Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(9): 1727-1741.e12, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547866

RESUMO

Heat-shocked cells prioritize the translation of heat shock (HS) mRNAs, but the underlying mechanism is unclear. We report that HS in budding yeast induces the disassembly of the eIF4F complex, where eIF4G and eIF4E assemble into translationally arrested mRNA ribonucleoprotein particles (mRNPs) and HS granules (HSGs), whereas eIF4A promotes HS translation. Using in vitro reconstitution biochemistry, we show that a conformational rearrangement of the thermo-sensing eIF4A-binding domain of eIF4G dissociates eIF4A and promotes the assembly with mRNA into HS-mRNPs, which recruit additional translation factors, including Pab1p and eIF4E, to form multi-component condensates. Using extracts and cellular experiments, we demonstrate that HS-mRNPs and condensates repress the translation of associated mRNA and deplete translation factors that are required for housekeeping translation, whereas HS mRNAs can be efficiently translated by eIF4A. We conclude that the eIF4F complex is a thermo-sensing node that regulates translation during HS.


Assuntos
Fator de Iniciação 4F em Eucariotos , Fator de Iniciação Eucariótico 4G , Resposta ao Choque Térmico , Proteínas de Ligação a Poli(A) , Biossíntese de Proteínas , RNA Mensageiro , Ribonucleoproteínas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Resposta ao Choque Térmico/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Fator de Iniciação Eucariótico 4G/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Regulação Fúngica da Expressão Gênica , Ligação Proteica , RNA Fúngico/metabolismo , RNA Fúngico/genética
2.
Mol Cell ; 84(11): 2135-2151.e7, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848692

RESUMO

In response to stress, eukaryotes activate the integrated stress response (ISR) via phosphorylation of eIF2α to promote the translation of pro-survival effector genes, such as GCN4 in yeast. Complementing the ISR is the target of rapamycin (TOR) pathway, which regulates eIF4E function. Here, we probe translational control in the absence of eIF4E in Saccharomyces cerevisiae. Intriguingly, we find that loss of eIF4E leads to de-repression of GCN4 translation. In addition, we find that de-repression of GCN4 translation is accompanied by neither eIF2α phosphorylation nor reduction in initiator ternary complex (TC). Our data suggest that when eIF4E levels are depleted, GCN4 translation is de-repressed via a unique mechanism that may involve faster scanning by the small ribosome subunit due to increased local concentration of eIF4A. Overall, our findings suggest that relative levels of eIF4F components are key to ribosome dynamics and may play important roles in translational control of gene expression.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estresse Fisiológico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fosforilação , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , Biossíntese de Proteínas , Regulação Fúngica da Expressão Gênica , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Transdução de Sinais , Ribossomos/metabolismo , Ribossomos/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética
3.
EMBO J ; 42(12): e112869, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37092320

RESUMO

Translation initiates when the eIF4F complex binds the 5' mRNA cap, followed by 5' untranslated region scanning for the start codon by scanning ribosomes. Here, we demonstrate that the ASC-1 complex (ASCC), which was previously shown to promote the dissociation of colliding 80S ribosomes, associates with scanning ribosomes to regulate translation initiation. Selective translation complex profiling (TCP-seq) analysis revealed that ASCC3, a helicase domain-containing subunit of ASCC, localizes predominantly to the 5' untranslated region of mRNAs. Ribo-seq, TCP-seq, and luciferase reporter analyses showed that ASCC3 knockdown impairs 43S preinitiation complex loading and scanning dynamics, thereby reducing translation efficiency. Whereas eIF4A, an RNA helicase in the eIF4F complex, is important for global translation, ASCC was found to regulate the scanning process for a specific subset of transcripts. Our results have thus revealed that ASCC is required not only for dissociation of colliding 80S ribosomes but also for efficient translation initiation by scanning ribosomes at a subset of transcripts.


