RESUMO
Staphylococcus aureus skin colonization is universal in atopic dermatitis and common in cancer patients treated with epidermal growth factor receptor inhibitors. However, the causal relationship of dysbiosis and eczema has yet to be clarified. Herein, we demonstrate that Adam17(fl/fl)Sox9-(Cre) mice, generated to model ADAM17-deficiency in human, developed eczematous dermatitis with naturally occurring dysbiosis, similar to that observed in atopic dermatitis. Corynebacterium mastitidis, S. aureus, and Corynebacterium bovis sequentially emerged during the onset of eczematous dermatitis, and antibiotics specific for these bacterial species almost completely reversed dysbiosis and eliminated skin inflammation. Whereas S. aureus prominently drove eczema formation, C. bovis induced robust T helper 2 cell responses. Langerhans cells were required for eliciting immune responses against S. aureus inoculation. These results characterize differential contributions of dysbiotic flora during eczema formation, and highlight the microbiota-host immunity axis as a possible target for future therapeutics in eczematous dermatitis.
Assuntos
Dermatite Atópica/imunologia , Disbiose/imunologia , Eczema/imunologia , Células de Langerhans/imunologia , Pele/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Proteínas ADAM/imunologia , Proteína ADAM17 , Animais , Antibacterianos/farmacologia , Corynebacterium/imunologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Dermatite Atópica/microbiologia , Disbiose/tratamento farmacológico , Disbiose/genética , Disbiose/microbiologia , Eczema/tratamento farmacológico , Eczema/genética , Eczema/microbiologia , Receptores ErbB/genética , Receptores ErbB/imunologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , Integrases/genética , Integrases/imunologia , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/microbiologia , Células de Langerhans/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/imunologia , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/microbiologia , Pele/patologia , Staphylococcus aureus/imunologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/microbiologia , Linfócitos T Auxiliares-Indutores/patologiaRESUMO
The mesenchymal cell is a multipotent stem cell with the capacity to give rise to multiple cell types such as adipocytes, osteoblasts, chondrocytes, and myocytes. However, the molecular events responsible for their lineage specification and differentiation remain obscure. Here we show that inactivation of chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII), a member of the nuclear receptor superfamily, in mesenchymal progenitors favors osteoblast and myoblast development while simultaneously impairing adipogenic and chondrogenic programs. During mouse embryogenesis, COUP-TFII protein is highly detected in the mesenchymal compartment and is involved in mesoderm tissue formation. Ablation of COUP-TFII in mice led to higher bone density, increased muscle mass, and suppression of cartilage and fat formation. We further demonstrate that COUP-TFII directs the plasticity of mesenchymal precursors primarily through the combined modulation of Wnt signaling, Runx2 activity, as well as PPARγ and Sox9 expression. Together, our results provide insight into the mechanisms whereby a single nuclear receptor can fine-tune the lineage-specific differentiation of a progenitor cell.
Assuntos
Adipogenia/fisiologia , Fator II de Transcrição COUP/metabolismo , Diferenciação Celular/fisiologia , Condrogênese/fisiologia , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Fator II de Transcrição COUP/genética , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica/fisiologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Transgênicos , Mioblastos/citologia , Mioblastos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fatores de Transcrição SOX9/imunologia , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/genética , Proteínas Wnt/metabolismoRESUMO
BACKGROUND: Mesenchymal stem cells (MSCs) isolated from adult tissues (Ad-MSCs) have shown great promise for use in regenerative medicine. However, their poor in vitro expansion capacity and tissue scarcity have been major limitations. In this study, we demonstrate that mouse embryonic stem cells (mESCs) can differentiate into cells with MSC properties. METHODS: Using previously established methods that characterize Ad-MSCs, we analyzed mESC-differentiated fibroblasts (mESC-FBs), including plastic adherence, clonogenic growth, MSC marker expression, tri-lineage differentiation potential, and the capacity to express immunomodulators. RESULTS: Although previously characterized as mESC-differentiated fibroblasts (mESC-FBs), these cells exhibit major properties of Ad-MSCs. However, mESC-FBs also display unique features inherited from ESCs, including robust expansion capacity, senescence resistance, and attenuated innate immunity. In particular, mESC-FBs are insensitive to bacterial endotoxin (lipopolysaccharide, LPS) and do not express LPS-induced inflammatory molecules, in contrast to bone marrow (BM)-MSCs. We further demonstrate that mESC-FBs are resistant to the cytotoxicity associated with inflammatory cytokines, bacterial endotoxins (LPS and heat-killed bacteria), and macrophage-mediated inflammation. CONCLUSIONS: While it remains to be determined how the unique properties of mESC-FBs will affect their immunoregulatory activity under an in vivo condition, our findings demonstrate that ESCs could be used as an alternative source to generate a new class of ESC-MSCs with unique features potentially useful in regenerative medicine.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/imunologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Colágeno Tipo II/genética , Colágeno Tipo II/imunologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/imunologia , Fibroblastos/citologia , Fibroblastos/imunologia , Expressão Gênica , Humanos , Imunidade Inata , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/imunologia , PPAR gama/genética , PPAR gama/imunologia , Células RAW 264.7 , Medicina Regenerativa/métodos , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/imunologiaRESUMO
The development of disease-modifying pharmacologic therapy for osteoarthritis currently faces major obstacles largely because the pathogenetic mechanisms for the development of osteoarthritis remain unclear. Previous studies suggest that the alterations in expression of catabolic and anabolic genes in articular chondrocytes may be involved in the pathogenesis of osteoarthritis. However, the regulatory mechanisms for gene expression in osteoarthritic chondrocytes are largely unknown. The objective of this review is to highlight the recent studies on epigenetic regulation of gene expression in the development of osteoarthritis. The review will begin with current understanding of epigenetic mechanisms, especially the newly emerging areas including the regulatory role of non-coding RNAs in gene expression and crosstalk among the epigenetic mechanisms. The main content of this review focuses on the significance of epigenetic regulation of the expression of catabolic and anabolic genes in osteoarthritic chondrocytes, including the regulatory roles of various epigenetic mechanisms in the expression of genes for specific matrix-degrading proteinases, cytokines, and extracellular matrix proteins. Recent novel findings on the epigenetic regulation of specific transcription factor genes are particularly important for the understanding of osteoarthritis pathogenesis, as these transcription factors may act as upstream regulators of multiple catabolic and anabolic genes. In conclusion, these recent advances in epigenetic studies have shed light on the importance of epigenetic regulation of gene expression in the development of osteoarthritis, leading to a better understanding of the epigenetic mechanisms underlying the pathogenesis of osteoarthritis. This may promote the development of new epigenetics-based strategies for the treatment of osteoarthritis. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Epigênese Genética , Histonas/genética , Osteoartrite/genética , Agrecanas/genética , Agrecanas/imunologia , Cartilagem Articular/imunologia , Cartilagem Articular/patologia , Condrócitos/imunologia , Condrócitos/patologia , Colágeno/genética , Colágeno/imunologia , Colagenases/genética , Colagenases/imunologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/imunologia , Citocinas/genética , Citocinas/imunologia , Metilação de DNA , Endopeptidases/genética , Endopeptidases/imunologia , Histonas/imunologia , Humanos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/imunologia , Osteoartrite/imunologia , Osteoartrite/patologia , RNA não Traduzido/genética , RNA não Traduzido/imunologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/imunologiaRESUMO
The regeneration-competent adult animals have ability to regenerate their lost complex appendages with a near-perfect replica, owing to the positional identity acquired by the progenitor cells in the blastema, i.e. the blastemal cells. CD59, a CD59/Ly6 family member, has been identified as a regulator of positional identity in the tail blastemal cells of Gekko japonicus. To determine whether this function of CD59 is unique to the regenerative amniote(s) and how CD59 mediates PD axis patterning during tail regeneration, we examined its protective role on the complement-mediated cell lysis and intervened CD59 expression in the tail blastemal cells using an in vivo model of adenovirus transfection. Our data revealed that gecko CD59 was able to inhibit complement-mediated cell lysis. Meanwhile, CD59 functioned on positional identity through expression in cartilage precursor cells. Intervening positional identity by overexpression or siRNA knockdown of CD59 resulted in abnormal cartilaginous cone patterning due to the decreased differentiation of blastemal cells to cartilage precursor cells. The cartilage formation-related genes were found to be under the regulation of CD59. These results indicate that CD59, an evolutionarily transitional molecule linking immune and regenerative regulation, affects tail regeneration by mediating cartilage patterning.