytoplasm upon stress. We confirm this by reconstituting liquid FUS compartments in vitro. Using an in vitro "aging" experiment, we demonstrate that liquid droplets of FUS protein convert with time from a liquid to an aggregated state, and this conversion is accelerated by patient-derived mutations. We conclude that the physiological role of FUS requires forming dynamic liquid-like compartments. We propose that liquid-like compartments carry the trade-off between functionality and risk of aggregation and that aberrant phase transitions within liquid-like compartments lie at the heart of ALS and, presumably, other age-related diseases.
Assuntos
Envelhecimento/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Mutação , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/genética , Envelhecimento/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Núcleo Celular/química , Citoplasma/química , Humanos , Príons/química , Agregados Proteicos , Estrutura Terciária de Proteína , Proteína FUS de Ligação a RNA/metabolismoRESUMO
To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.
Assuntos
Retículo Endoplasmático , Mitocôndrias , Membranas Mitocondriais , Movimento , Proteínas de Transporte Vesicular , Humanos , Esclerose Lateral Amiotrófica/genética , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/ultraestrutura , Transdução de Sinais , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/ultraestrutura , Microscopia Eletrônica , Imageamento Tridimensional , Sítios de Ligação , Difusão , Fatores de Tempo , Mutação , HomeostaseRESUMO
Poly(ADP-ribose) (PAR) is an RNA-like polymer that regulates an increasing number of biological processes. Dysregulation of PAR is implicated in neurodegenerative diseases characterized by abnormal protein aggregation, including amyotrophic lateral sclerosis (ALS). PAR forms condensates with FUS, an RNA-binding protein linked with ALS, through an unknown mechanism. Here, we demonstrate that a strikingly low concentration of PAR (1 nM) is sufficient to trigger condensation of FUS near its physiological concentration (1 µM), which is three orders of magnitude lower than the concentration at which RNA induces condensation (1 µM). Unlike RNA, which associates with FUS stably, PAR interacts with FUS transiently, triggering FUS to oligomerize into condensates. Moreover, inhibition of a major PAR-synthesizing enzyme, PARP5a, diminishes FUS condensation in cells. Despite their structural similarity, PAR and RNA co-condense with FUS, driven by disparate modes of interaction with FUS. Thus, we uncover a mechanism by which PAR potently seeds FUS condensation.
Assuntos
Esclerose Lateral Amiotrófica , Poli Adenosina Difosfato Ribose , Esclerose Lateral Amiotrófica/genética , Humanos , Poli Adenosina Difosfato Ribose/metabolismo , RNA/genética , Proteína FUS de Ligação a RNA/metabolismoRESUMO
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Mutação , Interação Gene-AmbienteRESUMO
Nuclear exclusion of the RNA- and DNA-binding protein TDP-43 can induce neurodegeneration in different diseases. Diverse processes have been implicated to influence TDP-43 mislocalization, including disrupted nucleocytoplasmic transport (NCT); however, the physiological pathways that normally ensure TDP-43 nuclear localization are unclear. The six-transmembrane enzyme glycerophosphodiester phosphodiesterase 2 (GDE2 or GDPD5) cleaves the glycosylphosphatidylinositol (GPI) anchor that tethers some proteins to the membrane. Here we show that GDE2 maintains TDP-43 nuclear localization by regulating the dynamics of canonical Wnt signaling. Ablation of GDE2 causes aberrantly sustained Wnt activation in adult neurons, which is sufficient to cause NCT deficits, nuclear pore abnormalities, and TDP-43 nuclear exclusion. Disruption of GDE2 coincides with TDP-43 abnormalities in postmortem tissue from patients with amyotrophic lateral sclerosis (ALS). Further, GDE2 deficits are evident in human neural cell models of ALS, which display erroneous Wnt activation that, when inhibited, increases mRNA levels of genes regulated by TDP-43. Our study identifies GDE2 as a critical physiological regulator of Wnt signaling in adult neurons and highlights Wnt pathway activation as an unappreciated mechanism contributing to nucleocytoplasmic transport and TDP-43 abnormalities in disease.
Assuntos
Proteínas de Ligação a DNA , Neurônios , Diester Fosfórico Hidrolases , Via de Sinalização Wnt , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Animais , Neurônios/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Diester Fosfórico Hidrolases/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismoRESUMO
Microtubule-based kinesin motor proteins are crucial for intracellular transport, but their hyperactivation can be detrimental for cellular functions. This study investigated the impact of a constitutively active ciliary kinesin mutant, OSM-3CA, on sensory cilia in C. elegans. Surprisingly, we found that OSM-3CA was absent from cilia but underwent disposal through membrane abscission at the tips of aberrant neurites. Neighboring glial cells engulf and eliminate the released OSM-3CA, a process that depends on the engulfment receptor CED-1. Through genetic suppressor screens, we identified intragenic mutations in the OSM-3CA motor domain and mutations inhibiting the ciliary kinase DYF-5, both of which restored normal cilia in OSM-3CA-expressing animals. We showed that conformational changes in OSM-3CA prevent its entry into cilia, and OSM-3CA disposal requires its hyperactivity. Finally, we provide evidence that neurons also dispose of hyperactive kinesin-1 resulting from a clinic variant associated with amyotrophic lateral sclerosis, suggesting a widespread mechanism for regulating hyperactive kinesins.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Cinesinas , Neuroglia , Animais , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Neuroglia/metabolismo , Cílios/metabolismo , Neurônios/metabolismo , Mutação , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologiaRESUMO
Lysosomes play a pivotal role in coordinating macromolecule degradation and regulating cell growth and metabolism. Despite substantial progress in identifying lysosomal signaling proteins, understanding the pathways that synchronize lysosome functions with changing cellular demands remains incomplete. This study uncovers a role for TANK-binding kinase 1 (TBK1), well known for its role in innate immunity and organelle quality control, in modulating lysosomal responsiveness to nutrients. Specifically, we identify a pool of TBK1 that is recruited to lysosomes in response to elevated amino acid levels. This lysosomal TBK1 phosphorylates Rab7 on serine 72. This is critical for alleviating Rab7-mediated inhibition of amino acid-dependent mTORC1 activation. Furthermore, a TBK1 mutant (E696K) associated with amyotrophic lateral sclerosis and frontotemporal dementia constitutively accumulates at lysosomes, resulting in elevated Rab7 phosphorylation and increased mTORC1 activation. This data establishes the lysosome as a site of amino acid regulated TBK1 signaling that is crucial for efficient mTORC1 activation. This lysosomal pool of TBK1 has broader implications for lysosome homeostasis, and its dysregulation could contribute to the pathogenesis of ALS-FTD.
Assuntos
Aminoácidos , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Serina-Treonina Quinases , proteínas de unión al GTP Rab7 , Humanos , Aminoácidos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Células HEK293 , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Transdução de SinaisRESUMO
Technologies for genome-wide sequence interrogation have dramatically improved our ability to identify loci associated with complex human disease. However, a chasm remains between correlations and causality that stems, in part, from a limiting theoretical framework derived from Mendelian genetics and an incomplete understanding of disease physiology. Here we propose a set of criteria, akin to Koch's postulates for infectious disease, for assigning causality between genetic variants and human disease phenotypes.
Assuntos
Doença/genética , Genômica/métodos , Fenótipo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Causalidade , Variação Genética , Humanos , Herança MultifatorialRESUMO
Variants of UNC13A, a critical gene for synapse function, increase the risk of amyotrophic lateral sclerosis and frontotemporal dementia1-3, two related neurodegenerative diseases defined by mislocalization of the RNA-binding protein TDP-434,5. Here we show that TDP-43 depletion induces robust inclusion of a cryptic exon in UNC13A, resulting in nonsense-mediated decay and loss of UNC13A protein. Two common intronic UNC13A polymorphisms strongly associated with amyotrophic lateral sclerosis and frontotemporal dementia risk overlap with TDP-43 binding sites. These polymorphisms potentiate cryptic exon inclusion, both in cultured cells and in brains and spinal cords from patients with these conditions. Our findings, which demonstrate a genetic link between loss of nuclear TDP-43 function and disease, reveal the mechanism by which UNC13A variants exacerbate the effects of decreased TDP-43 function. They further provide a promising therapeutic target for TDP-43 proteinopathies.