Assuntos
Fator de Iniciação 4F em Eucariotos , Ribossomos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Regiões 5' não Traduzidas , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon de Iniciação , Biossíntese de Proteínas , Iniciação Traducional da Cadeia Peptídica
4.
Proc Natl Acad Sci U S A ; 121(5): e2313589121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38266053

RESUMO

The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent translation initiation in eukaryotic cells. An alternative cap-independent initiation can occur, involving only eIF4G1 and eIF4A1 through internal ribosome entry sites (IRESs). This mechanism is considered complementary to cap-dependent initiation, particularly in tumors under stress conditions. However, the selection and molecular mechanism of specific translation initiation remains poorly understood in human cancers. Thus, we analyzed gene copy number variations (CNVs) in TCGA tumor samples and found frequent amplification of genes involved in translation initiation. Copy number gains in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 expression strongly correlates with genes from cancer cell survival pathways including cell cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquitination, and ESCRT proteins. Utilizing Alphafold predictions, we modeled the eIF4F structure with and without eIF4E binding. For cap-dependent initiation, our modeling reveals extensive interactions between the N-terminal eIF4E-binding domain of eIF4G1 and eIF4E. Furthermore, the eIF4G1 HEAT-2 domain positions eIF4E near the eIF4A1 N-terminal domain (NTD), resulting in the collaborative enclosure of the RNA binding cavity within eIF4A1. In contrast, during cap-independent initiation, the HEAT-2 domain directly binds the eIF4A1-NTD, leading to a stronger interaction between eIF4G1 and eIF4A1, thus closing the mRNA binding cavity without the involvement of eIF4E.


Assuntos
Fator de Iniciação 4F em Eucariotos , Neoplasias , Humanos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/genética , Variações do Número de Cópias de DNA , Fator de Iniciação 3 em Eucariotos , Neoplasias/genética
5.
Blood ; 141(26): 3166-3183, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37084385

RESUMO

Dysregulation of messenger RNA (mRNA) translation, including preferential translation of mRNA with complex 5' untranslated regions such as the MYC oncogene, is recognized as an important mechanism in cancer. Here, we show that both human and murine chronic lymphocytic leukemia (CLL) cells display a high translation rate, which is inhibited by the synthetic flavagline FL3, a prohibitin (PHB)-binding drug. A multiomics analysis performed in samples from patients with CLL and cell lines treated with FL3 revealed the decreased translation of the MYC oncogene and of proteins involved in cell cycle and metabolism. Furthermore, inhibiting translation induced a proliferation arrest and a rewiring of MYC-driven metabolism. Interestingly, contrary to other models, the RAS-RAF-(PHBs)-MAPK pathway is neither impaired by FL3 nor implicated in translation regulation in CLL cells. Here, we rather show that PHBs are directly associated with the eukaryotic initiation factor (eIF)4F translation complex and are targeted by FL3. Knockdown of PHBs resembled FL3 treatment. Importantly, inhibition of translation controlled CLL development in vivo, either alone or combined with immunotherapy. Finally, high expression of translation initiation-related genes and PHBs genes correlated with poor survival and unfavorable clinical parameters in patients with CLL. Overall, we demonstrated that translation inhibition is a valuable strategy to control CLL development by blocking the translation of several oncogenic pathways including MYC. We also unraveled a new and direct role of PHBs in translation initiation, thus creating new therapeutic opportunities for patients with CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Camundongos , Animais , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Fator de Iniciação 4F em Eucariotos/genética , Proibitinas , Genes myc , RNA Mensageiro/genética
6.
Mol Cell ; 68(3): 504-514.e7, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29107534

RESUMO

In eukaryotic cells, protein synthesis typically begins with the binding of eIF4F to the 7-methylguanylate (m7G) cap found on the 5' end of the majority of mRNAs. Surprisingly, overall translational output remains robust under eIF4F inhibition. The broad spectrum of eIF4F-resistant translatomes is incompatible with cap-independent translation mediated by internal ribosome entry sites (IRESs). Here, we report that N6-methyladenosine (m6A) facilitates mRNA translation that is resistant to eIF4F inactivation. Depletion of the methyltransferase METTL3 selectively inhibits translation of mRNAs bearing 5' UTR methylation, but not mRNAs with 5' terminal oligopyrimidine (TOP) elements. We identify ABCF1 as a critical mediator of m6A-promoted translation under both stress and physiological conditions. Supporting the role of ABCF1 in m6A-facilitated mRNA translation, ABCF1-sensitive transcripts largely overlap with METTL3-dependent mRNA targets. By illustrating the scope and mechanism of eIF4F-independent mRNA translation, these findings reshape our current perceptions of cellular translational pathways.


Assuntos
Adenosina/análogos & derivados , Fator de Iniciação 4F em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina/farmacologia , Fator de Iniciação 4F em Eucariotos/genética , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal , Metiltransferases/genética , Metiltransferases/metabolismo , Capuzes de RNA/efeitos dos fármacos , RNA Mensageiro/genética
7.
EMBO Rep ; 23(2): e53081, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34866316

RESUMO

Mouse embryonic stem cells (mESCs) can self-renew indefinitely and maintain pluripotency. Inhibition of mechanistic target of rapamycin (mTOR) by the kinase inhibitor INK128 is known to induce paused pluripotency in mESCs cultured with traditional serum/LIF medium (SL), but the underlying mechanisms remain unclear. In this study, we demonstrate that mTOR complex 1 (mTORC1) but not complex 2 (mTORC2) mediates mTOR inhibition-induced paused pluripotency in cells grown in both SL and 2iL medium (GSK3 and MEK inhibitors and LIF). We also show that mTORC1 regulates self-renewal in both conditions mainly through eIF4F-mediated translation initiation that targets mRNAs of both cytosolic and mitochondrial ribosome subunits. Moreover, inhibition of mitochondrial translation is sufficient to induce paused pluripotency. Interestingly, eIF4F also regulates maintenance of pluripotency in an mTORC1-independent but MEK/ERK-dependent manner in SL, indicating that translation of pluripotency genes is controlled differently in SL and 2iL. Our study reveals a detailed picture of how mTOR governs self-renewal in mESCs and uncovers a context-dependent function of eIF4F in pluripotency regulation.


Assuntos
Fator de Iniciação 4F em Eucariotos , Alvo Mecanístico do Complexo 1 de Rapamicina , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Pluripotentes/citologia , Animais , Fator de Iniciação 4F em Eucariotos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos
8.
Nucleic Acids Res ; 50(11): 6497-6510, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35689631

RESUMO

Translation initiation in eukaryotes starts with the recognition of the mRNA 5'-cap by eIF4F, a hetero-trimeric complex of eIF4E, the cap-binding protein, eIF4A, a DEAD-box helicase, and eIF4G, a scaffold protein. eIF4G comprises eIF4E- and eIF4A-binding domains (4E-BD, 4A-BD) and three RNA-binding regions (RNA1-RNA3), and interacts with eIF4A, eIF4E, and with the mRNA. Within the eIF4F complex, the helicase activity of eIF4A is increased. We showed previously that RNA3 of eIF4G is important for the stimulation of the eIF4A conformational cycle and its ATPase and helicase activities. Here, we dissect the interplay between the eIF4G domains and the role of the eIF4E/cap interaction in eIF4A activation. We show that RNA2 leads to an increase in the fraction of eIF4A in the closed state, an increased RNA affinity, and faster RNA unwinding. This stimulatory effect is partially reduced when the 4E-BD is present. eIF4E binding to the 4E-BD then further inhibits the helicase activity and closing of eIF4A, but does not affect the RNA-stimulated ATPase activity of eIF4A. The 5'-cap renders the functional interaction of mRNA with eIF4A less efficient. Overall, the activity of eIF4A at the 5'-cap is thus fine-tuned by a delicately balanced network of stimulatory and inhibitory interactions.


Assuntos
Fator de Iniciação Eucariótico 4G , Saccharomyces cerevisiae , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Ligação Proteica , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Genes Dev ; 30(13): 1573-88, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27401559

RESUMO

Ribosomal attachment to mammalian capped mRNAs is achieved through the cap-eukaryotic initiation factor 4E (eIF4E)-eIF4G-eIF3-40S chain of interactions, but the mechanism by which mRNA enters the mRNA-binding channel of the 40S subunit remains unknown. To investigate this process, we recapitulated initiation on capped mRNAs in vitro using a reconstituted translation system. Formation of initiation complexes at 5'-terminal AUGs was stimulated by the eIF4E-cap interaction and followed "the first AUG" rule, indicating that it did not occur by backward scanning. Initiation complexes formed even at the very 5' end of mRNA, implying that Met-tRNAi (Met) inspects mRNA from the first nucleotide and that initiation does not have a "blind spot." In assembled initiation complexes, the cap was no longer associated with eIF4E. Omission of eIF4A or disruption of eIF4E-eIF4G-eIF3 interactions converted eIF4E into a specific inhibitor of initiation on capped mRNAs. Taken together, these results are consistent with the model in which eIF4E-eIF4G-eIF3-40S interactions place eIF4E at the leading edge of the 40S subunit, and mRNA is threaded into the mRNA-binding channel such that Met-tRNAi (Met) can inspect it from the first nucleotide. Before entering, eIF4E likely dissociates from the cap to overcome steric hindrance. We also found that the m(7)G cap specifically interacts with eIF3l.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Animais , Fator de Iniciação 4F em Eucariotos/genética , Mamíferos , Mutação , Capuzes de RNA/metabolismo , RNA de Transferência/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribossômicas Menores de Eucariotos/metabolismo
10.
Cell Mol Life Sci ; 78(19-20): 6709-6719, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34559254

RESUMO

Eukaryotic initiation factor (eIF) 4F plays a central role in the ribosome recruitment phase of cap-dependent translation. This heterotrimeric complex consists of a cap binding subunit (eIF4E), a DEAD-box RNA helicase (eIF4A), and a large bridging protein (eIF4G). In mammalian cells, there are two genes encoding eIF4A (eIF4A1 and eIF4A2) and eIF4G (eIF4G1 and eIF4G3) paralogs that can assemble into eIF4F complexes. To query the essential nature of the eIF4F subunits in normal development, we used CRISPR/Cas9 to generate mouse strains with targeted ablation of each gene encoding the different eIF4F subunits. We find that Eif4e, Eif4g1, and Eif4a1 are essential for viability in the mouse, whereas Eif4g3 and Eif4a2 are not. However, Eif4g3 and Eif4a2 do play essential roles in spermatogenesis. Crossing of these strains to the lymphoma-prone Eµ-Myc mouse model revealed that heterozygosity at the Eif4e or Eif4a1 loci significantly delayed tumor onset. Lastly, tumors derived from Eif4e∆38 fs/+/Eµ-Myc or Eif4a1∆5 fs/+/Eµ-Myc mice show increased sensitivity to the chemotherapeutic agent doxorubicin, in vivo. Our study reveals that eIF4A2 and eIF4G3 play non-essential roles in gene expression regulation during embryogenesis; whereas reductions in eIF4E or eIF4A1 levels are protective against tumor development in a murine Myc-driven lymphoma setting.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Fator de Iniciação 4F em Eucariotos/genética , Animais , Feminino , Regulação da Expressão Gênica/genética , Heterozigoto , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Subunidades Proteicas/genética , Espermatogênese/genética
11.
Nucleic Acids Res ; 48(15): 8562-8575, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32749456

RESUMO

Eukaryotic cellular mRNAs possess a 5' cap structure (m7GpppN) which plays a critical role in translation initiation mediated by eukaryotic initiation factor (eIF) 4F. The heterotrimeric eIF4F complex possesses several activities imparted by its subunits that include cap recognition (by eIF4E), RNA unwinding (eIF4A), and factor/ribosome recruitment (eIF4G). Mammalian cells have paralogs of all three eIF4F subunits and it remains an open question as to whether these all can participate in the process of ribosome recruitment. To query the activities of the eIF4F subunits in translation initiation, we adopted an RNA-tethering assay in which select subunits are recruited to a specific address on a reporter mRNA template. We find that all eIF4F subunits can participate in the initiation process. Based on eIF4G:eIF4A structural information, we also designed obligate dimer pairs to probe the activity of all combinations of eIF4G and eIF4A paralogs. We demonstrate that both eIF4GI and eIF4GII can associate with either eIF4A1 or eIF4A2 to recruit ribosomes to mRNA templates. In combination with eIF4E and eIF4E3, our results indicate the presence of up to eight eIF4F complexes that can operate in translation initiation.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Biossíntese de Proteínas , Sequência de Aminoácidos/genética , Animais , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/química , Células HEK293 , Humanos , Camundongos , Ligação Proteica/genética , Análogos de Capuz de RNA/genética , Capuzes de RNA/genética , RNA Mensageiro/genética , Ribossomos/genética
12.
Nucleic Acids Res ; 47(10): 5260-5275, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-30997503

RESUMO

Eukaryotic translation initiation requires unwinding of secondary structures in the 5'-untranslated region of mRNA. The DEAD-box helicase eIF4A is thought to unwind structural elements in the 5'-UTR in conjunction with eIF4G and eIF4B. Both factors jointly stimulate eIF4A activities by modulation of eIF4A conformational cycling between open and closed states. Here we examine how RNA substrates modulate eIF4A activities. The RNAs fall into two classes: Short RNAs only partially stimulate the eIF4A ATPase activity, and closing is rate-limiting for the conformational cycle. By contrast, longer RNAs maximally stimulate ATP hydrolysis and promote closing of eIF4A. Strikingly, the rate constants of unwinding do not correlate with the length of a single-stranded region preceding a duplex, but reach a maximum for RNA with a single-stranded region of six nucleotides. We propose a model in which RNA substrates affect eIF4A activities by modulating the kinetic partitioning of eIF4A between futile, unproductive, and productive cycles.


Assuntos
Regiões 5' não Traduzidas , Adenosina Trifosfatases/química , Fator de Iniciação 4F em Eucariotos/química , RNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Clonagem Molecular , Fator de Iniciação 4F em Eucariotos/genética , Hidrólise , Cinética , Nucleotídeos/genética , Domínios Proteicos , RNA/genética , RNA Helicases/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Proc Natl Acad Sci U S A ; 115(10): E2366-E2375, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463745

RESUMO

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


Assuntos
Aglaia/química , Antimaláricos/administração & dosagem , Malária Cerebral/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Feminino , Humanos , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
14.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884522

RESUMO

Leishmania parasites are digenetic protists that shuffle between sand fly vectors and mammalian hosts, transforming from flagellated extracellular promastigotes that reside within the intestinal tract of female sand flies to the obligatory intracellular and non-motile amastigotes within mammalian macrophages. Stage differentiation is regulated mainly by post-transcriptional mechanisms, including translation regulation. Leishmania parasites encode six different cap-binding proteins, LeishIF4E1-6, that show poor conservation with their counterparts from higher eukaryotes and among themselves. In view of the changing host milieu encountered throughout their life cycle, we propose that each LeishIF4E has a unique role, although these functions may be difficult to determine. Here we characterize LeishIF4E-6, a unique eIF4E ortholog that does not readily associate with m7GTP cap in either of the tested life forms of the parasite. We discuss the potential effect of substituting two essential tryptophan residues in the cap-binding pocket, expected to be involved in the cap-binding activity, as judged from structural studies in the mammalian eIF4E. LeishIF4E-6 binds to LeishIF4G-5, one of the five eIF4G candidates in Leishmania. However, despite this binding, LeishIF4E-6 does not appear to function as a translation factor. Its episomal overexpression causes a general reduction in the global activity of protein synthesis, which was not observed in the hemizygous deletion mutant generated by CRISPR-Cas9. This genetic profile suggests that LeishIF4E-6 has a repressive role. The interactome of LeishIF4E-6 highlights proteins involved in RNA metabolism such as the P-body marker DHH1, PUF1 and an mRNA-decapping enzyme that is homologous to the TbALPH1.


Assuntos
Fator de Iniciação 4F em Eucariotos/metabolismo , Leishmania/metabolismo , Proteínas de Protozoários/metabolismo , Análogos de Capuz de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , Sequência de Aminoácidos , Fator de Iniciação 4F em Eucariotos/química , Fator de Iniciação 4F em Eucariotos/genética , Leishmania/genética , Leishmania/crescimento & desenvolvimento , Biossíntese de Proteínas , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Análogos de Capuz de RNA/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Homologia de Sequência
15.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672357

RESUMO

KRASG12C is among the most common oncogenic mutations in lung adenocarcinoma and a promising target for treatment by small-molecule inhibitors. KRAS oncogenic signaling is responsible for modulation of tumor microenvironment, with translation factors being among the most prominent deregulated targets. In the present study, we used TALENs to edit EGFRWT CL1-5 and A549 cells for integration of a Tet-inducible KRASG12C expression system. Subsequent analysis of both cell lines showed that cap-dependent translation was impaired in CL1-5 cells via involvement of mTORC2 and NF-κB. In contrast, in A549 cells, which additionally harbor the KRASG12S mutation, cap-dependent translation was favored via recruitment of mTORC1, c-MYC and the positive regulation of eIF4F complex. Downregulation of eIF1, eIF5 and eIF5B in the same cell line suggested a stringency loss of start codon selection during scanning of mRNAs. Puromycin staining and polysome profile analysis validated the enhanced translation rates in A549 cells and the impaired cap-dependent translation in CL1-5 cells. Interestingly, elevated translation rates were restored in CL1-5 cells after prolonged induction of KRASG12C through an mTORC1/p70S6K-independent way. Collectively, our results suggest that KRASG12C signaling differentially affects the regulation of the translational machinery. These differences could provide additional insights and facilitate current efforts to effectively target KRAS.


Assuntos
Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Células A549 , Adenocarcinoma de Pulmão/metabolismo , Linhagem Celular Tumoral , Códon de Iniciação , Receptores ErbB/genética , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Capuzes de RNA/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/genética
16.
Trends Biochem Sci ; 41(10): 821-823, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27283511

RESUMO

The eukaryotic translation initiation factor 4F (eIF4F) has become essentially synonymous with 5' cap-dependent mRNA translation. Recent studies demonstrate that cells assemble variants of eIF4F to produce adaptive, cap-dependent translatomes during physiological conditions that inhibit eIF4F. These findings challenge us to reassess classical perceptions of cellular translational pathways.


Assuntos
Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Schizosaccharomyces/genética , Trypanosomatina/genética , Animais , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Schizosaccharomyces/metabolismo , Trypanosomatina/metabolismo
17.
Nucleic Acids Res ; 46(3): 1457-1469, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29244122

RESUMO

Cell growth is a complex process shaped by extensive and coordinated changes in gene expression. Among these is the tightly regulated translation of a family of growth-related mRNAs defined by a 5' terminal oligopyrimidine (TOP) motif. TOP mRNA translation is partly controlled via the eukaryotic initiation factor 4F (eIF4F), a translation factor that recognizes the mRNA 5' cap structure. Recent studies have also implicated La-related protein 1 (LARP1), which competes with eIF4F for binding to mRNA 5' ends. However, it has remained controversial whether LARP1 represses TOP mRNA translation directly and, if so, what features define its mRNA targets. Here, we show that the C-terminal half of LARP1 is necessary and sufficient to control TOP mRNA translation in cells. This fragment contains the DM15 cap-binding domain as well as an adjacent regulatory region that we identified. We further demonstrate that purified LARP1 represses TOP mRNA translation in vitro through the combined recognition of both the TOP sequence and cap structure, and that its intrinsic repressive activity and affinity for these features are subject to regulation. These results support a model whereby the translation of TOP mRNAs is controlled by a growth-regulated competition between eIF4F and LARP1 for their 5' ends.


Assuntos
Autoantígenos/genética , Fator de Iniciação 4F em Eucariotos/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Biossíntese de Proteínas , Pirimidinas/metabolismo , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação , Ligação Competitiva , Sistema Livre de Células/química , Sistema Livre de Células/metabolismo , Biologia Computacional/métodos , Fator de Iniciação 4F em Eucariotos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Genéticos , Polirribossomos/genética , Polirribossomos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pirimidinas/química , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
18.
Mol Biol (Mosk) ; 54(3): 480-486, 2020.
Artigo em Russo | MEDLINE | ID: mdl-32492012

RESUMO

The abundance of noncanonical mechanisms of eukaryotic initiation of translation indicates their involvement in the regulation of protein synthesis during key events in a cell life. One of the well-known examples of a noncanonical cap-independent process is the initiation of translation of mRNA with the 5'-untranslated (leader) region of the messenger encoding for the photoprotein obelin (the obelin leader). In the present work, mRNA with the obelin leader was modified by adding 45 deoxycytidyl nucleotides and a fluorescent label to its 5'end. Formation of the 48S ribosomal initiation complexes at the start codon of the modified mRNA was studied using primer extension inhibition (toeprinting). In contrast to mRNA with the intact obelin leader, translation initiation of which strictly requires the eIF4F factor, initiation on the modified mRNA can take place in the absence of this factor, although with less efficiency. The finding thus indicates the unknown function of the eIF4F factor in the first step(s) of mRNA recognition by ribosomal subunits.


Assuntos
Regiões 5' não Traduzidas , Fator de Iniciação 4F em Eucariotos , Fatores de Iniciação de Peptídeos , Biossíntese de Proteínas , Códon de Iniciação , Eucariotos , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ribossomos/metabolismo
19.
J Neurosci ; 38(20): 4811-4828, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29695414

RESUMO

Schwann cells (SCs) are endowed with a remarkable plasticity. When peripheral nerves are injured, SCs dedifferentiate and acquire new functions to coordinate nerve repair as so-called repair SCs. Subsequently, SCs redifferentiate to remyelinate regenerated axons. Given the similarities between SC dedifferentiation/redifferentiation in injured nerves and in demyelinating neuropathies, elucidating the signals involved in SC plasticity after nerve injury has potentially wider implications. c-Jun has emerged as a key transcription factor regulating SC dedifferentiation and the acquisition of repair SC features. However, the upstream pathways that control c-Jun activity after nerve injury are largely unknown. We report that the mTORC1 pathway is transiently but robustly reactivated in dedifferentiating SCs. By inducible genetic deletion of the functionally crucial mTORC1-subunit Raptor in mouse SCs (including male and female animals), we found that mTORC1 reactivation is necessary for proper myelin clearance, SC dedifferentiation, and consequently remyelination, without major alterations in the inflammatory response. In the absence of mTORC1 signaling, c-Jun failed to be upregulated correctly. Accordingly, a c-Jun binding motif was found to be enriched in promoters of genes with reduced expression in injured mutants. Furthermore, using cultured SCs, we found that mTORC1 is involved in c-Jun regulation by promoting its translation, possibly via the eIF4F-subunit eIF4A. These results provide evidence that proper c-Jun elevation after nerve injury involves also mTORC1-dependent post-transcriptional regulation to ensure timely dedifferentiation of SCs.SIGNIFICANCE STATEMENT A crucial evolutionary acquisition of vertebrates is the envelopment of axons in myelin sheaths produced by oligodendrocytes in the CNS and Schwann cells (SCs) in the PNS. When myelin is damaged, conduction of action potentials along axons slows down or is blocked, leading to debilitating diseases. Unlike oligodendrocytes, SCs have a high regenerative potential, granted by their remarkable plasticity. Thus, understanding the mechanisms underlying SC plasticity may uncover new therapeutic targets in nerve regeneration and demyelinating diseases. Our work reveals that reactivation of the mTORC1 pathway in SCs is essential for efficient SC dedifferentiation after nerve injury. Accordingly, modulating this signaling pathway might be of therapeutic relevance in peripheral nerve injury and other diseases.


Assuntos
Desdiferenciação Celular , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Proto-Oncogênicas c-jun/biossíntese , Células de Schwann , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Metabólica/genética , Ativação Metabólica/fisiologia , Animais , Fator de Iniciação 4F em Eucariotos/genética , Feminino , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Bainha de Mielina/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Ratos , Ratos Sprague-Dawley , Proteína Regulatória Associada a mTOR/genética , Transdução de Sinais/fisiologia
20.
Proc Natl Acad Sci U S A ; 113(38): 10464-72, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601676

RESUMO

DEAD-box RNA helicases eukaryotic translation initiation factor 4A (eIF4A) and Ded1 promote translation by resolving mRNA secondary structures that impede preinitiation complex (PIC) attachment to mRNA or scanning. Eukaryotic translation initiation factor 4B (eIF4B) is a cofactor for eIF4A but also might function independently of eIF4A. Ribosome profiling of mutants lacking eIF4B or with impaired eIF4A or Ded1 activity revealed that eliminating eIF4B reduces the relative translational efficiencies of many more genes than does inactivation of eIF4A, despite comparable reductions in bulk translation, and few genes display unusually strong requirements for both factors. However, either eliminating eIF4B or inactivating eIF4A preferentially impacts mRNAs with longer, more structured 5' untranslated regions (UTRs). These findings reveal an eIF4A-independent role for eIF4B in addition to its function as eIF4A cofactor in promoting PIC attachment or scanning on structured mRNAs. eIF4B, eIF4A, and Ded1 mutations also preferentially impair translation of longer mRNAs in a fashion mitigated by the ability to form closed-loop messenger ribonucleoprotein particles (mRNPs) via eIF4F-poly(A)-binding protein 1 (Pab1) association, suggesting cooperation between closed-loop assembly and eIF4B/helicase functions. Remarkably, depleting eukaryotic translation initiation factor 4G (eIF4G), the scaffold subunit of eukaryotic translation initiation factor 4F (eIF4F), preferentially impacts short mRNAs with strong closed-loop potential and unstructured 5' UTRs, exactly the opposite features associated with hyperdependence on the eIF4B/helicases. We propose that short, highly efficient mRNAs preferentially depend on the stimulatory effects of eIF4G-dependent closed-loop assembly.


Assuntos
RNA Helicases DEAD-box/genética , Fator de Iniciação Eucariótico 4G/genética , Fatores de Iniciação em Eucariotos/genética , Biossíntese de Proteínas , Regiões 5' não Traduzidas , Fator de Iniciação 4A em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/genética , Conformação de Ácido Nucleico , Proteínas de Ligação a Poli(A)/genética , RNA Mensageiro/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA