Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Genet Med ; 26(5): 101087, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38288683

RESUMO

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Assuntos
Transtorno do Espectro Autista , Epilepsia , Deficiência Intelectual , Interneurônios , Fatores de Transcrição Sp , Fatores de Transcrição , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Epilepsia/genética , Epilepsia/patologia , Heterozigoto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Interneurônios/metabolismo , Interneurônios/patologia , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Fenótipo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição Sp/genética
2.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982239

RESUMO

The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.


Assuntos
Antineoplásicos , MicroRNAs , Rabdomiossarcoma , Humanos , Fatores de Transcrição Sp/metabolismo , Antineoplásicos/farmacologia , MicroRNAs/genética , Rabdomiossarcoma/genética , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Regulação Neoplásica da Expressão Gênica
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077352

RESUMO

Tumor development and progression depend on reprogramming of signaling pathways that regulate cell metabolism. Alterations to various metabolic pathways such as glycolysis, oxidative phosphorylation, lipid metabolism, and hexosamine biosynthesis pathway are crucial to sustain increased redox, bioenergetic, and biosynthesis demands of a tumor cell. Transcription factors (oncogenes and tumor suppressors) play crucial roles in modulating these alterations, and their functions are tethered to major metabolic pathways under homeostatic conditions and disease initiation and advancement. Specificity proteins (SPs) and Krüppel-like factors (KLFs) are closely related transcription factors characterized by three highly conserved zinc fingers domains that interact with DNA. Studies have demonstrated that SP and KLF transcription factors are expressed in various tissues and regulate diverse processes such as proliferation, differentiation, apoptosis, inflammation, and tumorigenesis. This review highlights the role of SP and KLF transcription factors in the metabolism of various cancers and their impact on tumorigenesis. A better understanding of the role and underlying mechanisms governing the metabolic changes during tumorigenesis could provide new therapeutic opportunities for cancer treatment.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Neoplasias/metabolismo , Fatores de Transcrição Sp/metabolismo , Transformação Celular Neoplásica , Humanos , Dedos de Zinco
4.
Dev Genes Evol ; 230(3): 239-245, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32430690

RESUMO

The Sp-family genes encode important transcription factors in animal development. Here we investigate the embryonic expression patterns of the complete set of Sp-genes in the velvet worm Euperipatoides kanangrensis (Onychophora), with a special focus on the Sp6-9 ortholog. In arthropods, Sp6-9, the ortholog of the Drosophila melanogaster D-Sp1 gene plays a conserved role in appendage development. Our data show that the expression of Sp6-9 during the development of the velvet worm is conserved, suggesting that the key function of the Sp6-9 gene dates back to at least the last common ancestor of arthropods and onychophorans and thus likely the last common ancestor of Panarthropoda.


Assuntos
Padronização Corporal/genética , Invertebrados/embriologia , Invertebrados/genética , Fatores de Transcrição Sp/genética , Fatores de Transcrição Sp/metabolismo , Sequência de Aminoácidos , Animais , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Filogenia , Dedos de Zinco
5.
Mol Pharmacol ; 94(4): 1187-1196, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30115673

RESUMO

Bortezomib alone and in combination with other anticancer agents are extensively used for chemotherapeutic treatment of multiple myeloma (MM) patients and are being developed for treating other cancers. Bortezomib acts through multiple pathways, and in this study with ANBL-6 and RPMI 8226 MM cells we show that bortezomib inhibited growth and induced apoptosis and that this was accompanied by downregulation of specificity protein (Sp) 1, Sp3, and Sp4 transcription factors that are overexpressed in these cells. Similar results were observed in pancreatic and colon cancer cells. The functional importance of this pathway was confirmed by showing that individual knockdown of Sp1, Sp3, and Sp4 in MM cells inhibited cell growth and induced apoptosis, and that this correlates with the results of previous studies in pancreatic, colon, and other cancer cell lines. The mechanism of bortezomib-mediated downregulation of Sp transcription factors in MM was due to the induction of caspase-8 and upstream factors, including Fas-associated death domain. These results demonstrate that an important underlying mechanism of action of bortezomib was due to the activation of caspase-8-dependent downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes.


Assuntos
Bortezomib/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fatores de Transcrição Sp/metabolismo , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Fas/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo
6.
J Cell Physiol ; 234(1): 572-580, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30216442

RESUMO

Long non-coding RNAs (lncRNAs) are a class of regulatory noncoding RNAs. Emerging evidence highlights the critical roles of lncRNAs in the progression of hepatocellular carcinoma (HCC). Although many lncRNAs have been identified in the development of HCC, the association between DiGeorge syndrome critical region gene 5 (DGCR5) and HCC remains unclear. In the current study, we focused on the biological role of DGCR5 in HCC. We observed that DGCR5 was decreased in HCC cells, including SMCC7721, Hep3B, HepG2, MHCC-97L, MHCC-97H, and SNU449 hepatocellular carcinoma cells, compared with the normal human liver cell line THLE-3 normal human liver cells. In addition, DGCR5 overexpression could repress HCC cell growth, migration, and invasion considerably. Increasing studies have indicated the interactions between lncRNAs and microRNAs. MicroRNAs are endogenous small noncoding RNAs and they can play important roles in tumorigenesis. MicroRNA 346 (miR-346) has been demonstrated in various human cancer types, including HCC. MiR-346 was found to be increased in HCC cells and DGCR5 can act as a sponge of miR-346 to modulate the progression of HCC. The binding correlation between DGCR5 and miR-346 was validated in our research. Subsequently, Krüppel-like factor 14 (KLF14) was predicted as a downstream target of miR-346 and miR-346 can induce the development of HCC by inhibiting KLF14. Finally, we proved that DGCR5 can rescue the inhibited levels of KLF14 repressed by miR-346 mimics in MHCC-97H and Hep3B cells. Taken together, it was indicated in our study that DGCR5 can restrain the progression of HCC through sponging miR-346 and modulating KLF14 in vitro.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Fatores de Transcrição Sp/genética , Carcinogênese/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas/patologia
7.
Gastroenterology ; 152(8): 1845-1875, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28366734

RESUMO

Specificity proteins (SPs) and Krüppel-like factors (KLFs) belong to the family of transcription factors that contain conserved zinc finger domains involved in binding to target DNA sequences. Many of these proteins are expressed in different tissues and have distinct tissue-specific activities and functions. Studies have shown that SPs and KLFs regulate not only physiological processes such as growth, development, differentiation, proliferation, and embryogenesis, but pathogenesis of many diseases, including cancer and inflammatory disorders. Consistently, these proteins have been shown to regulate normal functions and pathobiology in the digestive system. We review recent findings on the tissue- and organ-specific functions of SPs and KLFs in the digestive system including the oral cavity, esophagus, stomach, small and large intestines, pancreas, and liver. We provide a list of agents under development to target these proteins.


Assuntos
Doenças do Sistema Digestório/metabolismo , Sistema Digestório/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Sp/metabolismo , Animais , Sistema Digestório/patologia , Sistema Digestório/fisiopatologia , Doenças do Sistema Digestório/genética , Doenças do Sistema Digestório/patologia , Doenças do Sistema Digestório/fisiopatologia , Regulação da Expressão Gênica , Humanos , Fatores de Transcrição Kruppel-Like/genética , Transdução de Sinais , Fatores de Transcrição Sp/genética
8.
Biochem Biophys Res Commun ; 503(3): 1848-1853, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30078677

RESUMO

Long noncoding RNAs (lncRNAs) represent a novel type of noncoding RNAs of over 200 nucleotides, characterized by no or limited protein-coding potential. Although the function of lncRNAs attracts increasing attention recently, the relationship between lncRNA and colorectal cancer (CRC) remains further investigation. In our study, we found that lncRNA HAND2-AS1 was markedly downregulated in CRC tissues. And its expression level was negatively correlated with metastasis and advanced stage in CRC patients. Furthermore, we showed that HAND2-AS1 low expression predicted poor prognosis. Functionally, we found that overexpression of HAND2-AS1 obviously attenuated the proliferation and invasion of CRC cells. Ectopic expression of HAND2-AS1 also inhibited tumor propagation in vivo. In mechanism, HAND2-AS1 served as a sponge of miR-1275 which targeted KLF14. Through facilitating KLF14 expression, HAND2-AS1 suppressed CRC progression. In conclusion, our study demonstrated that HAND2-AS1 exerts a suppressive role in CRC by sponging miR-1275 and modulating KLF14 expression.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fatores de Transcrição Sp/biossíntese , Animais , Proliferação de Células , Células Cultivadas , Neoplasias Colorretais/metabolismo , Progressão da Doença , Humanos , Fatores de Transcrição Kruppel-Like , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , RNA Longo não Codificante/genética , Fatores de Transcrição Sp/genética , Fatores de Transcrição Sp/metabolismo , Regulação para Cima
9.
Int J Legal Med ; 132(1): 1-11, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28725932

RESUMO

Improving accuracy of the available predictive DNA methods is important for their wider use in routine forensic work. Information on age in the process of identification of an unknown individual may provide important hints that can speed up the process of investigation. DNA methylation markers have been demonstrated to provide accurate age estimation in forensics, but there is growing evidence that DNA methylation can be modified by various factors including diseases. We analyzed DNA methylation profile in five markers from five different genes (ELOVL2, C1orf132, KLF14, FHL2, and TRIM59) used for forensic age prediction in three groups of individuals with diagnosed medical conditions. The obtained results showed that the selected age-related CpG sites have unchanged age prediction capacity in the group of late onset Alzheimer's disease patients. Aberrant hypermethylation and decreased prediction accuracy were found for TRIM59 and KLF14 markers in the group of early onset Alzheimer's disease suggesting accelerated aging of patients. In the Graves' disease patients, altered DNA methylation profile and modified age prediction accuracy were noted for TRIM59 and FHL2 with aberrant hypermethylation observed for the former and aberrant hypomethylation for the latter. Our work emphasizes high utility of the ELOVL2 and C1orf132 markers for prediction of chronological age in forensics by showing unchanged prediction accuracy in individuals affected by three diseases. The study also demonstrates that artificial neural networks could be a convenient alternative for the forensic predictive DNA analyses.


Assuntos
Acetiltransferases/genética , Envelhecimento/genética , Doença de Alzheimer/genética , Metilação de DNA , Doença de Graves/genética , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Criança , Pré-Escolar , Ilhas de CpG/genética , Elongases de Ácidos Graxos , Feminino , Genética Forense , Marcadores Genéticos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Fatores de Transcrição Kruppel-Like , Proteínas com Homeodomínio LIM/genética , Masculino , Proteínas de Membrana/genética , Metaloproteínas/genética , Pessoa de Meia-Idade , Análise Multivariada , Proteínas Musculares/genética , Redes Neurais de Computação , Fatores de Transcrição Sp/genética , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido , Adulto Jovem
10.
Nucleic Acids Res ; 44(12): 5658-72, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27060138

RESUMO

Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary metabolite, butyrate also exists in the luminal contents. However, both being critical for intestinal homeostasis and immune response, no studies examined the role of butyrate in the regulation of TLR5 expression. We showed that butyrate transcriptionally upregulates TLR5 in the IECs and augments flagellin-induced immune responses. Both basal and butyrate-induced transcription is regulated by differential binding of Sp-family transcription factors to the GC-box sequences over the TLR5 promoter. Butyrate activates two different protein kinase C isoforms to dephosphorylate/acetylate Sp1 by serine/threonine phosphatases and phosphorylate Sp3 by ERK-MAPK, respectively. This resulted in Sp1 displacement from the promoter and binding of Sp3 to it, leading to p300 recruitment and histone acetylation, activating transcription. This is the first study addressing the mechanisms of physiological TLR5 expression in the intestine. Additionally, a novel insight is gained into Sp1/Sp3-mediated gene regulation that may apply to other genes.


Assuntos
Imunidade Celular/genética , Fatores de Transcrição Sp/genética , Fator de Transcrição Sp3/genética , Receptor 5 Toll-Like/biossíntese , Acetilação/efeitos dos fármacos , Animais , Butiratos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , Flagelina/farmacologia , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Imunidade Celular/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas , Ligação Proteica/genética , Fatores de Transcrição Sp/metabolismo , Fator de Transcrição Sp3/metabolismo , Receptor 5 Toll-Like/genética , Fatores de Transcrição de p300-CBP/genética
11.
Mol Pharmacol ; 91(5): 438-450, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28275049

RESUMO

Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKKß phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF3DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF3DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor-derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Leucemia/patologia , Ácido Oleanólico/análogos & derivados , Proteínas Proto-Oncogênicas c-myc/metabolismo , Triterpenos/farmacologia , Antineoplásicos/farmacologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Quinase I-kappa B , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição Sp/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/química
12.
J Biol Chem ; 291(53): 27122-27133, 2016 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-27875298

RESUMO

The antineoplastic agent benzyl isothiocyanate (BITC) acts by targeting multiple pro-oncogenic pathways/genes, including signal transducer and activator of transcription 3 (STAT3); however, the mechanism of action is not well known. As reported previously, BITC induced reactive oxygen species (ROS) in Panc1, MiaPaCa2, and L3.6pL pancreatic cancer cells. This was accompanied by induction of apoptosis and inhibition of cell growth and migration, and these responses were attenuated in cells cotreated with BITC plus glutathione (GSH). BITC also decreased expression of specificity proteins (Sp) Sp1, Sp3, and Sp4 transcription factors (TFs) and several pro-oncogenic Sp-regulated genes, including STAT3 and phospho-STAT3 (pSTAT3), and GSH attenuated these responses. Knockdown of Sp TFs by RNA interference also decreased STAT3/pSTAT3 expression. BITC-induced ROS activated a cascade of events that included down-regulation of c-Myc, and it was also demonstrated that c-Myc knockdown decreased expression of Sp TFs and STAT3 These results demonstrate that in pancreatic cancer cells, STAT3 is an Sp-regulated gene that can be targeted by BITC and other ROS inducers, thereby identifying a novel therapeutic approach for targeting STAT3.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Isotiocianatos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fatores de Transcrição Sp/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/uso terapêutico , Fatores de Transcrição Sp/genética , Fatores de Transcrição Sp/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Pathol ; 240(1): 72-83, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27265324

RESUMO

The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Medular/genética , Sobrevivência Celular/genética , Cromossomos Humanos Par 7 , Regulação Neoplásica da Expressão Gênica , Impressão Genômica , Perda de Heterozigosidade , Neoplasias da Glândula Tireoide/genética , Proteínas Reguladoras de Apoptose , Proteína Semelhante a Receptor de Calcitonina/genética , Carcinoma Medular/patologia , Proliferação de Células/genética , Proteína Coatomer/genética , Metilação de DNA , Proteínas de Ligação a DNA , Proteína Adaptadora GRB10/genética , Humanos , Fatores de Transcrição Kruppel-Like , Proteínas/genética , Proteínas de Ligação a RNA , Fatores de Transcrição Sp/genética , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/patologia
14.
Diabetologia ; 59(3): 481-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26670163

RESUMO

AIMS/HYPOTHESIS: Epidemiological studies in Pima Indians identified elevated levels of HDL-cholesterol (HDL-C) as a protective factor against type 2 diabetes risk in women. We assessed whether HDL-C-associated single-nucleotide polymorphisms (SNPs) also associate with type 2 diabetes in female Pima Indians. METHODS: Twenty-one SNPs in established HDL-C loci were initially analysed in 2,675 full-heritage Pima Indians. SNPs shown to associate with HDL-C (12 SNPs) were assessed for association with type 2 diabetes in 7,710 Pima Indians (55.6% female sex). The CETP locus provided the strongest evidence for association with HDL-C and was further interrogated by analysing tag SNPs. RESULTS: Twelve of the 21 SNPs analysed had a significant association with HDL-C in Pima Indians; five SNPs representing four loci (CETP, DOCK6, PPP1R3B and ABCA1) reached genome-wide significance. Three SNPs, at CETP, KLF14 and HNF4A, associated with type 2 diabetes only in female participants with the HDL-C-lowering allele increasing diabetes risk (p values: 3.2 × 10(-4) to 7.7 × 10(-5)); the association remained significant even after adjustment for HDL-C. Additional analysis across CETP identified rs6499863 as having the strongest association with type 2 diabetes in female participants (p = 5.0 × 10(-6)) and this association remained independent of the HDL-C association. CONCLUSIONS/INTERPRETATION: SNPs at the CETP, HNF4A and KLF14 locus are associated with HDL-C levels and type 2 diabetes (in female participants). However, since HNF4A and KLF14 are established loci for type 2 diabetes, it is unlikely that HDL-C solely mediates these associations.


Assuntos
HDL-Colesterol/sangue , Diabetes Mellitus Tipo 2/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Proteínas de Transferência de Ésteres de Colesterol/genética , HDL-Colesterol/genética , Diabetes Mellitus Tipo 2/genética , Feminino , Predisposição Genética para Doença/genética , Fator 4 Nuclear de Hepatócito/genética , Humanos , Indígenas Norte-Americanos/genética , Fatores de Transcrição Kruppel-Like , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores Sexuais , Fatores de Transcrição Sp/genética , Adulto Jovem
15.
J Struct Biol ; 196(2): 119-126, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27178782

RESUMO

Specificity protein (Sp) belong to a transcription factor family that contains nine subgroups with essential functions in development, including skeletogenesis, tooth development, neural tube closure, and limb formation. In molluscs, functions of the Sp protein family members have not been reported in detail. In this study, we report the first Sp protein-encoding gene in Pinctada fucata. We named the translated protein Pf-Sp8/9, based on the phylogenetic development tree constructed using Sp protein sequences from six model organisms, which showed that it was a Sp8/9 homolog. Alignment of the Pf-Sp8/9 sequence with the amino acid sequences of related proteins showed that Pf-Sp8/9 had conserved domains, including three DNA-binding motifs. The tissue distribution showed that while Pf-Sp8/9 mRNA expression was detected in all tested tissues, it was particularly high in the mantle. The luciferase reporter assay results showed that Pf-Sp8/9 had the ability to activate the transcription of a number of matrix proteins. The expression pattern of Pf-Sp8/9 during P. fucata pearl sac development was similar to that of some genes that encode matrix proteins, suggesting Pf-Sp8/9 may be involved in mantle-related physiological activities and biomineralization.


Assuntos
Calcificação Fisiológica , Pinctada/química , Fatores de Transcrição Sp/fisiologia , Sequência de Aminoácidos , Animais , Proteínas da Matriz Extracelular/genética , Filogenia , Pinctada/metabolismo , Alinhamento de Sequência , Fatores de Transcrição Sp/genética , Ativação Transcricional
16.
J Cell Sci ; 127(Pt 24): 5261-72, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25344255

RESUMO

The basal layer of the epidermis contains stem cells and transit amplifying cells that rapidly proliferate and differentiate further into the upper layers of the epidermis. A number of molecules have been identified as regulators of this process, including p63 (also known as tumor protein 63) and Notch1. However, little is known about the mechanisms that regulate the transitions from stem cell to proliferating or differentiating transit amplifying cell. Here, we demonstrate that epiprofin (Epfn, also known as Sp6) plays crucial distinct roles in these transition stages as a cell cycle regulator and a transcription factor. Epfn knockout mice have a thickened epidermis, in which p63-expressing basal cells form multiple layers owing to the accumulation of premature transit amplifying cells with reduced proliferation and a reduction in the number of differentiating keratinocytes expressing Notch1. We found that low levels of Epfn expression increased the proliferation of human immortalized keratinocyte (HaCaT) cells by increasing EGF responsiveness and superphosphorylation of Rb. By contrast, high levels of Epfn expression promoted cell cycle exit and differentiation, by reducing E2F transactivation and inducing Notch1 expression. Our findings identify multiple novel functions of Epfn in epidermal development.


Assuntos
Diferenciação Celular , Epiderme/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Sp/metabolismo , Animais , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Epiderme/crescimento & desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/patologia , Humanos , Queratinócitos/efeitos dos fármacos , Fatores de Transcrição Kruppel-Like/deficiência , Camundongos , Modelos Biológicos , Morfogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Receptores Notch/metabolismo , Proteína do Retinoblastoma/metabolismo
17.
Phytother Res ; 30(11): 1723-1732, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27384261

RESUMO

Naturally occurring anticancer agents and their derivatives act on multiple pathways to inhibit carcinogenesis and their inhibition of migration, invasion, growth, survival, and metastasis is associated with downregulation of genes associated with these responses. Several phytochemical-derived anticancer drugs including curcumin, betulinic acid, phenethylisothiocyanate and celastrol, and many others induce reactive oxygen species, and their effects on gene regulation show some overlap in various cancer cell lines. We hypothesize that reactive oxygen species-inducing anticancer agents and many other natural products target a common pathway in cancer cells, which initially involves downregulation of specificity protein 1 (Sp1), Sp3, and Sp4, which are highly expressed in tumors/cell lines derived from solid tumors. This hypothesis is supported by several published reports showing that a large number of phytochemical-derived anticancer agents downregulate Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes involved in cell growth (cyclin D1 and growth factor receptors), survival (bcl-2 and survivin), angiogenesis and migration (MMP-9, vascular endothelial growth factor and its receptors), and inflammation (NF-kB). The contribution of this pathway to the anticancer activity of drugs such as curcumin, celastrol, betulinic acid, and phenethylisothiocyanate must be determined in order to optimize clinical applications of drug combinations containing these compounds. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/química , Produtos Biológicos/química , Fatores de Transcrição Sp/metabolismo , Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Humanos
18.
J Biol Chem ; 289(22): 15798-809, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24759103

RESUMO

Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Metabolismo dos Lipídeos/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição Sp/metabolismo , Animais , Cromatina/metabolismo , Células Endoteliais/citologia , Epigênese Genética/fisiologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células HEK293 , Histonas/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fígado/citologia , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fatores de Transcrição Sp/genética , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Ativação Transcricional/fisiologia
19.
J Biol Chem ; 289(40): 27692-701, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25143389

RESUMO

The antidiabetic drug metformin exhibits both chemopreventive and chemotherapeutic activity for multiple cancers including pancreatic cancer; however, the underlying mechanism of action of metformin is unclear. A recent study showed that metformin down-regulated specificity protein (Sp) transcription factors (TFs) Sp1, Sp3, and Sp4 in pancreatic cancer cells and tumors, and this was accompanied by down-regulation of several pro-oncogenic Sp-regulated genes. Treatment with metformin or down-regulation of Sp TFs by RNAi also inhibits two major pro-oncogenic pathways in pancreatic cancer cells, namely mammalian target of rapamycin (mTOR) signaling and epidermal growth factor (EGFR)-dependent activation of Ras. Metformin and Sp knockdown by RNAi decreased expression of the insulin-like growth factor-1 receptor (IGF-1R), resulting in inhibition of mTOR signaling. Ras activity was also decreased by metformin and Sp knockdown of EGFR, another Sp-regulated gene. Thus, the antineoplastic activities of metformin in pancreatic cancer are due, in part, to down-regulation of Sp TFs and Sp-regulated IGF-1R and EGFR, which in turn results in inhibition of mTOR and Ras signaling, respectively.


Assuntos
Antineoplásicos/farmacologia , Metformina/farmacologia , Neoplasias Pancreáticas/genética , Fatores de Transcrição Sp/genética , Serina-Treonina Quinases TOR/genética , Proteínas ras/genética , Animais , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Fatores de Transcrição Sp/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Proteínas ras/antagonistas & inibidores , Proteínas ras/metabolismo , Neoplasias Pancreáticas
20.
J Biol Chem ; 289(50): 34743-67, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25342743

RESUMO

The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.


Assuntos
Neurônios Dopaminérgicos/patologia , Epigênese Genética , Histonas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteína Quinase C-delta/metabolismo , Regulação para Cima , Acetilação/efeitos dos fármacos , Animais , Encéfalo/patologia , Ácido Butírico/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Epigênese Genética/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Proteína Quinase C-delta/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição Sp/química , Fatores de Transcrição Sp/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Fatores de Transcrição de p300-CBP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA