Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.539
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 607(7917): 97-103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255492

RESUMO

Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2-4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease.


Assuntos
COVID-19 , Estado Terminal , Genoma Humano , Interações Hospedeiro-Patógeno , Sequenciamento Completo do Genoma , Transportadores de Cassetes de Ligação de ATP , COVID-19/genética , COVID-19/mortalidade , COVID-19/patologia , COVID-19/virologia , Moléculas de Adesão Celular , Cuidados Críticos , Estado Terminal/mortalidade , Selectina E , Fator VIII , Fucosiltransferases , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/genética , Humanos , Subunidade beta de Receptor de Interleucina-10 , Lectinas Tipo C , Mucina-1 , Proteínas do Tecido Nervoso , Proteínas de Transferência de Fosfolipídeos , Receptores de Superfície Celular , Proteínas Repressoras , SARS-CoV-2/patogenicidade , Galactosídeo 2-alfa-L-Fucosiltransferase
2.
N Engl J Med ; 391(3): 235-246, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39018533

RESUMO

BACKGROUND: Once-weekly efanesoctocog alfa provides high sustained factor VIII activity with superior bleeding prevention as compared with prestudy factor VIII prophylaxis in previously treated patients 12 years of age or older with severe hemophilia A. Data on outcomes of efanesoctocog alfa treatment in children younger than 12 years of age with severe hemophilia A are limited. METHODS: We conducted a phase 3, open-label study involving previously treated patients younger than 12 years of age with severe hemophilia A. Patients received prophylaxis with once-weekly efanesoctocog alfa (50 IU per kilogram of body weight) for 52 weeks. The primary end point was the occurrence of factor VIII inhibitors (neutralizing antibodies against factor VIII). Secondary end points included annualized rates of treated bleeding episodes, bleeding treatment, safety, and pharmacokinetics. RESULTS: A total of 74 male patients were enrolled (38 with an age of <6 years and 36 with an age of 6 to <12 years). No factor VIII inhibitors developed. Most adverse events were nonserious. No serious adverse events that were assessed by the investigator as being related to efanesoctocog alfa were reported. In the 73 patients treated according to the protocol, the median and model-based mean annualized bleeding rates were 0.00 (interquartile range, 0.00 to 1.02) and 0.61 (95% confidence interval, 0.42 to 0.90), respectively. A total of 47 patients (64%) had no treated bleeding episodes, 65 (88%) had no spontaneous bleeding episodes, and 61 (82%) had no episodes of bleeding into joints. A total of 41 of 43 bleeding episodes (95%) resolved with one injection of efanesoctocog alfa. Mean factor VIII activity at steady state was more than 40 IU per deciliter for 3 days and more than 10 IU per deciliter for almost 7 days after dose administration. The geometric mean terminal half-life was 40.0 hours. CONCLUSIONS: In children with severe hemophilia A, once-weekly prophylaxis with efanesoctocog alfa provided high sustained factor VIII activity in the normal to near-normal range (>40 IU per deciliter) for 3 days and more than 10 IU per deciliter for almost 7 days after administration, leading to effective bleeding prevention. Efanesoctocog alfa was associated with mainly nonserious adverse events. (Funded by Sanofi and Sobi; XTEND-Kids ClinicalTrials.gov number, NCT04759131.).


Assuntos
Fator VIII , Hemofilia A , Hemorragia , Humanos , Hemofilia A/tratamento farmacológico , Hemofilia A/complicações , Fator VIII/imunologia , Fator VIII/efeitos adversos , Fator VIII/administração & dosagem , Fator VIII/uso terapêutico , Masculino , Criança , Pré-Escolar , Hemorragia/induzido quimicamente , Lactente , Anticorpos Neutralizantes/sangue , Esquema de Medicação
3.
N Engl J Med ; 388(4): 310-318, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36720133

RESUMO

BACKGROUND: Efanesoctocog alfa provides high sustained factor VIII activity by overcoming the von Willebrand factor-imposed half-life ceiling. The efficacy, safety, and pharmacokinetics of efanesoctocog alfa for prophylaxis and treatment of bleeding episodes in previously treated patients with severe hemophilia A are unclear. METHODS: We conducted a phase 3 study involving patients 12 years of age or older with severe hemophilia A. In group A, patients received once-weekly prophylaxis with efanesoctocog alfa (50 IU per kilogram of body weight) for 52 weeks. In group B, patients received on-demand treatment with efanesoctocog alfa for 26 weeks, followed by once-weekly prophylaxis with efanesoctocog alfa for 26 weeks. The primary end point was the mean annualized bleeding rate in group A; the key secondary end point was an intrapatient comparison of the annualized bleeding rate during prophylaxis in group A with the rate during prestudy factor VIII prophylaxis. Additional end points included treatment of bleeding episodes, safety, pharmacokinetics, and changes in physical health, pain, and joint health. RESULTS: In group A (133 patients), the median annualized bleeding rate was 0 (interquartile range, 0 to 1.04), and the estimated mean annualized bleeding rate was 0.71 (95% confidence interval [CI], 0.52 to 0.97). The mean annualized bleeding rate decreased from 2.96 (95% CI, 2.00 to 4.37) to 0.69 (95% CI, 0.43 to 1.11), a finding that showed superiority over prestudy factor VIII prophylaxis (P<0.001). A total of 26 patients were enrolled in group B. In the overall population, nearly all bleeding episodes (97%) resolved with one injection of efanesoctocog alfa. Weekly prophylaxis with efanesoctocog alfa provided mean factor VIII activity of more than 40 IU per deciliter for the majority of the week and of 15 IU per deciliter at day 7. Prophylaxis with efanesoctocog alfa for 52 weeks (group A) improved physical health (P<0.001), pain intensity (P = 0.03), and joint health (P = 0.01). In the overall study population, efanesoctocog alfa had an acceptable side-effect profile, and the development of inhibitors to factor VIII was not detected. CONCLUSIONS: In patients with severe hemophilia A, once-weekly efanesoctocog alfa provided superior bleeding prevention to prestudy prophylaxis, normal to near-normal factor VIII activity, and improvements in physical health, pain, and joint health. (Funded by Sanofi and Sobi; XTEND-1 ClinicalTrials.gov number, NCT04161495.).


Assuntos
Coagulantes , Fator VIII , Hemofilia A , Hemorragia , Humanos , Esquema de Medicação , Meia-Vida , Hemofilia A/complicações , Hemofilia A/tratamento farmacológico , Hemorragia/tratamento farmacológico , Hemorragia/etiologia , Hemorragia/prevenção & controle , Fator de von Willebrand/administração & dosagem , Fator de von Willebrand/uso terapêutico , Quimioprevenção , Fator VIII/administração & dosagem , Fator VIII/uso terapêutico , Coagulantes/administração & dosagem , Coagulantes/uso terapêutico , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/uso terapêutico
4.
N Engl J Med ; 388(8): 694-705, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36812433

RESUMO

BACKGROUND: Valoctocogene roxaparvovec delivers a B-domain-deleted factor VIII coding sequence with an adeno-associated virus vector to prevent bleeding in persons with severe hemophilia A. The findings of a phase 3 study of the efficacy and safety of valoctocogene roxaparvovec therapy evaluated after 52 weeks in men with severe hemophilia A have been published previously. METHODS: We conducted an open-label, single-group, multicenter, phase 3 trial in which 134 men with severe hemophilia A who were receiving factor VIII prophylaxis received a single infusion of 6×1013 vector genomes of valoctocogene roxaparvovec per kilogram of body weight. The primary end point was the change from baseline in the annualized rate of treated bleeding events at week 104 after receipt of the infusion. The pharmacokinetics of valoctocogene roxaparvovec were modeled to estimate the bleeding risk relative to the activity of transgene-derived factor VIII. RESULTS: At week 104, a total of 132 participants, including 112 with data that were prospectively collected at baseline, remained in the study. The mean annualized treated bleeding rate decreased by 84.5% from baseline (P<0.001) among the participants. From week 76 onward, the trajectory of the transgene-derived factor VIII activity showed first-order elimination kinetics; the model-estimated typical half-life of the transgene-derived factor VIII production system was 123 weeks (95% confidence interval, 84 to 232). The risk of joint bleeding was estimated among the trial participants; at a transgene-derived factor VIII level of 5 IU per deciliter measured with chromogenic assay, we expected that participants would have 1.0 episode of joint bleeding per year. At 2 years postinfusion, no new safety signals had emerged and no new serious adverse events related to treatment had occurred. CONCLUSIONS: The study data show the durability of factor VIII activity and bleeding reduction and the safety profile of valoctocogene roxaparvovec at least 2 years after the gene transfer. Models of the risk of joint bleeding suggest that the relationship between transgene-derived factor VIII activity and bleeding episodes is similar to that reported with the use of epidemiologic data for persons with mild-to-moderate hemophilia A. (Funded by BioMarin Pharmaceutical; GENEr8-1 ClinicalTrials.gov number, NCT03370913.).


Assuntos
Fator VIII , Hemofilia A , Humanos , Masculino , Fator VIII/uso terapêutico , Técnicas de Transferência de Genes , Meia-Vida , Hemofilia A/complicações , Hemofilia A/tratamento farmacológico , Hemorragia/etiologia , Hemorragia/prevenção & controle , Proteínas Recombinantes de Fusão/uso terapêutico
5.
Blood ; 143(9): 796-806, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37871576

RESUMO

ABSTRACT: Patients with hemophilia A require exogenous factor VIII (FVIII) or nonfactor hemostatic agents to prevent spontaneous bleeding events. Adeno-associated virus (AAV) vector-based gene therapy is under clinical investigation to enable endogenous FVIII production. Giroctocogene fitelparvovec is a recombinant AAV serotype 6 vector containing the coding sequence for the B-domain-deleted human F8 gene. In the ongoing phase 1/2, dose-ranging Alta study, 4 sequential cohorts of male participants with severe hemophilia A received a single IV dose of giroctocogene fitelparvovec. The primary end points are safety and changes in circulating FVIII activity. Interim results up to 214 weeks after treatment for all participants are presented. Eleven participants were dosed. Increases in alanine and aspartate aminotransferases were the most common treatment-related adverse events (AEs), which resolved with corticosteroid administration. Two treatment-related serious AEs (hypotension and pyrexia) were reported in 1 participant within 6 hours of infusion and resolved within 24 hours after infusion. At the highest dose level (3 × 1013 vg/kg; n = 5), the mean circulating FVIII activity level at week 52 was 42.6% (range, 7.8%-122.3%), and at week 104 it was 25.4% (range, 0.9%-71.6%) based on a chromogenic assay. No liver masses, thrombotic events, or confirmed inhibitors were detected in any participant. These interim 104-week data suggest that giroctocogene fitelparvovec is generally well tolerated with appropriate clinical management and has the potential to provide clinically meaningful FVIII activity levels, as indicated by the low rate of bleeding events in the highest dose cohort. This trial was registered at www.clinicaltrials.gov as #NCT03061201.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Masculino , Hemofilia A/genética , Hemofilia A/terapia , Fator VIII/genética , Fator VIII/uso terapêutico , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Hemorragia/etiologia
6.
Blood ; 143(18): 1845-1855, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38320121

RESUMO

ABSTRACT: Coagulation factor VIII (FVIII) and its carrier protein von Willebrand factor (VWF) are critical to coagulation and platelet aggregation. We leveraged whole-genome sequence data from the Trans-Omics for Precision Medicine (TOPMed) program along with TOPMed-based imputation of genotypes in additional samples to identify genetic associations with circulating FVIII and VWF levels in a single-variant meta-analysis, including up to 45 289 participants. Gene-based aggregate tests were implemented in TOPMed. We identified 3 candidate causal genes and tested their functional effect on FVIII release from human liver endothelial cells (HLECs) and VWF release from human umbilical vein endothelial cells. Mendelian randomization was also performed to provide evidence for causal associations of FVIII and VWF with thrombotic outcomes. We identified associations (P < 5 × 10-9) at 7 new loci for FVIII (ST3GAL4, CLEC4M, B3GNT2, ASGR1, F12, KNG1, and TREM1/NCR2) and 1 for VWF (B3GNT2). VWF, ABO, and STAB2 were associated with FVIII and VWF in gene-based analyses. Multiphenotype analysis of FVIII and VWF identified another 3 new loci, including PDIA3. Silencing of B3GNT2 and the previously reported CD36 gene decreased release of FVIII by HLECs, whereas silencing of B3GNT2, CD36, and PDIA3 decreased release of VWF by HVECs. Mendelian randomization supports causal association of higher FVIII and VWF with increased risk of thrombotic outcomes. Seven new loci were identified for FVIII and 1 for VWF, with evidence supporting causal associations of FVIII and VWF with thrombotic outcomes. B3GNT2, CD36, and PDIA3 modulate the release of FVIII and/or VWF in vitro.


Assuntos
Moléculas de Adesão Celular , Fator VIII , Cininogênios , Lectinas Tipo C , Receptores de Superfície Celular , Fator de von Willebrand , Humanos , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Polimorfismo de Nucleotídeo Único , Células Endoteliais da Veia Umbilical Humana/metabolismo , Análise da Randomização Mendeliana , Estudo de Associação Genômica Ampla , Trombose/genética , Trombose/sangue , Estudos de Associação Genética , Masculino , Células Endoteliais/metabolismo , Feminino
7.
Blood ; 143(23): 2373-2385, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452208

RESUMO

ABSTRACT: Gene therapy using adeno-associated virus (AAV) vectors is a promising approach for the treatment of monogenic disorders. Long-term multiyear transgene expression has been demonstrated in animal models and clinical studies. Nevertheless, uncertainties remain concerning the nature of AAV vector persistence and whether there is a potential for genotoxicity. Here, we describe the mechanisms of AAV vector persistence in the liver of a severe hemophilia A dog model (male = 4, hemizygous; and female = 4, homozygous), more than a decade after portal vein delivery. The predominant vector form was nonintegrated episomal structures with levels correlating with long-term transgene expression. Random integration was seen in all samples (median frequency, 9.3e-4 sites per cell), with small numbers of nonrandom common integration sites associated with open chromatin. No full-length integrated vectors were found, supporting predominant episomal vector-mediated long-term transgene expression. Despite integration, this was not associated with oncogene upregulation or histopathological evidence of tumorigenesis. These findings support the long-term safety of this therapeutic modality.


Assuntos
Dependovirus , Fator VIII , Terapia Genética , Vetores Genéticos , Hemofilia A , Fígado , Animais , Cães , Dependovirus/genética , Hemofilia A/genética , Hemofilia A/terapia , Vetores Genéticos/genética , Fígado/metabolismo , Fígado/patologia , Masculino , Terapia Genética/métodos , Feminino , Fator VIII/genética , Técnicas de Transferência de Genes , Integração Viral , Transgenes , Modelos Animais de Doenças
8.
Blood ; 143(14): 1355-1364, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38127586

RESUMO

ABSTRACT: Subcutaneous emicizumab enables prophylaxis for people with hemophilia A (HA) from birth, potentially reducing risk of bleeding and intracranial hemorrhage (ICH). HAVEN 7 (NCT04431726) is the first clinical trial of emicizumab dedicated to infants, designed to investigate the efficacy, safety, pharmacokinetics, and pharmacodynamics of emicizumab in those aged ≤12 months with severe HA without factor VIII (FVIII) inhibitors. Participants in this phase 3b trial received emicizumab 3 mg/kg maintenance dose every 2 weeks for 52 weeks and are continuing emicizumab during the 7-year long-term follow-up. Efficacy end points included annualized bleed rate (ABR): treated, all, treated spontaneous, and treated joint bleeds. Safety end points included adverse events (AEs), thromboembolic events (TEs), thrombotic microangiopathies (TMAs), and immunogenicity (anti-emicizumab antibodies [ADAs] and FVIII inhibitors). At primary analysis, 55 male participants had received emicizumab (median treatment duration: 100.3; range, 52-118 weeks). Median age at informed consent was 4.0 months (range, 9 days to 11 months 30 days). Model-based ABR for treated bleeds was 0.4 (95% confidence interval, 0.30-0.63), with 54.5% of participants (n = 30) having zero treated bleeds. No ICH occurred. All 42 treated bleeds in 25 participants (45.5%) were traumatic. Nine participants (16.4%) had ≥1 emicizumab-related AE (all grade 1 injection-site reactions). No AE led to treatment changes. No deaths, TEs, or TMAs occurred. No participant tested positive for ADAs. Two participants were confirmed positive for FVIII inhibitors. This primary analysis of HAVEN 7 indicates that emicizumab is efficacious and well tolerated in infants with severe HA without FVIII inhibitors.


Assuntos
Anticorpos Biespecíficos , Anticorpos Monoclonais Humanizados , Hemofilia A , Microangiopatias Trombóticas , Lactente , Humanos , Masculino , Recém-Nascido , Fator VIII , Hemorragia/induzido quimicamente , Hemorragia/prevenção & controle , Hemorragia/tratamento farmacológico , Anticorpos Biespecíficos/efeitos adversos , Microangiopatias Trombóticas/tratamento farmacológico , Hemorragias Intracranianas
9.
Nucleic Acids Res ; 52(1): 300-315, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37962303

RESUMO

Pathogenic variants in the human Factor VIII (F8) gene cause Hemophilia A (HA). Here, we investigated the impact of 97 HA-causing single-nucleotide variants on the splicing of 11 exons from F8. For the majority of F8 exons, splicing was insensitive to the presence of HA-causing variants. However, splicing of several exons, including exon-16, was impacted by variants predicted to alter exonic splicing regulatory sequences. Using exon-16 as a model, we investigated the structure-function relationship of HA-causing variants on splicing. Intriguingly, RNA chemical probing analyses revealed a three-way junction structure at the 3'-end of intron-15 (TWJ-3-15) capable of sequestering the polypyrimidine tract. We discovered antisense oligonucleotides (ASOs) targeting TWJ-3-15 partially rescue splicing-deficient exon-16 variants by increasing accessibility of the polypyrimidine tract. The apical stem loop region of TWJ-3-15 also contains two hnRNPA1-dependent intronic splicing silencers (ISSs). ASOs blocking these ISSs also partially rescued splicing. When used in combination, ASOs targeting both the ISSs and the region sequestering the polypyrimidine tract, fully rescue pre-mRNA splicing of multiple HA-linked variants of exon-16. Together, our data reveal a putative RNA structure that sensitizes F8 exon-16 to aberrant splicing.


Assuntos
Fator VIII , Íntrons , Splicing de RNA , Humanos , Processamento Alternativo , Éxons , Fator VIII/genética , RNA , Precursores de RNA
10.
N Engl J Med ; 386(11): 1013-1025, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35294811

RESUMO

BACKGROUND: Valoctocogene roxaparvovec (AAV5-hFVIII-SQ) is an adeno-associated virus 5 (AAV5)-based gene-therapy vector containing a coagulation factor VIII complementary DNA driven by a liver-selective promoter. The efficacy and safety of the therapy were previously evaluated in men with severe hemophilia A in a phase 1-2 dose-escalation study. METHODS: We conducted an open-label, single-group, multicenter, phase 3 study to evaluate the efficacy and safety of valoctocogene roxaparvovec in men with severe hemophilia A, defined as a factor VIII level of 1 IU per deciliter or lower. Participants who were at least 18 years of age and did not have preexisting anti-AAV5 antibodies or a history of development of factor VIII inhibitors and who had been receiving prophylaxis with factor VIII concentrate received a single infusion of 6×1013 vector genomes of valoctocogene roxaparvovec per kilogram of body weight. The primary end point was the change from baseline in factor VIII activity (measured with a chromogenic substrate assay) during weeks 49 through 52 after infusion. Secondary end points included the change in annualized factor VIII concentrate use and bleeding rates. Safety was assessed as adverse events and laboratory test results. RESULTS: Overall, 134 participants received an infusion and completed more than 51 weeks of follow-up. Among the 132 human immunodeficiency virus-negative participants, the mean factor VIII activity level at weeks 49 through 52 had increased by 41.9 IU per deciliter (95% confidence interval [CI], 34.1 to 49.7; P<0.001; median change, 22.9 IU per deciliter; interquartile range, 10.9 to 61.3). Among the 112 participants enrolled from a prospective noninterventional study, the mean annualized rates of factor VIII concentrate use and treated bleeding after week 4 had decreased after infusion by 98.6% and 83.8%, respectively (P<0.001 for both comparisons). All the participants had at least one adverse event; 22 of 134 (16.4%) reported serious adverse events. Elevations in alanine aminotransferase levels occurred in 115 of 134 participants (85.8%) and were managed with immune suppressants. The other most common adverse events were headache (38.1%), nausea (37.3%), and elevations in aspartate aminotransferase levels (35.1%). No development of factor VIII inhibitors or thrombosis occurred in any of the participants. CONCLUSIONS: In patients with severe hemophilia A, valoctocogene roxaparvovec treatment provided endogenous factor VIII production and significantly reduced bleeding and factor VIII concentrate use relative to factor VIII prophylaxis. (Funded by BioMarin Pharmaceutical; GENEr8-1 ClinicalTrials.gov number, NCT03370913.).


Assuntos
Terapia Genética , Vetores Genéticos , Hemofilia A , Hemorragia , Adulto , Humanos , Masculino , Alanina Transaminase/sangue , Dependovirus , Fator VIII/uso terapêutico , Terapia Genética/métodos , Hemofilia A/complicações , Hemofilia A/terapia , Hemorragia/epidemiologia , Hemorragia/etiologia , Hemorragia/prevenção & controle , Soronegatividade para HIV , Infusões Intravenosas , Análise de Intenção de Tratamento
11.
Eur J Immunol ; 54(4): e2350506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429238

RESUMO

Tolerance to self-proteins involves multiple mechanisms, including conventional CD4+ T-cell (Tconv) deletion in the thymus and the recruitment of natural regulatory T cells (nTregs). The significant incidence of autoantibodies specific for the blood coagulation factor VIII (FVIII) in healthy donors illustrates that tolerance to self-proteins is not always complete. In contrast to FVIII-specific Tconvs, FVIII-specific nTregs have never been revealed and characterized. To determine the frequency of FVIII-specific Tregs in human peripheral blood, we assessed the specificity of in vitro expanded Tregs by the membrane expression of the CD137 activation marker. Amplified Tregs maintain high levels of FOXP3 expression and exhibit almost complete demethylation of the FOXP3 Treg-specific demethylated region. The cells retained FOXP3 expression after long-term culture in vitro, strongly suggesting that FVIII-specific Tregs are derived from the thymus. From eleven healthy donors, we estimated the frequencies of FVIII-specific Tregs at 0.17 cells per million, which is about 10-fold lower than the frequency of FVIII-specific CD4+ T cells we previously published. Our results shed light on the mechanisms of FVIII tolerance by a renewed approach that could be extended to other self- or non-self-antigens.


Assuntos
Fator VIII , Hemofilia A , Humanos , Fator VIII/metabolismo , Linfócitos T Reguladores , Hemofilia A/metabolismo , Autoanticorpos , Fatores de Transcrição Forkhead/metabolismo
12.
Blood ; 141(16): 1982-1989, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36735911

RESUMO

Inhibitor development remains a major challenge in factor VIII (FVIII) replacement therapy. verITI-8 is the first prospective study of a recombinant FVIII Fc fusion protein (rFVIIIFc; efmoroctocog alfa) for first-time immune tolerance induction (ITI) in males with severe hemophilia A and high-titer inhibitors (historical peak ≥5 Bethesda units [BU]/mL). In this single-arm, open-label, multicenter study, screening was followed by ITI (rFVIIIFc 200 IU/kg per day until tolerization or maximum of 48 weeks). Those who achieved ITI success entered a tapering period, returning to standard prophylaxis, and then entered follow-up. Primary end point was time to tolerization with rFVIIIFc defined by inhibitor titer <0.6 BU/mL, incremental recovery (IR) ≥66% of expected IR (IR ≥1.32 IU/dL per IU/kg), and half-life (t½) ≥7 hours within 48 weeks. Sixteen patients received ≥1 rFVIIIFc dose. Twelve (75%), 11 (69%), and 10 patients (63%), respectively, achieved negative inhibitor titers, an IR ≥66%, and a t½ ≥7 hours (ie, tolerance) within 48 weeks. Median times in weeks to achieve these markers of success were 7.4 (interquartile range [IQR], 2.2-17.8), 6.8 (IQR, 5.4-22.4), and 11.7 (IQR, 9.8-26.2), respectively. All patients experienced ≥1 treatment-emergent adverse event (TEAE), and 1 reported ≥1 related TEAE (injection site pain). Nine patients experienced ≥1 treatment-emergent serious AE. No thrombotic events, discontinuations because of AEs, or deaths were reported during the study. As the first extended half-life rFVIII with prospective data in ITI, rFVIIIFc offered short time to tolerization with durable responses in almost two-thirds of patients and was well tolerated. This trial was registered at www.clinicaltrials.gov as #NCT03093480.


Assuntos
Fator VIII , Hemofilia A , Masculino , Humanos , Fator VIII/efeitos adversos , Estudos Prospectivos , Meia-Vida , Proteínas Recombinantes de Fusão/efeitos adversos , Tolerância Imunológica
13.
Blood ; 142(3): 290-305, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192286

RESUMO

Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.


Assuntos
Linfócitos T CD4-Positivos , Fator VIII , Hemofilia A , Hemostáticos , Animais , Camundongos , Células Dendríticas/metabolismo , Fator VIII/imunologia , Fator VIII/uso terapêutico , Hemofilia A/tratamento farmacológico , Hemostáticos/imunologia , Hemostáticos/uso terapêutico , Ovalbumina/imunologia
14.
Blood ; 142(2): 197-201, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37192299

RESUMO

The development of pathogenic antibody inhibitors against coagulation factor VIII (FVIII) occurs in ∼30% of patients with congenital hemophilia A receiving FVIII replacement therapy, as well as in all cases of acquired hemophilia A. KM33 is an anti-C1 domain antibody inhibitor previously isolated from a patient with severe hemophilia A. In addition to potently blocking FVIII binding to von Willebrand factor and phospholipid surfaces, KM33 disrupts FVIII binding to lipoprotein receptor-related protein 1 (LRP1), which drives FVIII hepatic clearance and antigen presentation in dendritic cells. Here, we report on the structure of FVIII bound to NB33, a recombinant derivative of KM33, via single-particle cryo-electron microscopy. Structural analysis revealed that the NB33 epitope localizes to the FVIII residues R2090-S2094 and I2158-R2159, which constitute membrane-binding loops in the C1 domain. Further analysis revealed that multiple FVIII lysine and arginine residues, previously shown to mediate binding to LRP1, dock onto an acidic cleft at the NB33 variable domain interface, thus blocking a putative LRP1 binding site. Together, these results demonstrate a novel mechanism of FVIII inhibition by a patient-derived antibody inhibitor and provide structural evidence for engineering FVIII with reduced LRP1-mediated clearance.


Assuntos
Hemofilia A , Hemostáticos , Humanos , Fator VIII/metabolismo , Microscopia Crioeletrônica , Domínios Proteicos , Fator de von Willebrand/metabolismo
15.
Blood ; 141(10): 1147-1158, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36108308

RESUMO

Factor VIII (FVIII) circulates in a noncovalent complex with von Willebrand Factor (VWF), the latter determining FVIII half-life. The VWF-binding aptamer rondaptivon pegol (BT200) increases plasma levels of VWF/FVIII in healthy volunteers. This trial assessed its safety, pharmacokinetics, and pharmacodynamics in hemophilia A. Nineteen adult patients (ages 20-62 years, 4 women) with hemophilia A (8 mild, 2 moderate, and 9 severe) received subcutaneous injections of rondaptivon pegol. After an initial fixed dose of 3 mg on days 0 and 4, patients received weekly doses of 2 to 9 mg until day 28. Severe hemophilia A patients underwent sparse-sampling population pharmacokinetics individual profiling after the final dose of rondaptivon pegol. Adverse events, pharmacokinetics, and pharmacodynamics were assessed. FVIII activity and VWF levels were measured. All patients tolerated rondaptivon pegol well. The geometric mean half-life of rondaptivon pegol was 5.4 days and rondaptivon pegol significantly increased VWF levels. In severe hemophilia A, 6 doses of rondaptivon pegol increased the half-lives of 5 different FVIII products from a median of 10.4 hours to 31.1 hours (range, 20.8-56.0 hours). Median FVIII increased from 22% to 48% in mild hemophilia A and from 3% to 7.5% in moderate hemophilia A. Rondaptivon pegol is a first-in-class prohemostatic molecule that extended the half-life of substituted FVIII approximately 3-fold and increased endogenous FVIII levels approximately 2-fold in hemophilia patients. This trial was registered at www.clinicaltrials.gov as #NCT04677803.


Assuntos
Hemofilia A , Hemostáticos , Adulto , Humanos , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Fator de von Willebrand/uso terapêutico , Hemofilia A/tratamento farmacológico , Fator VIII , Hemostáticos/uso terapêutico , Meia-Vida
16.
Mol Ther ; 32(7): 2052-2063, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38796703

RESUMO

Gene transfer therapies utilizing adeno-associated virus (AAV) vectors involve a complex drug design with multiple components that may impact immunogenicity. Valoctocogene roxaparvovec is an AAV serotype 5 (AAV5)-vectored gene therapy for the treatment of hemophilia A that encodes a B-domain-deleted human factor VIII (FVIII) protein controlled by a hepatocyte-selective promoter. Following previous results from the first-in-human phase 1/2 clinical trial, we assessed AAV5-capsid- and transgene-derived FVIII-specific immune responses with 2 years of follow-up data from GENEr8-1, a phase 3, single-arm, open-label study in 134 adult men with severe hemophilia A. No FVIII inhibitors were detected following administration of valoctocogene roxaparvovec. Immune responses were predominantly directed toward the AAV5 capsid, with all participants developing durable anti-AAV5 antibodies. Cellular immune responses specific for the AAV5 capsid were detected in most participants by interferon-γ enzyme-linked immunosorbent spot assay 2 weeks following dose administration and declined or reverted to negative over the first 52 weeks. These responses were weakly correlated with alanine aminotransferase elevations and showed no association with changes in FVIII activity. FVIII-specific cellular immune responses were less frequent and more sporadic compared with those specific for AAV5 and showed no association with safety or efficacy parameters.


Assuntos
Dependovirus , Fator VIII , Terapia Genética , Vetores Genéticos , Hemofilia A , Humanos , Hemofilia A/terapia , Hemofilia A/imunologia , Hemofilia A/genética , Dependovirus/genética , Dependovirus/imunologia , Terapia Genética/métodos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Fator VIII/genética , Fator VIII/imunologia , Masculino , Adulto , Resultado do Tratamento , Transgenes , Adulto Jovem , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Pessoa de Meia-Idade
17.
Mol Ther ; 32(4): 969-981, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341614

RESUMO

The ability to target the native production site of factor VIII (FVIII)-liver sinusoidal endothelial cells (LSECs)-can improve the outcome of hemophilia A (HA) gene therapy. By testing a matrix of ultrasound-mediated gene delivery (UMGD) parameters for delivering a GFP plasmid into the livers of HA mice, we were able to define specific conditions for targeted gene delivery to different cell types in the liver. Subsequently, two conditions were selected for experiments to treat HA mice via UMGD of an endothelial-specific human FVIII plasmid: low energy (LE; 50 W/cm2, 150 µs pulse duration) to predominantly target endothelial cells or high energy (HE; 110 W/cm2, 150 µs pulse duration) to predominantly target hepatocytes. Both groups of UMGD-treated mice achieved persistent FVIII activity levels of ∼10% over 84 days post treatment; however, half of the HE-treated mice developed low-titer inhibitors while none of the LE mice did. Plasma transaminase levels and histological liver examinations revealed minimal transient liver damage that was lower in the LE group than in the HE group. These results indicate that UMGD can safely target LSECs with a lower-energy condition to achieve persistent FVIII gene expression, demonstrating that this novel technology is highly promising for therapeutic correction of HA.


Assuntos
Fator VIII , Hemofilia A , Humanos , Fator VIII/metabolismo , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/patologia , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Terapia Genética/métodos
18.
J Med Genet ; 61(8): 769-776, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38719348

RESUMO

BACKGROUND: Exploring the expression of X linked disorders like haemophilia A (HA) in females involves understanding the balance achieved through X chromosome inactivation (XCI). Skewed XCI (SXCI) may be involved in symptomatic HA carriers. We aimed to develop an approach for dissecting the specific cause of SXCI and verify its value in HA. METHODS: A family involving three females (two symptomatic with severe/moderate HA: I.2, the mother, and II.1, the daughter; one asymptomatic: II.2) and two related affected males (I.1, the father and I.3, the maternal uncle) was studied. The genetic analysis included F8 mutational screening, multiplex ligation-dependent probe amplification, SNP microarray, whole exome sequencing (WES) and Sanger sequencing. XCI patterns were assessed in ectoderm/endoderm and mesoderm-derived tissues using AR-based and RP2-based systems. RESULTS: The comprehensive family analysis identifies I.2 female patient as a heterozygous carrier of F8:p.(Ser1414Ter) excluding copy number variations. A consistent XCI pattern of 99.5% across various tissues was observed. A comprehensive filtering algorithm for WES data was designed, developed and applied to I.2. A Gly58Arg missense variant in VMA21 was revealed as the cause for SXCI.Each step of the variant filtering system takes advantage of publicly available genomic databases, non-SXCI controls and case-specific molecular data, and aligns with established concepts in the theoretical background of SXCI. CONCLUSION: This study acts as a proof of concept for our genomic filtering algorithm's clinical utility in analysing X linked disorders. Our findings clarify the molecular aspects of SXCI and improve genetic diagnostics and counselling for families with X linked diseases like HA.


Assuntos
Hemofilia A , Linhagem , Inativação do Cromossomo X , Humanos , Inativação do Cromossomo X/genética , Feminino , Hemofilia A/genética , Masculino , Algoritmos , Sequenciamento do Exoma/métodos , Fator VIII/genética , Cromossomos Humanos X/genética , Genômica/métodos , Variações do Número de Cópias de DNA/genética , Mutação/genética , Adulto
19.
J Cell Mol Med ; 28(11): e18460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38864710

RESUMO

Haemophilic arthropathy (HA), a common comorbidity in haemophilic patients leads to joint pain, deformity and reduced quality of life. We have recently demonstrated that a long non-coding RNA, Neat1 as a primary regulator of matrix metalloproteinase (MMP) 3 and MMP13 activity, and its induction in the target joint has a deteriorating effect on articular cartilage. In the present study, we administered an Adeno-associated virus (AAV) 5 vector carrying an short hairpin (sh)RNA to Neat1 via intra-articular injection alone or in conjunction with systemic administration of a capsid-modified AAV8 (K31Q) vector carrying F8 gene (F8-BDD-V3) to study its impact on HA. AAV8K31Q-F8 vector administration at low dose, led to an increase in FVIII activity (16%-28%) in treated mice. We further observed a significant knockdown of Neat1 (~40 fold vs. untreated injured joint, p = 0.005) in joint tissue of treated mice and a downregulation of chondrodegenerative enzymes, MMP3, MMP13 and the inflammatory mediator- cPLA2, in mice receiving combination therapy. These data demonstrate that AAV mediated Neat1 knockdown in combination with F8 gene augmentation can potentially impact mediators of haemophilic joint disease.


Assuntos
Dependovirus , Fator VIII , Vetores Genéticos , Hemofilia A , Metaloproteinase 13 da Matriz , Metaloproteinase 3 da Matriz , RNA Longo não Codificante , Animais , Hemofilia A/genética , Hemofilia A/terapia , Hemofilia A/complicações , Dependovirus/genética , RNA Longo não Codificante/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Camundongos , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Fator VIII/genética , Fator VIII/metabolismo , Artropatias/terapia , Artropatias/genética , Artropatias/etiologia , Humanos , Terapia Genética/métodos , Camundongos Endogâmicos C57BL , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Modelos Animais de Doenças , Masculino
20.
Plant J ; 113(4): 851-865, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597651

RESUMO

Auxin Response Factor 8 plays a key role in late stamen development: its splice variants ARF8.4 and ARF8.2 control stamen elongation and anther dehiscence. Here, we characterized the role of ARF8 isoforms in pollen fertility. By phenotypic and ultrastructural analysis of arf8-7 mutant stamens, we found defects in pollen germination and viability caused by alterations in exine structure and pollen coat deposition. Furthermore, tapetum degeneration, a prerequisite for proper pollen wall formation, is delayed in arf8-7 anthers. In agreement, the genes encoding the transcription factors TDF1, AMS, MS188 and MS1, required for exine and pollen coat formation, and tapetum development, are downregulated in arf8-7 stamens. Consistently, the sporopollenin content is decreased, and the expression of sporopollenin synthesis/transport and pollen coat protein biosynthetic genes, regulated by AMS and MS188, is reduced. Inducible expression of the full-length isoform ARF8.1 in arf8-7 inflorescences complements the pollen (and tapetum) phenotype and restores the expression of the above transcription factors. Chromatin immunoprecipitation-quantitative polymerase chain reaction assay revealed that ARF8.1 directly targets the promoters of TDF1, AMS and MS188. In conclusion, the ARF8.1 isoform controls pollen and tapetum development acting directly on the expression of TDF1, AMS and MS188, which belong to the pollen/tapetum genetic pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Fator VIII/genética , Fator VIII/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Pólen , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA